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Ergodic Skew Product Transformations on the Torus

By Hirotada AnzAr

§1. Introduction

‘It is the purpose of this paper to give examples of ergodlc trans-
formations of some: special ‘types and to'discuss their properties. We
begin with the deﬁn1t10n of skew product measure preserving trans-
formations. - Let P ‘be a measure preserving transformation on a
measure space X. Let Y be another measure space,. and let us assume
that to every pomt z of the space X, there corresponds a measure
preserving transformation +,, on Y... Let Q be the direct product
measure space of X and Y

Q=XxY, o=(@y), 0€Q rcX, yel.

Denote the measures on X, Y and Q by m, u and v respectively, v is
the comipleted direct product measure of m ‘and’ e

If the family of measure ‘presetving transformations h]r,,lweX {
satisfies certain measurablhty condmons, it is easy to see that the
transformation’ 7 which is defind by

T (x, ) = (@, YY)

is a measure preservmg transformatmn on Q. Then T is called a skew
product measure p'reservmg tmnsformdtzon In case the famlly of trans-
formations’ RL/S5 consxsts of the ‘same " transformatlon 11/‘, ‘the skew
product transformatlon T 1s the d1rect product transformatlon of P
and \l/'

In this paper we’ assume that ¢ is an ergodzc measure preserving
transtrmatmn on a measure spa‘ce X, ‘and that Y is the usual Lebes-
gue measure space of the set of’ real numbers mod 1, which wﬂl be
*called Slmply circle.

Let A be the set ‘of alI Y-valued measurable functxons on X.© To

any a (z) belonging to A ‘we may assigh a one-to-one mapping ‘T on
Q in the, fol}omng_ way .

T (x, ’_II) ((pa:, a (x)+'y)
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The function «(x)+y is a Y-valued measurable function on Q, that
is, for any Borel set B in Y, the set {(x, y)|a(%)+y € B} is v-measur-
able and by Fubini’s theorem the folloﬁiing equality holds:

Aw nla@+yeB} = [ulylyeB-a @) m ().

If N is a Borel set of u-measure zero we have the identity :

wlylye N—a(x)}=0 for all . This means »{(z, y)|a(z)+y € N}=0.
Th1s implies that for any u- -measurable set L, the set {(x, v)|a(x)
+y € L} is v-measurable, therefore for any complex-valued p-measur-
able function g (v), g(a(x)+y) is a v-measurable function. Hence we
get for any f(2)e L, (X), g (y) € L,(Y), the following equality :

SS fv(_(Px) g.(a(z)+y) dxdy - S.f(qlx) {s‘g(a(:v)+y) dy} dx
= Sf(f/’%){gg (@), dy} dx = “ f(x) gy dzdy.

On‘the other hand it is shown in thesf’z}ime way that g (=a(p 2)+y)V
is also v-measurable and that the following equality holds:

[[702) g (~atpia)+y) azay = || £ g azay.

Thus the transformation T is proved to be a measure preserving trans-
formation on.Q, T is called, skew product transformation with the «-
function a(m)

Except in § 2 we treat the case in which the Space X is also a
circle, therefore the product space Q is a two-dimensional torus, and
the transformation o is a translation by some irrational number ¥ mod
1.

The author is much indebted to Professor S. Kakutani for his kind
dlscussmns on the whole sub;ects of this paper, especially we owe him
the essent1a1 sunphﬁcatlon of the proof of Theorem 1 and 2. Further
he taught the author that Professor J. von Neumann had proved the
following theorem: The ergodic transformation (&, y)— (x+7, +¥)
on the torus is spectrally isomorphic to’ the direct product trans-
formation of the translation & —'x+y on the circle and the shift-
transformation on the infinite dimensional torus », though these trang:
formatlons are not spat1ally isomorphic to each other This fact' has
been the st1mula‘51ﬁon m obtammg the results of §6. '

D (x, -G-1x, —x (o~1x)+ ) is the inverse mapping of (x, 3)=>Cox, x(xD+ ).
2) Infinite dimensional torus means the infinite direct product measure space of
circles,
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§2. Proper values and ergodicity

We denote by E the submodule of A, whose elements E(x)€E are
. of the form & (2)=6(x)—0 (px) for some 6 (z)€ A.

