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1. Introduction

The concept of "fractal" is fairly broad. A mathematical framework of fractals
were given by Hutchinson [5] (he call them strictly self-similar sets). His self-similar
set K is a compact subset of a complete metric space X, and invariant with respect

to a collection {Fί9 9FN} of contraction maps on X: that is, AΓ=ufL1/
Γ

ί(^). One
way to obtain the physical properties of these media is to construct Brownian

motion on them. The study of diffusion processes on fractals was initiated by
Kusuoka [11], Goldstein [3], and Barlow-Perkins [1]. They constructed Brownian
motion on the Sierpinski gasket, and investigated it in detail. The Sierpinski

gasket is one of Hutchinson's fractals of finitely ramified type (i.e., max^fflF^K)
nFj{K))<co)9 which have been studied by many probabilists. Lindstr0m [13]
introduced a class of finitely ramified fractals, containing the Sierpinski gasket,
called "Nested fractals", and constructed Brownian motion on them. Kusuoka
[12] and Fukushima [2] studied these processes by using (regular local) Dirichlet

forms. Also, there are many works on nested fractals (for example see Shima

[15] and Kumagai [10]). Post critically finite (P.C.F. for short) self-similar sets,

a generalization of nested fractals, were introduced by Kigami [6], and he considered
Laplace operators and Dirichlet forms on them.

Hutchinson's fractal (i.e., strictly self-similar set) K is associated with the

full-shift symbolic space, i.e., there is a natural surjective map π: {\, -,N}N ^> K9

cf. Kigami [6]. In this paper, our object is a finitely ramified fractal which is

not associated with full-shift, but with a Markov sub-shift. Let C be a unite circle
in R2 having the origin as its center, and a collection {Fί9 ~9F5} of 3-similitudes
with fixed points (1,0), (0,1), (-1,0), (0,-1), (0,0), respectively. There exists a

unique compact set K<^R2 such that K=\jf=lF£K)vC9 cf. Hata [4], which we
call the Mandala (see Figure 1): this name is taken from the Buddhist magic

diagram. However, we will be exclusively concerned with the plain Mandala which

is a simplification of the Mandala, in order to avoid notational complications. The

Mandala and the plain Mandala are not included in Hutchinson's framework.
We shall give a mathematical definition of the plain Mandala in Section 2. Our

method of constructing diffusion processes is a modification of Kigami's method

for P.C.F. selfsimilar sets [6] (see also Kumagai [9]). The plain Mandala is
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Fig. 1.

denoted by K. We define a sequence {Fm}m>0 of finite subsets of K such that
V =u ^nF is dense in K. In Section 3, we first define a difference operator

OO "* ̂  V "I

//m on the space /(FJ of functions on Fm and then, we introduce a bilinear form
<$m on /(FJ using Hm. Under some assumption (cited as Basic Assumption), it
is shown that, for each we/(FJ, <Tm(w,w) is increasing in m. This limit bilinear

form on /(F^) is denoted by δ. Then, we show the domain of δ is embedded
in L2(K) relative to some measure, and finally we prove this embedded bilinear
form is a regular local Dirichlet form. Our bilinear form depends on several
parameters, and in order to obtain our assertion, we ought to restrain these
parameters (say, Condition A or Condition B). In Section 4, under Condition A,

we consider a measure μ of Bernoulli type which is naturally associated with the
bilinear form δ in a certain sense, and then we give an injective map from the
domain of δ to L2(K,μ), proving that this embedded bilinear form is a regular
local Dirichlet form on L2(K,μ). In Section 5, under Condition B, we prove that
any function of the domain of the bilinear form defined in Section 3 is extended

to be a continuous function on the plain mandala K, and that this embedded
bilinear form is a regular local Dirichlet form on L2(K,v), where v can be any
everywhere dense probability measure on K. Moreover, we see that the diffusion
process associated with the Dirichlet form on L2(K,v) is point recurrent, using the

argument established by Fukushima [2]. In Section 6, under Condition A, we

determine the spectral dimension of the diffusion process on the plain Mandala,
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which has been constructed in Section 4. In Section 7, we consider to what extent

the argument in Section 4 and Section 6 works if we take a more general measure
of Bernoulli type instead of the measure defined in Section 4.
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2. Plain Mandala

In this section, we give a mathematical definition of the plain Mandala, and

explain the notation and the terminology. As will be seen in the sequel, the plain

Mandala is characterized as a kind of self-similar set associated with a Markov

sub-shift.
Let L be an (upper) unit semicircle in R2 having the origin as its center. We

denote (—1,0), (1,0) by £15 ξ2, respectively. We give a collection {Fί9F29F3,F4} of

"contraction maps". F1 and F2 are the mappings from R2 to R2 defined by

for all xεR2, ι=l,2.

F3 and F4 are the mappings from L to L defined by

for all xeL, i = 3,4,

where φ:[0,π]-*L is defined by φ(θ) = (cosθ,smθ), and ψ^φ"1.
Then there exists a unique compact set Kin R2 such that K=Fί(K)<uF2(K)vL,

(see Figure 2); cf. Hata [4].

Fig. 2.
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DEFINITION 2.1. The compact set K is said to be the plain Mandala.

We give an increasing sequence {^m}m>o of finite sets which approximate

K. We start with F0=FL>0 = {ξι,ξ2} For w>l, let

The set um> 0Km is denoted by V^. We see that V^ is a countable dense
subset of K: i.e., K=Cl(VJ. We also define the subset Vs

m of Fm by

which will be used often.

