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1. Introduction

In this note, we describe some results on arithmetic of the modular embed-
dings of the upper half plane § into the Siegel upper half space 9. of degree two,
with respect to the unit groups of Eichler orders of indefinite quaternion algebras
over the rational number field Q.

Let B be an indefinite quaternion algebra over @ with discriminant Do, and
O be an Eichler order of B of level D=D,N, where N is a positive integer prime
to Do. Put '={ye 0O ; Nr(y)=1}, where Nr denotes the reduced norm of B.
Then I is regarded as a discrete subgroup of BS’=SL,(R) with finite quotient
volume. As is well known, I'\® is the C-valued points of the Shimura curve S
attached to O, and interpreted as a moduli space of principally polarized abelian
surface having quaternion multiplication by O (cf. [13], [14], [9]). More precise-
ly, let o be an element of O such that p®>=—D, pO =0 p. Then the involution
of B defined by @ —a*:=p ' @p is positive, and satisfies O‘= (0. The points of
S(C) are in one to correspondence with the set of isomorphism classes of (A, ¢,
0), where (A, 0) is a principally polarized abelian surface, and ¢ : O = End(A)
is an injective ring homomorphism such that the Rosati involution with respect to
O coincides with ¢ on ¢(0). This correspondence can be described by the
quaternion modular embedding. Indeed, it is known that there is a holomorphic
embedding

D: H— D2, 2 —22),
which is compatible with the actions of I", Sp(4, Z), through an embedding of the
group
¢p: I' > Sp4, Z)
Our purpose is twofold. The first is to describe ¢, @ explicitly, by constructing a

concrete model of O and using its Z-basis. This enables us to study various
arithmetic properties of such embeddings, which is our second purpose. Especially,
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we can characterize the image of the embedding by determining all possible
singular relations of Humbert’s [7]. Also we can associate with it a definite binary
quadratic form with discriminant —16D, which is an invariant of the equivalence
class of the embedding. The form represents precisely those positive integers 4
which are the discriminants of orders O of real quadratic fields, such that the locus
of the Shimura curve S on 9 is contained in the Humbert surface Ha.

Most of the results of this note are not quite new except for being explicit
everywhere, and are regarded as examples of general results given e.g., in [12],[13],
[14], and [11]. However, we think it is convenient to have the explicit descriptions
of the special cases as a step to further investigations. In fact, a motivation to the
present work is [5] where we construct examples of concrete models of algebraic
families over Shimura curves, the fibres of which are curves of genus two whose
jacobians have quaternion multiplications by O. There one of the key ingredients
is to interprete the locus of a Shimura curve as a component of the intersection of
two Humbert surfaces (cf. Corollary 5.3).

Finally we remark that all results in this note remain valid if we assume Do=
1, in which case we have I'=I3(N) so that we obtain a new (non-standard)
interpretation of the modular curve Xo(/V) as a moduli of certain abelian surfaces.
a
)/
quadratic residue symbol modulo p. For a, b€ Q, (a, b), denotes the Hilbert

symbol. A quaternion algebra B over a field K is a central simple algebra over K
such that [B: K]=4.

NoTATION. For an odd prime p and an integer ¢EZ, ( ) denotes the

2. Construction of Eichler orders

Let B be as above. We construct a model of an Eichler order of B. The idea
is those of Ibukiyama [8], combined with a lemma of Hijilate [6] which character-
ize the Eichler (or split) order in M2(Qp).

As is well known, the isomorphism class of B is determined by the di-
scriminant D(B/Q), i.e., the product of distinct primes at which B ramifies. We
denote them by i, ..., p¢, and also put Do:=D(B/Q)=p: ... p:. Note that ¢ is
even, since B is assumed to be indefinite (cf.[15]).

Let @ — @ be the canonical involution on B, and let Nr(a) :=a@& be the

reduced norm. Let N be an arbitrary positive integer which is prime to Do, and put
D :=DoN.

DEFINITION 2.1. A subring O of B is called an order, if O is finitely
generated Z-module. Ois called an Eichler order of level D if the following
conditions are satisfied.
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1. For each prime p|Do, O @ 2Zy is the (unique) discrete valuation ring of the
division algebra B,.

2. For each prime divisor q™||N,

0 ¢=Ry(m) = ( Z, Zq).

a"Zy Zg

3. For each prime p not dividing D, O »=MyZ)).

Choose a prime p satisfying the following conditions, the existence of which
is assured by the theorem of arithmetic progression :

1. p=1 (mod 4); moreover, p=5 (mod 8) if 2|Dy, and p=1 (mod 8) if 2|N.