Remark. If a(x)=a'(x) holds for almost all #, the corresponding
skew product transformations T and T’ differ only on a null set, that

{o|To+T"0} is a null set in Q. Therefore we regard the two
a-functions as the same if they differ only on a null set. By the same
reason if £(x)=60(x)—0(px) for almost all x, for some 6 (x)€ A, we
denote E(m)e =. Throughout this paper any equality between func-
tions should be taken as the equality for almost all values of the
variable.

Theorem 1. Let T be a skew product transformation with..an
a-function a(x). T has the proper value \ if and only if pa(x)—1eE
for some integer p.

Theorem 2. T is ergodic if  and only if pa(x) never belongs to .5
unless p=0. .

We begin with the proof of Theorem. 1.. Let.f(z, y) be a proper.
function belonging to the proper value M. - Then we have '

(1) F(T (@ ) = 1 (ptr, al@)+y) = e [ (z,7).
From (1) it follows

(2) [ # (o, aa) +) exp (—2nipy) ay

g2 S f}v(x, y) exp (—2wipy) dy.

Put

(3) f2(®) = | 7@, y)exp (—2xipy) dy .
From (2) and (3) we have

(4) 1, () exp (2mipa(a)) = e 1, (x).
Take the absolute value of both sides of (4),

(5) e (e)] = |f» ()] .

The ergodicity of ¢ implies that (5) is a non-negative constant ¢, 1f
¢,+0 there exists a function 6, (x)€ A such that
(6) fo(®) = c,exp (2716, (2)) .

Since f («, ¥) is not identically zero, there exists at least an integer p,
for which ¢,==0. Let us assume that » is such an integer. Replacing
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f»(x) in (4) by (6) we have

(7) 0, () +pai®) = X+06,(=),
that is
(7). pa(x)=A = 0,(2)—0,(px).

Conversely if - (7’) holds; ‘exp’ {27n(0 (x)+py)} is a proper functmn to
the proper value A.  This completes the- proof of Theorem 1.

~ Suppose that ‘T is not ergodlc Then there exists an 1nvar1ant
fuhctxon f(z, ) whlch is not a constant

(8) f(pz, a(2)+y) = (2, 9).
Then by the definition of f,, (a:) in (3) we have
(9) f»(92) exp(Zmpa(w)) =1, (:v)

For p=0in (9) we “have f,(px)="71,(x). This equality shows that
fo(x) is a constant because of the ergodicity of ¢, therefore there
must exist an integer p=-0 for which’ f,(x) does not vanish 1dentlcally :
For this p repeating ‘thé same argument as in 'the proof of Theorem 1
we can find a function 6 (z) € A such that pa(x)=6(x)—0(px) holds.

Conversely if pa(x)=60(x)—0(¢x) holds for some p==0, then by
(7), we see that exp {2~i(0 (x)+py)} is an invariant function, which
is not a constant since p==0. Hence 7 is not ergodic.

§ 3. Isomorphism between ergodic skew pr@duct transformations

From now on we assume further that X is also a circle and ¢ is
the translation (rotation) by an irrational number 7. Accordingly
0=XxY is a two-dimensional torus.

Theorem 3. Let T and S be ergodic skew product transformations
with a-functions a(x) and B(x) respectively. If T and S are spatially iso-,
morphic, that is, if there exists a measure preserving transformation
V of Q onto itself such that VTV*'=S, then bétween oa(x) and B(x)
there exists the following relation, ,

a(z)—Bx+u)eE or a(x)+Bx+u)cE,

where u.is. an element of X. And accordingly V is of the following
form

V(z, y) = (x+u, 6(x)+y). or Viz,y) = (x+u, 6 (2)—y).
- Conversely if
a(@)—B@+u) =0 (@)—0 (x+7)
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holds for some ue X and 6 (x)c A, then VIV-1=S
holds, where V (x, y) = (x+u, 6 (2)+v);
and if

a(X)+pBx+u) = 6 (x+7)—0()

holds for some ue X and 0 (x)€ A, then VIV~ =S holds, where V (z,y)
=(x+u, 6(z)—y).