DEFINITION 2.2. Let 75={1,2}, 7b = {3,4} and I=lsulb. (s and ft stand for
self-similar and bridge, respectively.)

(i) >4=(fly)ije/ is the structure matrix given by

[0, if ielb and jefs,
lj {l, otherwise.

(ii) The collection Wm(I,A) (Wm for short) of words of length m is defined by

Wm(I,A)={ωl '-ωmelm;aωkωk+1 = \ for all &=l, ,ra — 1}.

(iii) The Makov sub-shift Σ(7,^4) (Σ for short) is defined by

(iv) For ω e Wm, m-complex Kω is defined by

_(Fω(K\ if ωe7s

m,

where Fω = Fωι° Fω2 o - - o Fωm.

REMARK. The collection of words Wm is associated with Vm in a sense. Indeed,

and Vs

m = \jωeImFω(Vo) holds.

Proposition 2.3. ΓΛ^r^ ^Λ:W/J a surjective mapping π from Σ to K.

Proof. For each ωeΣ, the sequence {Kωι .ωn}n>ι is decreasing in n, and the
diameter of Kωι...ωn -> 0. This implies nM> ιAΓωι...ωn consists of a single point. Let
π be a mapping from Σ to AT given by {π(ω)} = nn>1AΓωι...ωn. Then we can verify
that π is surjective. Π
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REMARK. In case of Hutchinson's fractal, the "symbolic space" Σ coinsides

with IN. However, in case of the plain Mandala, Σ is a proper subset of IN.

For k>\ (resp. k = Q), the subset uη€lkFη(L) of K (resp. L) is said to be the
k-th bridge (resp. the Q-th bridge). For any m>k, an element ω of Wm is said to
be in the &-th bridge if the set Fω(L) is included in the Λ>th bridge. It is obvious

that ωeWm is in the fc-th bridge if and only if ωe/*/™~*. For any xe Vm, the
m-neighborhood Nm(x) of x is defined by

Nm(x) = {yeVm\lωeWm such that F(0(VQ) = {x,y}}.

Then, #Nm(x) = 2 for xe Vm\Vs

m, while *Λfm(x) -+ oo as m -+ oo for xe Vs

m.

3. Bilinear form <ί on l(V^)

Let /(K) be the set of real-valued functions on at most countable set V. In
this section, we shall define a bilinear form $ on l(V^. First of all, we give a
bilinear form $m on l(Vm) for each approximating set Vm. Then, under some

condition, we see that the bilinear form <?m converges as m -> oo; we define (f as

this limit form.

The difference operator D on l(VQ) is defined by

'-i

Let t, rί9 r2, r3, r4 be positive numbers (t^\\ and let f, equal /rf for /=1,2, and
equal rt for « = 3,4.

DEFINITION 3.1. For each m > 1, a difference operator //m on /(Vm) is defined by

(3.1) Hm= Σ f~
ωeWmV™ t— lωe/Γ

where Rω is a mapping from /(FJ to /(K0) defined by Rω(u) = uoFωϊor all we/(KJ,

and rω = rωιrω2 fωm.

For any ω e ̂ ^ we see that

(3.2) fΛwDΛJ J V= -1, if x=yεFω(V0),
( 0, otherwise.

For any x,y e Vm, if jc and y are m-neighbors to each other, then there exists a

unique element ω of Wm such that Fω(V0) = {x9y}. Let us denote the

(x,j>)-component of Hm by Λ^}. By (3.2) we have
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f-1, if 3ωe Wm\I? such that Fω(F0) ={*,>>},

i-ryr"1, if 3ωe/s

m such that Fω(V0) = {x,y}>

Π ϊ} h(m) — -I /
V J J/ "xy ~~ 1 \p 1 * V^ I T\ >* 7 v 11 ~)c — v

/-r ω 1 Z^ ω 5 />
coefΓm\/7l * -*• coe/71

0, otherwise.

Let M be a function defined on a set containing Vm (resp. Fw n L). We will write

Hmu (resp. Hm\VmnLu) for //m(w|vj (resp. //mlκmnL(wlFmnL))
Let uel(V^) and «>m. Then for each xe Vn\Vm, there exists a unique ωe ̂ m

such that xeK,n. We can see that

(3.4) Hnu(x) = f^HH.m(uoFJ(x)9 if

(3.5) ffllιι(x) = ̂ 1Jϊ l l_m |Kfi_ f i ιnL(ιιoFωχf), if ωe ^m\/Γ,

where x = F- 1WeK l l.m\K 0.
Let ueC(K;R). Then M is said to be a harmonic function if (//Mw)|Kn\Fo = 0

for all «>1. Let υeC(L\R\ Then z; is said to be a bridge harmonic function if

(//JκmπLy)l(κmnL)\κo = 0 ^or a"" w^ l In the same way as Kigami [5], we can solve
the following Dirichlet problem.

Proposition 3.2. For each ge/(F0), there exists a unique harmonic function u
such that u\Vo=g. The same result holds for the bridge harmonic function.

Let m>l. An element u of C(K\R) is said to be an m-harmonic function if
the following two conditions are satisfied:

(i) uoFω is a harmonic function for any ωe/s

m,

(ii) u o Fω is a bridge harmonic function for any ω e ^m\/s

m.
A harmonic function is called Q-harmonic function.

Corollary 3.3. Let m be a non-negative integer andgel(Vm). Then there exists
a unique m-harmonic function u such that u\Vtn=g.