2. (54)2—1 for each p:+2.

3. <%>= +1 for each odd prime factor g of N.

Then one can easily prove that, for a prime /, (—D, p);=—1 if and only if /=p:
(1<7<t). Hence B is expressed as

B=Q+Qi+Q+Qy,

M) #=—D, =p, ij=—ji.

Note also that the conditions imply <TD>: +1, hence there exits an integer a <

Z satisfying a*D+1=0(mod p). Now put
) a=1, e=(1+7)/2, es=(i+1)/2, es=(aDj+ij)/p.

Our first result is the following theorem, which is a slight generalization of
Ibukiyama [8].

Theorem 2.2. Notation being as above, the Z-lattice
O =Zer+ Zers+ Zes+ Zey
forms an Eichler order of B of level D=DoN.

Proof. That the above O forms a Z-order is proved as in [8] by expressing
the products esex as Z-linear combinations. We omit the detail. Now we have
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2 1 0 0
1 2L aD
det(Tr(es, er)= 0 0 (p—1)D D ——D2
2
2

Next we note that O contains a subring Z[e:]=Z [ 1+2J17] which splits, by g-adic

completion, as

zled=z[ 2=z, 0 z,

for any prime divisor ¢ of N. Then a lemma of Hijikata [6] implies that O is
conjugate in Bo=M2(Q,) to a split order :

Z, Z,

0.,=Rq,n): :<q”Zq Z,

)(nEZ, n=0).

Taking the standard Zg-basis of Rq(#), we have immediately
1 0 0 0

01 0 0\
00 0 ¢ a
00 g O

det(Tr(e's, €)=

Comparing the above calculation, we obtain ¢"|N.

O

We note that, since B is indefinite, any Eichler order of level D is obtained
from O by an inner automorphism of B*. Therefore we can fix O as above
without loss of generality. Let o be an element of B such that p*<0, and let (=
to be an involution of B given by &‘=p7' £p. It is positive : Tr(££9)>0(V £EEB).
Put

(3) Eo(&, 7):= Tr(p€7) (& nEB)
Then, since p = — p, we have
Eo(n, &)=Tr(on&)
=Tr(—pE7)
= _Ep(é, 7])-

Hence E, defines a skew symmetric form on B over Q.

Lemma 2.3. (i) The right multiplication of Y& B defines a similitude
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transformation of (B, E,) with multiplicator Nr(y).
(ii) The left multiplication of a< Q(p) defines a similitude transformation of (B,
E,) with multiplicator Nr(a).

Proof. Both assertions follow from

Ex(any, aby)=Tr(pan(y7) & @)
4) =Tr(@ean(r7) &)
=Nr(&)Nr(n)En(&, 7).
(]

Lemma 24. E, is Z-valued on O if and only if 0i€ 0. Moreover, E,
defines a non-degenerate skew symmetric pairing on O X O if and only if piE
0.

Proof. This is a consequence of the fact that the dual lattice of O with respect
to the symmetric bilinear form (x, ¥) —Tr(xy) is the two-sided ideal 7' O 2—5@.

Indeed, we have for p=17""

0 0 -1 0
_[0 0 »-D/2 1
Ecen ed=\ 1 _p_1j2 0 —aD |
0 -1 aD 0
hence det (Ez‘-l(eh, ek))=1.
O
Throughout the following of this note, we assume that p=7"'. To get a

symplectic Z-basis of O with respect to E;-1, we put

) m=es— 172 1 es, N2=—aDei— e, P3=e1, )= eo.

Then we obtain
. (0 1
(Ei'l(”hy 7715)>_]‘_ (_12 0)-

Now put
I':={ye0 ; Nr(y)=1}.
Then I’ is a discrete subgroup of (B ®q R)V=SL2(R). From the above lemmas,

we have the following :

Proposition 2.5. The data {i™', 7=(n, ..., 74)} determine an embedding
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(6) ;. T—Aut(0, E~)=Sp(4, Z)

of I which is optimal w.r.t. Sp(4, Z), i.e. ¢; is not extended to an embedding of
a bigger subgroup of SL:(R) into Sp(4, Z).

We denote the natural extension of ¢ to SL2(R) by the same letter :
(28 3N SLZ(R)—_)AutR((B ®Q R)(l)y Ei'l)gSp(Lly R)-

Proof. For any y&EI', 7y:= (my...., may) is also a symplectic basis of
Z-basis of O with respect to E:-1, hence there exists M,ESp(4, Z) such that
@) Tr=7"'M,.