If a(x)—pB(x+u) or a(x)+pB(x+u) belongs to = for some u €KX,
a(xz) and B(x) are called equivalent. _

Let g (x, ¥) and h(z, y) be the X- and Y-coordinate of V(z, y):

(10) - ViEy) = (9@ 9), k(2 9))-

Then g (%, y) and & (x, y) are X- and Y-valued measurable functions on
Q. Suppose VITV-1=S. Then

(11) VT (z,9) = V(z+7, y+a(a))

= (g (@ +7, y+a()), h(z+7, y+a(x)))
is equal to |
(12) SV (z, y) = = S(g(x, »), k(@ oY)

= (9 (& )+, h(, g )+B(g (@, 9)))-

In comparing the X- and Y-coordinates of (11) and '(12-) we have
(13) g(z+7, y+a(x)) = g(z, ¥)+7,.
(14) h(z+v, y+a@)) = h(z, y)+Bg (x, y)).

anCe g(z,y) and h(=,y) are ' quantities on the 'C1rc1e g* (z, ¥)
= exp {2=ig (x, ¥)} and A*(z, y) = exp {27ik (=, y)} sare usual complex-
valued measurable functions cn Q. From (13) it follows

(15) g% (T (2, ) = €* g*(x, 7).

This shows that g («, y) is a proper function to the proper value 7.
The function exp (2zix) is also a proper function to the proper value
v, the ergodicity of T implies

(16) gz, y) = cexp(Zzia:) s

where ¢ is a constant dxfferent from zero. If we denote by u the
amplitude of ¢ we have from (16)

(17) gz, y) = x+u.
Putting (17) in (14) we have
(18) h(x+7, y+a(x)) = h(x, y)+Bx+u).
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Put

(19) hy(2) = | I* (2, y) exp (—2ripy) dy .

From (18) and (19) it follows

(20)  h,(x+v) exp {2zipa(a)} = k, (x) exp {2ziB(x +u)} .

Taking the absolute value of (20) we have the equality: |4, (x+7)|
=|h,(x)], which is a constant and does not vanish identically for
some integer p, because A*(z, y) is not identically zero. "For this
integer p, there exists a function é(x) € A such that

(21) h,(z) = ¢{exp 27i6(x)} ,

where ¢ is a positive constant.
Putting (21) into (20) we have

(22) 0 (2-£7)+pa(x) = 0(x)+B(&+u):

If #,(x) is not identically zero, then #A,(2) must vanish for all g=p.
For otherwise if for some ¢==p #4,(2) does not vanish we obtain the
following equality (23) just as we obtained (22); and this leads to a
contradiction as follows. ‘

(23) 0 (x+v)+qa(z) = 0'(x)+B (x+u)
for some 6’ ()€ A. -
Substract (23) from (22). ~Then we have (p—q)a(z)€E, and

p»—q==0. According to Theorem 2 thlS contradicts the assumptwn
that T is ergodlc Hence we obtain

(24)  B*(z,y) = cexp{2ni(0(x)+py)} .
This implies

(25) k(z, y) = 6(x)+py

and

(26) V(2 9) = (¢+u, 0()+py).

Since 1% 1s a measure preserving transformatmn on Q, for almost
all , 0 (2)+py must be a measure preserving ‘transformation on Y.
This is valid only if p=1orp= —1.. In case p =1 we get from (22)
(27) a(@)—Bz+u) = 0 (2)=0(x+7),
and - Vi(x,y) = (e4u, 0(2)+y) .



Ergodic Skew Product I'ransformations on the 1'orus 89

In case p =—1-we have similarly -

(28) a(@)+B(x+u) = 0 (z+7)—0 (2)

and V(z,y) = (x+u, 0 (x)— y)
The converse of the proposition is evident.