We denote by fflm the set of all m-harmonic functions. Then 3tf m is increasing
in m. Indeed, from (3.4) and (3.5), it is easily shown that u is m-harmonic
if and only if

(3.6) Hnu(x) = 0 for all n>m and xe Vn\Vm.
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Thus, if w<w', any m-harmonic function u is ra'-harmonic.

DEFINITION 3.4. For w>l, <fm:/(Fm)x/(FJ->/? is defined by

<H", v) = ~ *uHmv for u,υel( Vm).

From (3.3), we have

<HM= Σ /
^x,yeFm

= Σ f* * {Φ(ω3)) - φ(ω4))} {φr(ω3)) - v(π(ω4))}
ωeWm\I™

+ -̂ 7 Σ r^{u(π(ω3))-u(π(ω4))}{v(π(ω3))-v(n(ω4))}
t— lωe/^

where 3= 333- •• and 4= 444- ••.
For every u,vel(V^) and m>l, we denote ^m(w|Fm,y|KJ by £m(u,v).

Lemma 3.5. Let uel(VJ.
(i) For any ωe/s

m,

(3.7) |φ(ω3)) - W(π(ω4))} 2 < X Γ| Σ rf ' [u(π(ωi3)) - u(π(ωi4))} 2.
ιe/5 iels

In particular, equality holds if ue fflm.
(ii) For any ω e Wm,

(3.8) {W(π(ω3)) - φ(ω4))}2 <,χ Γ| Σ rf 1 {φ(ω/3)) - W(π(ωί4))}2.
ie/b ie/b

/« particular, equality holds if ue J^m.

Proof. For ω 6 7s

m, obviously π(ω 14) = π(ω23), π(ω 13) = π(ω3), π(ω24) = π(ω4), so

φ(ω3))-φ(ω4))=

By Schwarz' inequality, we have

ίels

Ί2

ΣMπ(ω/3))-φ(ω/4))} < Σ^Σ^H
_ie/s J iels iels

Thus we obtain the inequality (3.7). Equality holds in (3.7) if and only if
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rf *{u(π(ωi3)) - u(n(ωA)}} / rf = rf 1 {u(π(ωi3)) - u(π(ωi4))}

is independent of /e/s, i.e.,

(3.9) r Γ' {w(π(ω3)) - w(π(ω!4))} = r j* {w(π(ω23)) - W(π(ω4))}.

Let ξ3 = π(14) = π(23). For any M6Jfm, M 0 /^ is a harmonic function. Thus we
see that

Noticing that Fω(ξ1) = π(ω3) and FJf 2) = π(ω4), Fω(ξ3) = π(ωl4) = π(ω23), we have
(3.9). To see the second assertion, let ω e fcΓm. It is also obvious that
π(ω34) = π(ω43).

Using the same argument above, we obtain (3.8). Equality holds in (3.8) if and only if

(3.10) r3- * (φ(ω3)) - W(π(ω34))} = rl l {w(π(ω43)) - w(π(ω4))}.

For any we^m, u°Fω is a bridge harmonic function. Hence for <i;4 = π(ω34)
= π(ω43),

r;\uoF^^^

which proves (3.10). Π

Corollary 3.6. For any n>0 and any x,yeLn Vw the following holds

(u(x) - u(y)}2 < ( X r, Y X r- 1 {u(π(η3)) - u(π(η4))}2.
\ie/b / ηel"

Proof. Use Lemma 3.5 and the fact that (r3 + r4)/ri>\ for ielb repeatedly.

We omit the details of the proof. Π

So far, {rj}ιe/ and t are arbitrary positive numbers. For the sake of further

discussion, we need the folloing assumption.

Basic Assumption. Positive numbers [r^iel and t satisfy

(B.A.1) r1+r2 = l, r3 + r4=l,

(B.A.2) t>\.

Lemma 3.7. Suppose that (B.A.I) is satisfied. Then for any uel(V^\

(3.11) <fm + 1(w
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In particular, equality holds if u is an m-harmonic function.

Proof. Using Lemma 3.5, we have

+-T Σ rV Σr7>Wω/3))-φM))}2><Π«,4 Q
t— lωε/™ iels

By Lemma 3.7, <ίm(u9u) is increasing as m -> oo, so here we can define the bilinear
form on /(K^) as follows.

DEFINITION 3.8. A bilinear form ^ on l(V^) is given by

g(u, u) = lim <fm(w, u) for all w e /( VJ.
m-» oo

Dom(£') = {uεl(V00) \ <f(w,w)< oo}.

^(M, y) = lim (f m(w, y) for all u,ve Dom(S\
m-> oo

By Lemma 3.7, we have the following proposition.

Proposition 3.9. Under Basic Assumption, the following holds

(3.12) um>Qtfm^Dom(g).

The proposition above plays an important role in proving the regularity
condition of the Dirichlet form in Secion 4 and Section 5. In the rest of this

section, we assume Basic Assumption.
In order to obtain the scaling property of the bilinear forms, we ought to

define the bilinear form restricted to a subset of K.

DEFINITION 3.10. For any subset K of K,

= Σ r~ 1 {φ(ω3)) - u(π(ω4))} {v(π(ωty - v(π(ω4))}

-τ
t — 1 ωel™
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Dom(S g) = {uel( VJ\ lim <?|(M, M) < oo }.
tn~* oo

, v) = lim <f !(w, υ) for all w, z; e Dom(<$&
~*

REMARK. We also see that £"%(u,v) is increasing as w-»oo. Since ^(w,w)
for uεl(VJ, we see that Dom(£) c Dom(g&

We see the following Lemma in the same way as Kigami-Lapidus [8].