The map ¢;(y)=M, gives a desired embedding, for which the last assertion is
easily seen from Lemma 2.3.

O

3. Quaternion modular embeddings

Let B, O, ' be asin §2. I is regarded as a discrete subgroup of B’ =SL.(R)
with finite quotient volume. Moreover, the quotient I'\SL2(R) is compact if B is
a division algebra. As is well known, the space I'\$ is the C-valued points of the
Shimura curve S attached to O, and interpreted as a moduli space of principally
polarized abelian surface having quaternion multiplication by O(cf. [13],[14]).
More precisely, we have

- (A, O): principally polarized abelian surface
S(C)‘—’{(A, ¢, @)’ ¢: O—End(A) }

Rosati involution w.r.t. @ =1t
The above isomorphism can be described by the quaternion modular embedding
Q: H9s, 2 —2(2),

which we shall describe explicitly. The following fact is well known as a special
case of a result of Shimura ([13], [14]):

Proposition 3.1. Let A be a principally polarized abelian variety of dimen-
sion two such that
1. End(A)=20
2. The Rosati involution coincides with the involution ¢, on O.
Then there exists an element 2E9 such that A is isomorphic to Agw as
principally polarized abelian variety.

DEFINITION 3.2. Notation being as above, A is said to have Quaternion
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Multiplication by (O, ). We call t€9. a QM point of type (O, ¢) if A:
belongs to this type.
Let 29 and let 71, 72, 73, 71 be the basis of O given in (5). We identify B
(7 %)

®q R with Mx(R) by
. (0 —1\ .
’H<D 0)”H 0 —vp

and by R-linearlity. For zE9, we define an R-linear isomorphism
(®) fo: B®R—C*, a ).

Using fz, the R-vector sapace Mz(R) is equipped with the complex structure. The
following lemma shows that this is compatible with the fact that the center of the
maximal compact subgroup gives the complex structure on SL2(R)/SO(2)=$. Put

b )E SL2(R) such that

i0:<(1) “1> and for each zE9, take an element 72:(? J

0

_a/—1+b _
')’z(x/__l).—- ?x/__].‘f'd =2Z.

Lemma 3.3. We have
) F(E(radorz))=+—1/(€) (VEEMAR)).

Let L.=7.(0O) be the image of O. It is easily seen that L is a lattice in C*
Define a pairing E;: C*X C*~——R by

(10) E(f8), f(n) :=—Eu(& n)=—Tr(e€7) (& nEB)

Then, by Lemma 2.4 we see that it induces a nondegenerate skew symmetric pairing
E:: L XL—Z.

Moreover, as ¢ is a positive involution, we have

EAf8), V=1/A€)=Tr(n3*)>0 (V &, €EMAR), £+0)

where 7=E&727. Thus E; is a Riemann form on the complex torus C?/L..
Put

w =f(n)  w2:=Ff72)
ws:=f(73)  wa:=Ff(74)

Then {wi1, w2, ws, w4} is a symplectic basis, i.e., Exw:, w;)=].
Put (£2,(2)2(2))=(w1w2wsw.), and

(11) 2 =2(2)7'2(2).
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Proposition 3.4. The map @ ;:z — 8 ;(z) is a holomorphic embedding of $
into $2 . Moreover, for each yESL:(R), the following diagram is commutative :

07
H — D
7l 0. L e7()
7
P — D

where the action of y(resp. ¢(y)) on D(resp. 92) is the usual one.

a b
. Writing 7=(% ),
Proo riting y c d put

(20(2)2(2)=Flmy), F(m27), F(137), fo(77)).
Then from the equality ‘
2\ _(az+b\ _ y(2)
7(1).—(cz+d>_(cz+d)< 1 >’
we have
07(2)=0;(7(2)=2(2)"'2(2)(=2'(2), say).

On the other hand, using (7), we have the following equalities of matrices with
coefficients in M(C) :

(my, n2y, ns7, na7)E=(m, m2, 73, 74)'My¢

=(m, 72, 73, 1) E*M,, <§=<i f))

.. A B . .
Writing M7=<C D)’ and taking first columns of each components in M>(C), we

obtain
(Qi(2)2%(2)=(m7, ney, 037, 7147)@)
=(m), £, £, £n) S

‘D
=<gl<z>92<2>)<z§ 9

=(21(2)!'A+ 2(2)'B, 2(2)!C+2(2)'D).
Hence we have
2(2)="2'(2)
=4(2%(2)712(2))

=(A'(2)+ B'2(2))(C*(2) + C'2(2))"
=(AR(z)+B)(CR(z)+ D).
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This proves

05,=0r07r=0;(7)0;.