§4. Spectral property of skew product transformations

.Let H be the Hilbert space .of - all functions belonging to L, (Q).
Let U be the unitary operator on H which corresponds to the skew
product transformation 7' with the a-function a(z):

(29) ~Uf (&, y) = (T (%, 9)) = f(e+7, y+a(x)),
where f(a, y)€H.

Unitary-invariant properties of the unitary operator U are called
spectral properties of the measure preserving transformation 7. Two
measure preserving transformations T and S are called spectrally iso-
morphic if the corresponding unitary operators are unitary-equivalent 3.
} Since Q is the direct product measure space of X and Y, the set
of functions {vyr,, o (, ¥)}:

(30) o (@, ¥) = exp{27i (px+py)}, where p, ¢=0, +1, £2,

form a complete orthonormal system of H. Let H, be the closed
linear subspace of H which is spanned by {+r,,,} for fixed ¢ and p =0,
+1, +£2,....

1t is clear that H is decomposed into the direct sum of H,(q =0,
+1, £2,+..) -which are mutually orthogonal - and -that each H, is in:

variant under the unitary operator U: H= 2 &H, H, 1s the set of

g=—oc0

functions of the form f () exp (2#iqy), where f (&) € L, (X) Especially
H, 1s the set of functlons dependmg only on the value of the X-coordi-
nate The umtary operator UonH,is ev1dent1y 1somorph1c 9 to the
unitary operator on L, (X) which corresponds to the translation by ¥ on

X: We shall denote by H; the orthocomplement of H, : H'l=~2 ®H,.

It is m H where spectral propert1es of T are to be dlscussed in
connection w1th the behavmurs of the a- functlon a(x). The property

3 Uﬁitary operators U and V are called unitary-equivalent if there exists a unitary
operator W such that V=WUW-1
*4) Here “isomorphic’ means ‘unitary-equivalent ™.
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of U will be completely determined if we know the b_ehavio,ur of
(U*\rp, o0 ¥»,4) as a function of # for every p, p, and ¢, and which is
expressed in the following formula :

(Bl)  (U™rp g ¥hq) = U exp [27:@' {p (& +n7)+q (a(@)+ ...
+a(x+(n—1)7) +y)}] exp {—27rz' (= +q:l/)} da:df:z/

= exp (2zipny) S exp ;[Z.ni {(p—p’)x +q (af(x)+... +a(x +(n—41)v)}] da.

§5. Point spectrum
Lemma 1. If a constant function a(x)=\ belongs to E, then \ is

a multiple of .
From x(—a(:o) 0(x+fy) for some 0 (x)e A it follows

(32) S exp { 2ni B(x +7)} = exp {2i 0(:::)}

Therefore —\ is.a proper value of the translation by v with the pro-
per functlon exp {ane (a:)} This implies that A is a multiple of 7.
Theorem 4. Let A be the set of proper values of an ergodic skew
product transformation T. Then A is an additive group with at most
two generators.
Let A* be the set of mtegers q for Wthh qa(x)— M€ E holds for
some \ € A, where a(x) is the a-function of T':

—2ni}

(33) A* = {q[qa(w)’—heE for some A€ A}.

From the fact that A is a subgroup. of Y, it is easily verified that A*
is a subgroup  of the additive group of integers. Consequently A* is
a cyclic group with a generator p and to thxs p there exists an element
p of ‘A such that

(34) pa(x)—p € B
Accordmg to Theorem 1, for any A €A, there exists a qu* such that
(35) qa(a:) —AEE