Lemma 3.1 1. (Scaling properties) Let u,ve Dom(<$\ Then u°Fωe Dom(S>) for

ω e 7s

m, α«rf w o Fω 6 Dom($L) for ω e ^m\/s

m, α«rf ίΛ^ following hold

(3.13) f^F^voF^f^Ju.Ό) for all ωe/f.

(3.14) fLfr F^ΌoF^f^Jίw) for all ωe ^mVΓ

(3.15) ^^^Σ^'Aw^^^^+Σ^T1^"0^^0^)-
ϊe/s je/b

(3.16) ί t(u, p) = X rr » «f t(M o F,, 0 o F, ).
je/b

For each x e Vm9 we denote by ψ™ the m-harmonic function with the boundary

condition ψ™\vtn=l{X}> where l{x} denote the indicator function of {x}.

DEFINITION 3.12. For ra>0, let us define Pm\l(Y^-+tfm by

(3.17) Pmu= X u(x)W for all uel(VJ.
xeVm

Noticing that u\Vrn = (Pmύ)\Vm.

By Lemma 3.7, we have the following Lemma.

Lemma 3.13. Let w>0 and we/(KJ. Then

(3.18) S(Pmu9Pmμ)<tg(u,u\

4. Dίrichlet formal)

In this section and the subsequent sections, we always assume that Basic

Assumption is satisfied.
In this section, we see that there exists an invariant measure μm on Vm with
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respect to the remdom walk associated with the conductance {h(

x^}χφy Under
Condition A, we can verify that μm weakly converges as m -> oo. The measure
μ of Bernoulli type, to which we referred in the introduction, is defined by this
limit measure. Then, we shall prove the bilinear form ($,Dom($)) is regular local
Dirichlet form on L2(K,μ). The same result holds for other measures of Bernoulli
type instead of μ: see section 7.

Let P(m} = {p($}Xty€vm be the transition probability of the random walk associated
with the conductance {h™}χφy: i.e.,

xy lo,

where h™= £ h™= -A£}>0.

Proposition 4.1. For each w>0, the unique normalized invariant measure
μm with respect to P(m) exists: i.e.,

(4.1) (^m)«.»Wm.^ = («^MM«Fm.μ>lo for all u,υel(Vm).

More precisely, for all xεVm

Σ r-*+-L- Σ ς1

Urn) ηe

(4.2)

y ωeWm\lT t—lωel™

Proof. We first note that the second equality in (4.2) follows from
(3.3). Suppose that μm be a probability measure satisfying (4.1). Obviously, (4.1) is

equivalent to

P(^y^m(y) =P(ylχ^m(X) f°Γ a^ X>V e Vm'

Since Hm is symmetric and irreducible,

^W=^ for allx,jeFm.

Hence by the normality of μm, we have (4.2). This proves the uniqueness. It is
obvious the measure μm in (4.2) satisfies (4.1). Π

Let Θm be the self-adjoint operator on /(FJ associated with <?"(-,•) on
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L2(Vm,μJ: for any u,veDom(Sm),

By the definition of δm,

<ΠM=- Σ
xeVm

= - Σ

Thus, θ($ = h($/μm(x) where 0<^ the (x,j)-conponent of Θm. Let τ(w) be the
exponential holding time of the Markov chain associated with Θm. Then from
Proposition 4.1, the average of τ(m) dose not depend on the starting point xε Vm of
the Markov chain. Indeed, we have

In the following, we think of μm as a measure on K. There exists a unique probability
measure μ of Bernoulli type on K such that for any m >0, the follwing two conditions
are satisfied:

(i) Let k be a non-negative integer satisfying k<m — \. For any ω in the

k-th brige,

(ii) For any ωe/s

m,

Condition A. rίr2 = r3r4:i.e., r1=r3 or r4.

Throghout this section, we assume Condition A. Let φ) = (
Then we have

-r^i Γ"^1, ifω€Wm\I?9

Γ)~m'Γω1» ifωe/ s

m.

It is easy to show the following
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(4.4)
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Lemma 4.2. For any measureable function f on K and any m >. 1 , the following

Γ -1 -if
/°^ω dμ = c(r) mrω \ fdμ for ωel™,

f , Γ
(4.5) foF-1dμ = c(rΓmf-1 fdμ for ωe Wm\I™.

Jκω JL

Proposition 4.3. Under Condition A, μm converges weakly to μ.

In order to prove Proposition 4.3, we need two lemmas.
Let rf = r2, rf = r l 9 rξ = r4, r$ = r3, and let f/" be ίr/* if ie/s, be r * otherwise.

Let 7/^ be a difference operator on /(Fm) given by

Then obviously Proposition 3.2 also holds if we substitute H£ for Hm. For Λ: e Fm,
let ̂  be an m-harmonic function (with respect to {#„*}„>ι) with the boundary

condition $™\γ™=l{Xy

Lemma 4.4. Let f be the bridge harmonic function with respect to {//„*}„>!
with the boundary condition f(ξi) = 0 andf(ξ2) = l. Then

(4.7)
JL

The same result holds if the boundary condition is replaced byf(ξ jj = 1 andf(ξ2) = 0.