Let # be the quotient of ¢ by P q=mnp. Mlﬂtlple (34) by =, and
subtract it from (35), then we get np—\€E which is seen to be a
multlple of v by Lemma 1." Therefore there exists an integer m such
that np—\=my, thus p and v are seen to be generators of A.
Theorem 5. An ergodic skew product transformation T with an
a-function a(x) has pure point spectrumy if and only if a(x) is equi-
valent with a constant function X, where M\ is an trrational number
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liniearly independent of +.
- Let U be the unitary operator on H which. corresponds to T. U
on H, has always pure point spectrum, the proper ‘values being mul-

tiples of v. If U _on H has pure point spectrum,; U on HOL must have
pure point spectrum, and the proper values must be linearly independ-
ent of v, since T is assumed to be ergodic®. By Theorem 4 the
additive group of, proper values of U has only two generators, one of
them is v, let the other be A, then the set of proper values of U on

H;L is the cyclic group with the generator 1. Since A is a proper
value of T, by Theorem 1 there exists an integer p and a function
0 () € A such that

(36) pa(x)—r = 0 (x)—0 (x+7).
Therefore for any integer =,
(37) npa(x)—nx = n (6 (2)—6 (x+7))

holds. Then it is easily verified that

(38) ~exp {2min (0(x)+py)}

is a proper function belonging to the proper value nx. Let M be the
closed linear subspace of H; which is spanned by the set of functions
of the form of (38) for »= +1, £2,... .. Since U has pure continuous
spectrum on the orthocomplement of M with respect to Hy, Hy must
coincide. with M, this fact implies that » = +1. This means by (36)
that «(x) is equivalent with the constant \. Conversely if afx) is
equivalent with a constant X : a(x)-AeE then by Theorem 3 T is,
isomorphic to the direct product transformatlon of the translatmn by
v.on X and the translation by A on Y.

§ 6. Discussion of the case a(x)=mx (Strongly mixing case on Hoj')

In this § we use the notations in §4.

Theorem 6. Let Q' be the infinite dimensional torus,® and S be
the usual shift transformation on Q'. Let V be the unitary operator
on L, (Q') corresponding to S. Let C, be the one-dimensional subspace:
of L, (Q') consisting of constant functions. Let us denote by M the
orthocomplement. of: C, in L, (Q'). On the other hand let T, be the
skew product transformation with the a-function a(a) = ma respectwelq ,

5) The point spectrum of an erg”f)dié’ transformation must be sﬁnple.
6) See the footnote 2) )
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where m is an arbitrary integer different from zero. Let Um be the
unitary operator corresponding to T,. Then for every m, U, on H,,l and
V on M are isomorphic to each other.

By the definition of U,, and v, , we have the equality :

(39) Upilioa = Voo (@47, y+ma) = P, 00

Let §{v, . (p, ¢=0, £1, +£2,...) be a system of constants satisfy-
ing the following relations:

(40) Yoal =10 Voimaoa = €0,
Put

(41) Yoe = Yo Vo

then we have

(42) Un¥'s,e = V'oimea

For any integer k such that 1<k<mq let M;”> be the subspace of H,,
which is spanned by {+r, .}, where p runs through every integer con-
gruent to k¥ modulo mgq. Obviously M{® is spanned by {+',, .}, where
p=1k (mod mq). Since H,= > M, we have

x (mog ma)

(43) Hy =3 3 oMP.

240 k (mod mq)
Every M is infinite dimensional and in each of them there exists a
complete orthonormal system {+',, .}, (p=Fk (mod mq)), which is tran-

sitive under U, by (42). This fact tells that U, on Hy and V on M
are isomorphic to each other.
Corollary. For any integer m different from zero, T, is an ergodic

transformation which has pure continuous spectrum on Hy, and every
spectrum on Hy is absolutely continuous. :

Theorem 7. Let T, (m=1,2,...) be the skew product transforma-
tions defined above. They are mutually spectrally isomorphic but not
spatially isomorphic.

We have proved in Theorem 6 that all U’,s are isomorphic to
each other on H;,L Since they are clearly isomorphic to each other

on H,, they are isomorphic on the whole space H=H,®H;. Namely
all 7”,s are spectrally isomorphic to. each other. But for m=-n
(m, n>0) T, and T, are not spatially isomorphic. This is because if
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they were spatially isomorphic, then by Theorem 3 max+n (x+u)€cE
for some u€X. This means that (m=+n) x—nu €=, therefore the
a-function (m=*n) = is equivalent with a constant nu. From the
preceding corollary we see that this is a contradiction.