Proof. Let 50 = μ(L), s0 = Q, and Jet

From the maximum principle, for any «>0,

I
J

For any ωe/£, we have

(4.8)
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(4.9) /(π(ω34)) = /(π(ω43)) = r3/(π(ω3)) + r4/(π

(4.8) and (4.9) imply the following recursion formulae,

( Y I Y^" Y Y \
By an elementary calculation on the stochastic matrix A — \ z 4 3 4 ) , w e have

4

limn^00A
n = l 2 M. Hence, Sn and sn converge to ^S0 = ^μ(L).

\2 2/

Lemma 4.5. Let x be an element of Km\K£. Then

(4.10) AίmW=: $™dμ.
v K

Proof. Note that

ί fcdμ= Σ ί
JX ifeFFm Jκ

because ^=0 an ̂  if xφFη(V0). Since xe Fm\F^, if xeFη(V0) for f / e PFm, then
η e Wm\I?. By Lemma 4.2 and Lemma 4.4, we have

Jκn

Thus we have

On the other hand,

(4.11) Σ ?-ω

1+LΣ^l=mΣ<-k Σ r;'
fc = 0 Γ — 1

Hence Propositon 4.1 gives
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v KH

Thus we have our assertion. Π

Proof of Proposition 4.3. Let M be a continuous function on K. Then

Proposition 4.1 gives

(2 Σ r-'+i-Σf-'K^H Σ { Σ 'T'+ Σ r-Γ1}

(m - fe) times (m-k) times

~

t-l

Noticing that (Γl Vr 3 Vr 4 )< 1. Form (4.11), we see that ΣxeV.tι(x)μm(x) converges
"to zero as m -> oo. By Lemma 4.5, we have

Σ u(x)μm(x) =

Noticing that μ(c/(um>0F^)) = 0, we see that

Since IΣ^^^^xJ^JI^IIwH^, using Lebesgue's convergence theorem, we have

X u(x)μm(x)^ udμ.
xεVw\Vs

m JK

Observe that §κ

udμm = ΣxeVsj4(x)μJ(x) + ΣxeVm\VSnu(x)μm(x)9 we have thus proved the
proposition. Π

For xeK and m e N, let us define the left edge b™ e Vm of an w-complex which

includes x by
(i) If xeK m , then tζ = x.
(ii) If xeK\Vm, then there exists a unique ωeWm such
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that xeKω, and we let b™ = π(ω3).
We denote by b° the left edge of K, i.e., b^ξ^.

Lemma 4.6. Let u be a continuous function on K and m>0. Then

(4.12) \u(b™) — u(x}\2μ(dx)<c(r)~m$(u,u)
JK

Corollary 4.7. Let ueDom(g). Then Pmu converges in L2(K,μ).

Let us denote by i (ύ) the limit of Pmu.

Proof. Let ωeWm,neN and Un(ω) = Fω(L)r\(Vm+n\KJ. Since

Σ Σ ^~1^2Σ^ω<r1=2^ω1φΓ»
xel/n(ω)

(4.11) gives

(4.13) μm

Let x e Un(ω). By Corollary 3.6, we have

(4.14) (u(bΐ)-u(x))2<Σr;l{u(π(<

Thus

(4.15) Σ M*ϊ)-ι

Letting n -> oo, by Proposition 4.3

(4.16) I \u(b™)-n

For any ωe/s

m and Λ>1, let L^ = AΓ0,n(uϊ7e/m+h/Γ

l/(L)). Then we also have

(4.17) I u(b™) — u(x)\2μ(dx) < c(r) ~ m$Lh (u, u).
JLH

Now sum up both sides of inequalities (4.16) and (4.17) over ωεWm and A>1,
respectively, we complete the proof of Lemma 4.6.

To prove the corollary, observe that Pmu(b™) = u(b™) = Pnu(b™)9 for n>m and
xeK. Lemma 3.13 and Lemma 4.6 give
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\Pmu(x)-Pmu(b?)\2μ(dx)}* + { \ \Pnu(b>ϊ)-Pnu(x)\2μ(dx)}*
JK

<φO-*K(PMw,Λ^^

Letting m -> oo, we get the assertion. Π

By virtue of Lemma 3.13 and Lemma 4.6, we see the following propositions
and theorem in the same way as Kumagai [9].

Proposition 4.8. The mapping L from Dom(S>) to L2(K,μ) is infective.

We denote the image c (Dom($)) by J .̂ For u e J ,̂ when no confusion can

arise, we use Pmu instead of Pmt"i(u)9 and <f(w,w) instead of &(ι~v(u\ ι>~l(u)).

Theorem 4.9. (S9&) is a regular local Dirichlet form en L\K,μ).

Proposition 4.10. For α>0, (^),JΓ) has the compact Border resolvent.

5. Dirichlet form-(II)

Throughout this section, we suppose Condition B instead of Condition A. In

this case, every element of Dom($] c l(V^} has continuous extension on K. Then,

we shall show the bilinear form ($9Dom($)) is a regular local Dirichlet form on

L2(K,v) for any eveywhere dense probability measure v.

Let Γ=r 1 " 1 Λr2 1 . Note that \<T<2.

Condition B. ^> /(>!).

Proposition 5.1. For any ueDom($\

(5.1) sup \u(x)-u(y)\<c(t)g(u,u)±,

where c(ί) = 4/(l-x/(2ί/7Y)-l).

Lemma 5.2. Let u be an m-harmonic function. Then for any xeK,

(5.2) \u^)-u(x)\
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Proof. We prove this lemma by induction on m. Let us denote

(2/(l-^/(2ί/T)-l))2 by D(t). Note that D(t)>4. In case of w = 0, by Lemma
3.5, we have

(5.3) \u(ξ ,) - u(ξ2)\2 = ίi(κ,κ) < fM.

By the maximal principle, we get (5.2). Suppose that m> 1. We devide the plain

Mandala into 3 parts: L, K± and K2.
(Case I) Consider the case of x e L. By the maximal principle, there exists y e L n Vm

such that

Appling Corollary 3.6 to the right hand side of the inequality above, we obtain

(5.4) M£ι)-Φ)|2< Σr,->(π(,,3))-t/(7φ74))}2

ιe/Γ

u, u).

(Case II) Consider the case of x e K^ . Since u°F1e J^m _ l , by combining induction
hypothesis and Lemma 3.11, we have

(5.5) |H(^-φ)l2H«°Λ(£ι)-«°Fι(^ΓW

< D(t)f(u o FL ii o Ft) = f!D(t)gKl(u, u)

<~D(t)S(u,u),

Since ?<Γ, we have our assertion.
(Case III) Consider the case of xeK2. We denote π(12) by ξ3. Then, by using
the same argument with (Case I) and (Case II), we can see that

(5.6) M£ι)-^3)l2<^/W">«)>

(5.7) \u(ξ3)-ιι(X)\2 ^

(i) If δ >D(tΓi, then (5.6) gives

(ii) Suppose that <5<Z>(0~*. Note that
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Let λ = (2δ2-2δ + lΓ1. Then by combining (5.6) and (5.7),

(5.8) K^O-t/WI^^Kίj-t/ί^r + i^^-t/wi2

(M + λF2D(t)fK2(u9u)

Observe that δ<D(t)~* is a part of the solution of the inequality λt/T<\. This
completes the proof. Π

Proof of Proposition 5.1. For any x.yeV^ let m = max{i(x)J(y)}. Recall

that i(x) = min{n > 0|x e Vn}. Since Pmu = u on Vm and Pmw 6 J f m, Lemma 5.2 gives

K*)- u(y)\ < \Pmu(x)-Pmu(ξ

4
<g(Pmu,Pmu)£c(t)f(u9u).

ι-Vτ-1
D

By virtue of Proposition 5.1, we see the following theorem in the same way

as Kigami [6] and Kusuoka [12].

Theorem 5.3.
(i) Every ueDom(S>) can be extended to a continuous function on K.
(ii) The bilinear form (<f, Dom($)} is a regular local Dirichlet form on L2(K,v\

where v is any everywhere dense probability measure on K.

By using Theorem 5.3, we have the following proposition just in the same

way as Fukushima [2, Theorem 2.3].

Proposition 5.4.
(i) For α>0, (S(Λ\Dom($)) admits a positive continuous symmetric reproducing

kernel gx(x,y): for each yeE there exists ga(',y)eDom(S>) such that

for all v E Dom(g).

(ii) The associated dijfuson on K is point recurrent

Px(σ{y} < oo) = 1 for all x,y e K9
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where σ{y} is the first hitting time for {y}.

Finally, we shall show that if t > Γ, then there exist a function in Dom($\
which can not be extended to be a continuous function on K. Frist of all, we

see that (5.1) fails, provided that t>T.

Lemma 5.5. Suppose that t > T. Then for any positive constant c, there exists

ueDom($] such that

(5.9) sup \u(x)-u(y)\>c<S(u,u)±.

Proof. Without loss of generality, we may assume that ri>r2: i.e., Γ=rf *.

Let m > 1 and z = π( 1 12) e Vm. Obviously

m times

Since ψ™ is an ra-hamonic function, Lemma 3.7 gives

m-l

This implies our assertion. Π

Let / be a function on K defined by
(i) For any n > 1 and ω e /", /° Fω is a bridge harmonic function.

=l for any

From Proposition 3.2, we see that / exists. Now, if we assume T=rϊl<t, then
we have

Therefore /e Dom($\ On the other hand, it is obvious that / has no continuous
version on L2(K,v).

6. Dimensions

We assume Condition A again throughout this section. Kigami-Lapidius [8]
have studied the spectral dimensions of the P.C.F. self-similar sets with Bernoulli
measures. This result suggests a way of determining the spectral dimensions of
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the plain Mandala (and the Mandala) with the self-similar measure μ defined at the
end of Section 3.

Kigami [7] also obtained the Hausdorff dimensions of a class of self-similar
sets associated with a non-transitive Markov subshift. First of all, we shall apply
his result to our objects.

Theorem 6.1. The Hausdorff dimension of the Mandala is log 5 /log 3, and
that of the plain Mandala is 1.

By the proof of Lemma 4.6, we obtain

\u(b")-u(x}\2μ(dx)<c(rTm£L(u,u) for uε C(L; R).

For any/6 /( V^) and y e L, let P(^f(y) = ΣxeVmnLf(x)ψ™(y). Using the same argument
with Cotollary 4.7 and Proposition 4.8, we see that {P%)g}m>o is a L2(L,μ)-Cauchy
sequence for gGDom(£L). We denote its limit by t L(g). Then, cL:Dom($L)
->L2(L,μ) is injective. Now, we define the domain J*"L of SL on L2(L,μ) by
^L=i L(Z>0ra(<?L)). For ue^L, when no confusion can arise, we use £L(u,u) instead
of $L( L ~ 1(w), ι~ l(u)). Let us introduce new Dirichlet forms following Fukushima

[2].

DEFINITION 6.2.