§ 7. Discussion of the case when «(x) takes two different values
(weakly mixing case in H,)

In this § we discuss spectral properties of a skew product trans-
formation T with the a-function «(x)=pc,(x), where p is an irra-
tional number and E is an interval on X such that 0<m (£)<1,
pey ()™ is defined as follows:

p if wxeF
0 if «xckE.

It will be shown that there appears singular continuous spectrum
for some ergodic skew product transformations of the above type.
This fact is to be compared with the result that the transformations

discussed in § 6 have pure absolutely continuous spectrum on Hol
For this purpose we need some preliminary considerations on the
density of the set of all points of the form sy on X where s is an
integer such that 1<s<N.
We may regard the irrational number 7 on X as a real irrational
number between 0 and 1. Put §,=1, §,=7, and continue the division-
process as follows :

(45) 8y = K8, +8s, 8, = Kadp+05r ey  Ouy = KudutOnstseer

where k, is a non-negative integer and 0< §,,, <8, for any positive
integer n. Namely the irrational number v is expressed in the form
of the continued fraction:

(44) pen (#) = §

(46) Y= 1

Let {p,} be the sequence of integers defined by the following equality

7) As a real-valued function Cp (x) is the usual characteristic function of the inter-
val E, but as a Y-valued function Cp(x) is a constant. Here *“oCyp(xD as a Y-valued
function” is to be considered as a real-valued function oCr () modulo 1.
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(4'7) \pn =* 'k7npn—l+pﬂ—2i n =. 17 2.9 oo

Tt is evident that p, is a function of k,, ks, ..., k,, we use as usual the
-following notation:: ' :

(48) Dn = [k1’ Ea.ov s k.l
It is edsily ‘verified that:the following equality holds.
(49) 80 = p71,8n+pn—18n+1‘-

- Put m,=p,+p,-,, and let M, be the set of all points of the form
sy on X, where s is an integer such that 0<s<m,—1. Let N, be the
set of intervals whose end point belong to M, and whose inner points
never belong to M,. If we represent intervals by their length we have
successively the following schema :

N1 . . 8], ‘81, oo ,.81 82

Iy
Nat 85 8.8, 85 8.8 . 85 828y 8y 8. By
T K e, Ty +1
k=1
N3 . 83 Ry 83 84 83 LRy 83 54 e 83 oo 83 84 — —
S~ N ) S~
ks+1 1_53 ks
' k—1
— 03 ... 03 04 53 33 84 ... 03. 83 04
N o/ \"‘
kBs+1 - -ks Ies

ks

By induction we obtain the following :

Lemma 2. N, consists of intervals of lengtk S, and Snr1s cmd in
N, every §,,, is isolated and the number of successive 8,’s is k, or k,+1.

Now the following principal lemma is to be proved.

Lemma 3. Lets be any integer between 1 and m,, let I be a chain
of s successive intervals belonging to N,, and let I be another chain
of s successive intervals belonging to N,. Let us denote by N (I") the
number of Snﬂs contained in I'. Then |N (I')— N([")]<1

"Pfoof. I' may be considered as ‘a chain of the letters ‘5,’s and
8,.+1s placed on the circle. If we shift I' step by step in the definite
direction I' is finally brought to I after Some steps.” Suppose that I'
loses a §,., at the tail while gaining a 5, at the head once during this
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shift. Then it is impossible that the tail of I' loses another §,,, be-
fore the head of I' gains a §,,,, because this is contradictory to
Lemma 2. Nevertheless it is posmble that when, .the head gams a. 8,1
the tail loses a 3§,,, simultaneously, and the same s1tuat1on takes place
several times. But at the instant when this situation breaks the ‘head
must gain a §,,, while the tail must lose a §,. This is because other
wise there exists a certain integer m<'n such that Lemma 2 is not
true for N,,.