(6.1) ^ = {weL2(Λ:,μ)|for i^l^u^u-F .μ-a.e^u^^

for j E Ib, Uj = uo Fjμ - a.e.(L\

£(u,v)=Σ^i£(Ui>vl)+Σrΐ^L(upVJ) for u,vε&.
iels jelb

(6.2) J^° = {u e &\ι - HM)(X) = 0 for x e V0},

<f0(M,α) = <f(H,zO for u,

(6.3) β-° = {ue

£ϋ(u,v) = £(u,v) for u,

(6.4) <FL = {ueL2(L,μ) \ for j^Ib,u~u^F^-a.e.

gL(u, υ) = Σ rj I£L(UJ, Vj) for u, v e β ~L.
je/b

(6.5) Fl
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fί(u9Ό) = fL(u9Ό) for U,VE^l

(6.6) ^Q

L = {UE^L\L-\U)(X) = Q fo r jceFj ,

l(u,υ) = gL(u,Ό) for u.vE^l.

Lemma 6.3. The following hold

(i) & cz ̂ , fl«d g(u9u) = g(u9u)for
(ii) J^L c: ̂ L,

Proof. For any w e J^, by the definition of c and ί L, we can verify

for /e/s.

L forJElb.

Thus, for any U,VE^, Lemma 3.11 gives

iel

Hence, we obtain the first assertion. We can show the second assertion in the

same way. Π

We can see the following proposition in the same argument as in Section 4.

Proposition 6.4.
(i) (g9&)9 (g°9&°) and (<f°,^°) are Dirichlet forms on L2(K,μ).

(ii) (g^Pά (&L>&ά (£L^°L) and (J^J) are Dirichlet forms on L2(L,μ).

Now, let ρ(x) be a counting function of eigenvalues of (S>,^r) less than x:

(6.7) p(x) = ${λ\λ is an eigenvalue of (g9&)9λ<x}.

Substituting ((?,#) for (g9^) in (6.7), we define p(x). So p0, p°, pL, pL, p£, p2 are
defined in a similar way.

Lemma 6.5. For any x>0, the following hold

(6.8) p
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pL(x) > pL(x) >

(6.10) p(x) =

(6.H)
Φ)

(6.12)
Φ)

(6.13) .._, _
vΦ)

Proof. From the definition, it is clear that (6.8) and (6.9) hold.

Let u be an eigenfunction of (<f,^) with eigenvalue λ:

(6.14) &(u9v) = λ(u9v)L2(Kfμ) for any

By the self-similarity of μ, we have

(6.15) (M, v)L2(Kt μ) = Σ (M> ̂ L^JP,, μx<)

Thus we have

(6.16)

=-τΣ fr '("^iW,/.) +-7T Σ rJ l(^v^(L,μύ.

Since ve& is arbitrary, this implies (6.10). By a similar argument, we have

(6.11), (6.12) and (6.13). Π

Theorem 6.6. Let ds = '$$γ Then

(6.17) o < l i m - < ϊ

Proof. For any w e TV, by Lemma 6.5, we have
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(6.18) 2np^n2np
\Φ )v \Φ)

Give a sufficient large positive number x0 which satisfies PL(XO) > 0, then (6.18) implies

and

Thus, there are positive constants cl9 c2 such that

(6.19) 0<c1<
p(c(> )"Xo)<c2<oo.

n2n

For x>xθ9 there is neN such that c(f)wx0<x<c(r)n+1x0. So, there are positive
constants c3, c4 such that

(6.20)

And, obviously p(c(r)nx0)</9(x)<p(c(r)w+1jc0). This implies our assertion. Π

7. An extension

So far (except Section 5), we have taken the self-similar measure μ as the

basicmeasure for the Dirichlet form ($,Dom($)\ In this section, we introduce
more general self-similar measure K instead of μ, and examine how much the

argument in Section 4 and Section 6 works.

Let sί9 s2, s39 s4 be positive numbers with s^ +s2 = 1 and s3+s4= 1. Let τ> 1
and let st equal τSj for /=1,2, and equal 5f for /=3,4. Moreover, we assume the

following

Condition C. sίs2 = s3s4: i.e., s^=s3 or s4.

Hereafter, we shall assume Condition C instead of Condition A. Let

c(s) = (sίs2)~ί=(s3s4)~i. Now, let us define a probability K measure on K as

follows: for any non-negative integer &, with k<m

(7.1)
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Then, we can prove the following proposition in a similar way as Proposition
3.16.

Proposition 7.1. κm converges weakly to K, where κm is a probability measure
on Vm defined by

ηel™ Sη

(7.2)\ β κm(x) =m\ ) : - - for all xe Vm.
! 9_j_y -- 1 J m

coeTPmUT^ω ' Lτ- l^coe/^co

Let us assume the following condition in addition to Condition C.

Condition D. τ > ί

Let y^φ^.rΓ1 for iel, and let y = min{y ί: z=l,2,3,4}. Then

following lemma is proved analogously to Lemma 4.6.

Lemma 7.2. Let u be a continuous function on K. Then

(7.3) i \u(b™)-u(x)\2κ(dx)<y-mg(u,u).

Proof. ForanyωeT^, let Un(ω) = Fω(L)π(Vm+n\Vm). Then

(7.4) κm+n(Un(ω))<c(sΓms-1.

By (4.14), we see that

(7.5)

The

For any ωeC and h> 1, let

Then, we see

(7.6) κm+n(tf

(7.7) \u(b^

From Condition D, we have

(7.8)

and let Uh

n(ω)=L"ωn(Vm+n\Vm).
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The result now follows from Proposition 7.1. Π

Using the same argument with Corollary 4.7 and Proposition 4.8, there exists

a injective map from Dom(β} to L2(K,κ). We denote the image of Dom(β} by
.̂ Then we see the following theorem analogously to Theorem 4.9.