The above argument implies that if N (I') decreases by 1 at a cer-
tain moment during the shift, the next instant when the value of N (I')
changes it must increase by 1, and vice versa. This completes the
proof of the lemma.

Lemma 4. Let us denote by v, (E) the number of the pomts of M,
which fall on a closed interval F on X. If the length of the closed
interval E is equal to that of a closed interval E', then |v,(E)
~v, (E")| <3 holds for every positive integer n.

Proof. Suppose that

(50) (B = v (E)+4;
while the length of E is equal to that of E’. Let p and q be the
points which do not belong to E and which are nearest to the left

and the right end points of E, respectively. Let E, be the interval
(», q), then we have

' (51) Yn (El) = "'71(E)+2'

Let p’ be a point of E' /\ M, which is nearest to one of the end
points of E’, and let ¢’ be the point of E’/\ M, such that

(52) v, (BY) = v,(E))

where F,'= (9, q').
Then.we obtain from (50), (51) and (52)

(53) v (BY) < v, (B)—2

By (52) and by the fact that the length of E,’ is smaller than the
length of E,, if the number of §,,,’s contained in ¥, is ¢ the number
of 8,’s contained in E,' is t+1, and if ‘the number of §,’s contained
in F, is s the number of §,’s contained in E," is s—1. Since by
Lemma 2 §,., is isolated we may conclude from (53) that m(E'—E,’)
>=5,+3,,, . Hence we get thé following inequalities, where ! is the
length of £ and E': -

(54) 88, +18,.1 > 1
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(55) (s—1)8,+(£+1)8,,1+8,+8,,1 = L.
(54) and (55) are not consistent, therefore the assumption (50) has
been proved to be false.

Theorem 8.. Let p and 7 be arbitrary irrational numbers and let
E be an arbitrary interval on X such that 0<_m (E)<1. Then non-
absolutely-continuous spectrum appears in Hy for the skew product
transformation T with the a-function a(x)=pC,(¥).

~ Proof. Let ¢ be a positive integer such that

(56) lap] < % (mod 1).
Let us put
(57}) f(x, y) = exp (2=iqy),

this function belongs to H,. Let U be the unitary operator correspond-
ing to T. Then we have

Mmy—1

(58) U™ f (2, y) = exp (2wiqy) exp {2=igp 2 ea (@ +77)]) -
It follows
‘ My -1

(59) (U™ f, f) = § exp {Zniqp Z;) c, (@ + jfy)} dw .

It is obvious that

my, -1

(60) 2 on(@+i7) = v, (E—2).

It follows from Lemma 4 that the function v, (E —=2) can take at most
four different values. From this fact and (56) we see that all values
of exp {2zigpy, (K —2)} lie on a one side of the plane with respect to
a certian line through the origin. Hence it is impossible that

(61) lim (U™f, ) = 0

700

holds. But if contrary to the statement of the theorem all spectra of

T .are absolutely continuous on HOL the equality (61) must hold. The
proof of the theorem is thus completed.
Theorem 9. There ewxist an irrational number v and an interval
E such that the skew product tramsformation T with the a-function
a(z) = pcy (%) is ergodic and has pure continuous spectrum on H;L
Proof. Let {k,} be a sequence of positive even numbers satisfy-
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ing the following conditions :

(62) lim I, = oo,
63) lim Lk e Bann] — g

n+1

n—2
kn—l"l‘ _2 ki [kt+2r cee y kn—l]
(64) lim e = 0.

7o kn+1

Let v be the irrational number defined by the formula (46). Let
I be the quantity defined by

(65) =3

Since k,>2 for every =, it follows that 2§,,,< 8, for every n. There-
fore the right hand side of (65) is convergent and its value is smaller
than 1. We have by (45) and (62)

ki g

NS

(66) lim %1 — o

7 >0
> n

In the same way as we obtained (49) we have
(67) 81: == [kl‘,-rls con rkn] 871+[k1+1r cee 9kn—l\l 8n+l

for every 1 <i <n—2. For i=mn—1 we have

(45) 8n—1 - k7187z+8n+1
Therefore we have the following equality :
nl 2 _ lkt k kn+l

(68) 85 = 2} 6+z Su+ 9 Sni1

Il

n—2
7mwmunzmmwmem
i=1

1 n=2 km
+_2_ {kn~1+ i=21ki (Fopitreee s Foue 1]} 8pi1+ i Sy
From (64) it is clear that
; b3 s
(69) 71;1_,133 {kn—1+ ?;ikt Ekeu; oo s kn—]]} s 1 .

From (62) it is clear that

. Fkyind 1
70 lim Znt19n+1 — -
( ) -»00 28“ 2
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On the other hand we have
SN SO 5
(7]) ,;2;*.2? 8i< 2 -+ 2 AT < n+1l?

Let us denote by F (a) the fractional part of a real number a.
Then it follows from (66), (68), (69), (70) and (71) that

. 1—8,/2\ 1
(72) lim F ”_a““> — 0 (mod 1)

Let E be the interval [0,1] on X, where [ is defined by (65).
Let v be the irrational number defined above. Let T be the skew
product transformation with the a-function pC,(x) where p is an

arbitrary irrational number. ‘
In order to show that 7 is ergodic and has pure continuous spec-

trum on H;, by Theorem 1, 2 and by the argument in §5, it is
" sufficient to prove that the following equality does not hold for any
integer p-1-0, \€Y and 6 (¥)€A®:

(73) ppcy (X)—A = 0 (x)—0(x+7).

Let us suppose that (73) holds for some integer p--0, for some
A€Y, and for some 6 (x)€A. Then we have the following equality
for every positive integer =:

. my,-1
(74) pp 23 @ +iy)—m = 0 (2)—0(x+m,y).

From (60) and (74) we have
(75) PPy, (E—‘x)—mnx' == e(w)_e(x+m7z7) .

It is possible to find a subsequence {m,’} of the sequence {m,} such
that

(76) lim m,’A = A,y 1lim m,/y = v,,

N0 n-»00

where A, and v, are certain elements of the circle, and such that

77) lim 6 (x+m,'y) = 0 (x+7,)

70

holds for almost all z.

Therefore it would lead to a contradiction if we show that no
subsequence of the sequence of functions {ppu,(E —x)} is convergent

8) For 2=0 the non-existence of p4=0 and 0(x) ¢ A implies the ergodicity of 7', for
A==0 the non-existence of p==0 and 0(x) ¢ A implies that 4 is not a proper value of T,
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for almost all =. Let I, be the sum of the intervals of length §,.,
belonging to N,. Then it follows from (49)

(78) m (I,) = Dn-18n:1-
By the condition (63) we have

(79) tim ™) — fim Zetde = .

%300 8” 2300 "

By the definition of the function »,(E —z), this function is constant on
every interval whose end points belong to M,\/(M,—1) and whose
inner points do not belong to M,\/(M,—1). Let K, be the set of
intervals whose end points belong to I,\/(I,—1) and whose inner
points do not belong to I,\/(I,—!). For any interval J belonging to
K,, ppv,(E —2z) takes alternatively two different values on J (the diffe-
rence of the values is pp) with constant intervals® with length very

near to 8,/2, this is because (72) holds and lim m*’n\é(h")*:o

nyo0

holds. If we denote the sum of the intervals belonging to the family
K, again by the same letter K,, we have m (K,)=1—m {I,\J (I,-1)}
>1—2p,_18,.,, which tends to 1 as n—co. Therefore it is impossible
that any subsequence of {ppyv, (E —2)} is convergent almost everywhere.
This completes the proof of the theorem. Combining the résults of
Theorem 8 and 9 we have shown that there exists an ergodic skew

product transformation T which has pure continuous spectrum on H(,l
and which has singular continuous spectrum.

(Received January 11, 1951)

9) We mean here by “constant intervals” intervals on which the values of v,(E-x)
are constants.