Theorem 7.3. (β,^} is a regular local Dirichlet form on L2(K,κ).

In virtue of Theorem 7.3, we can determine the spectral dimension of (<ί,̂ ) with
respect to K.

DEFINITION 7.4. Let rfs

(s) and d^ be the solutions of the following equalities;

Let ds = d^Vd?\ and let fl| = (l /y,.) for ί = 1,2,3,4. Following Kigami-Lapidus
[8], we shall define a collection of words with various length \n c u,,,^!^ by

where a = m\n{ai\i= 1,2,3,4}.

Theorem 7.5.
(i) I f d y = d?\ then

(7.9) 0<

is a counting function of eigenvalues of(&9&) less than x, see (6.7).
(ii) Ifd™*d*\ then

(7.10)

To prove the theorem above, we need to show the following lemmas.

Lemma 7.6. Suppose that d^<d(*\ Let

Λj = {ωeΛJω is in the k-th bridge: i.e., ωe/s

k/jH~*},

where \ω\ is the length of the word ω. Then
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(7-11) Σ««^<«ιW
ωeΛ£

In particular, equality holds if k = 0,1, •••,«.

Proof. Notice that for any m>l and any λ: = 0,l, ,w,

(7.12) £ ^(fli
ωe/J/J -*

Let Mπ = max{|ω|:ωeΛM}, and let

Then we can see that the natural projection / from [Λ*] to I^I^n~k is injective. If

\ then ai+a2<l and a3 + a4 = l. Hence, (7.12) gives

(7.13) Σ«»= Σ «ω'< Σ ^ = («ι
ωeΛ|5 ω'e[Λi«] ηel^I^n-k

If /: = 0,1, ••-,«, then for any

(7.14)

This implies natural projection /is surjective. Thus, in case of k = 0, 1, ,«, equality
holds in (7.11). Π

Lemma 7.7. Suppose that d^>d(*\ Let λs

n = λnn(vm>J™) and let

Then

(7.15) Σ f l «
ωeΛ^

y4«rf /Λ^r^ w α constant cΐ>0 such that

(7.16) Σ^ω^^
ωeΛί,

Proof. Notice that if d^>df\ then a^+a2 = \ and α3 + α4<l. Let
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Then we can see that the natural projection from [Λ*] to /S

M" is bijective. If

d^>d(*\ then a^+a2 = \. Hence, (7.12) gives

(7.17) Σ*ω= Σ flω,= Σ *, = !•
ωeΛ* ω'e[Λ£] fe/**"

Thus we have (7.15). For any ωeΛj,, we write ω = ω(1W2), where α^e/J0''"' and

. Let

ωeΛj,

We denote the natural projection from [ΛjJ to I^n~lll

b by g. From the definition

of a, it is obvious that there is a constant cl e/V such that

Then we can verify that

(7.18) *{g-\η)}<c,

Hence, (7.12) gives

(7.19) £β»= Σ β« ^cι Σ
ωeΛj, ω'e[Λj,]

D

Lemma 7.8.

(i) IfdM = d<b\ then

(7.20) «+!< Σ
ωeΛM

where ci is the same constant as in Lemma 7.7.

(ii) If d^^d$b\ then there are positive constants c2 and c3 such that

(7.21) 0<c2<2

ωεΛn

Proof. Suppose that d^ = d(

s

b\ Let MM

s = max{|ω|:ωeΛ*}. Notice that if

k>M*n, then Λ j = 0. By the definition of cί9 we have M^c^n. Since alΛ-a2 — \,
Lemma 7.6 gives
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Σ βω< Σ βω
ωeΛn

= Σ Σ «

Hence, we have (7.20).
Suppose that d^s)<df}. Lemma 7.6 gives

ωeΛ° ωeΛn fc = 0 ωeΛjξ

Since «1+α2<l, we have (7.21) in the case of d(^
Suppose that d^>d?\ Notice that Λ° = Λ*. Let MΪ = max{\ω\:ωε\b

n},
where Λj = ΛM\Λ*. We see that if />MM

b, then Λ^ = 0. Thus Lemma 7.7 gives

M£ Λ/b

1= Σ a<»^ Σ ^ω^ Σ Σ βω^lΣ(α3+fl4)'
ωeΛ* ω€ΛM ί = 0 coeΛί, / = 0

Since «3 + a4<l, we have (7.21) in the case of d(*}>d^\ Π

Proof of Theorem 7.5. As in Section 6, we can define the Dirichet form (d,̂ )
on L2(K,κ). The counting function of eigenvalues of (<?,̂ ) is denoted by
p. Similarly, we define (^°,^0),p°,...,((l2,^),p2. Then, Lemma 6.4 can be easily
extended to the present case. For example, (6.8) and (6.9) are obvious. The
assertion (6.10) is replaced by

ieTs

The counterparts of (6.11), (6.12), (6.13) will be obvious. Using the results above,
we can verify

(7-22) Σ P - + Σ P -

By the definition of Λπ, we see that

2n 1
(7.23) ad*>—>a d* for ωeΛn.
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Hence,

(7.24) *(Λ>(α

> p°(x) > Wp^

This implies that there exists x0>0 and constants c4, c5 such that

(7-25)

From (7.23)

(7-26)
ωeΛn

This, combined with Lemma 7.8 and (7.25), implies our assertion.
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