Summing up the above results with a direct calculation using 0=:""and 7 we
have the following explicit form of a quaternion modular embedding.

Put ¢: =%.

Theorem 3.5. Let O be an Eichler order of B of level D=D.N as given
by (2), and let n, ..., 74 be a symplectic Z-basis of O. Then the following map
0 ;(2)=9(z) gives a modular embedding of 9 into > with respect to I and
Sp(4,Z) :

13)  Q(z)=—=

— EZ+Q_—;)—&-Q—2+D6222, E—(b—l)aDz—Dezz)
7z '

g —(p—1)aDz— Dez?, —1—2aDz+ Dz?

In particular, @; induces an embedding of the modular varieties :
(2]
9 — D2
rl xl

Ne=S(c) —~5 Sp@2)\$:

4. Singular relations for period matrices
We recall some work of Humbert [7] on singular relations. A point 7=
o . . . . . . .
( ! 12) of 92 is called to have a singular relation with invariant 4, if there exist

iz T2
relatively prime integers @, £, 7, 0, €EZ such that (c.f. [7]):

(14) an+ Briz+ yre+ 0(— niw) + =0,
(15) Ad=pB*—4ay—40e.
Define

Ns={rEWb,|r has a singular relation with invariant 4}
and
H, := image of N, under the canonical map $>——Sp(4,Z)\ ..

H, is called the Humbert surface of invariant 4. For 1€, let L. be the lattice
in C? spanned by the columns of the matrix (12 7)=(p, ..., p4), and put A.:=
C?/L.. Then A., together with the standard Riemann form E on C? defined by
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E(pn, pr)=J, forms a principally polarized abelian surface. Let End(A:) be the
endomorphism algebra of A:. Using the rational representation, it is expressed as

End(A:)={¢EM(C)|IMEMAZ) st. $(z 12)=(r L)M--(*)}.

we see that the above condition (*) is equivalent to

D)
C Dr
¢=1B+D, pr=1tA+C—tBr+Dr—tA—C=0 (% %)

Writing MZ(A

Let E be the Riemann form associated to the polarization ®. Then E defines an
involution on End(A-), ¢ —¢°, called the Rosati involution, which is determined
by E(¢z, w)=E(z, ¢°w)(Vz, wsE C?). We have

b= — ‘M( 0 12>=< 0 12>M

-1, 0 -1, 0
0 b 0 ¢
:t — =
= A=DB (—b 0),0 <—c 0)‘
a az . ° .
Put A:<a 4 > Under the assumption ¢°=4¢, it follows that
3 4

(% %) S a:n+(as—a)ne— asne+ b(te— )+ c=0.
Then we have

¢:TB+D=<—bZ'12+CZ1 bZ’rf‘da)

- bZ‘z + a: bZ‘12 +as
and

Tr¢=a1+ as
detp=—bla:nn+(as—a1)tiz— ase+ b(th— n102)} + aras— azas
=a1a4— az2a3+ be.

So the characteristic polynomial of ¢ is
T*—(a1+as) T +(aras— azas+ be)
and its discriminant 4 is
4:= (a1t a)?—4aras— azas+ bc) =(as— a1)* —4ax(— as) — 4 be.

Let O be the order of discriminant 4 in the real quadratic field Q(V4). The
above argument gives a simple proof of the following well known fact (cf. [7],

2D):

Proposition 4.1. End(A:) contains Q4 optimally if and only if < H,.
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5. Invariants of QM points

Applying the results of §3 to those in §4, we can characterize the image of @ ;, by
determining the singular relations satisfied by its points simultaneously.

Theorem 5.1. Let @;: H—— 2 be the modular embedding given by (13).
Then t= @ ;(z) satisfy simultaneously the following sinfgular relations parametr-
ized by two independent integers x, VEZ :

4

(16) xn+ (x+2aDy) r— 2L vt + (e~ ©)+(a’D—b)Dy=0

where we put a’D~+1=pb. Moreover, if zE9 is not a CM point, then it has no
other singular relation.

Proof. From (13), we easily have

o gz _(ﬁ_# ._Dez
hz _ -1] —F (p—1)aD De 1
, Tz 1 2aD - \%/)
Tie— Q2 — 212 2
) 2aDe  —(p—1)a®D*—D —2aD%
0 —p 0

Suppose first that z is not a CM point. Then from the above equality, we
immediately see that (14) holds with @, 8, 7, 6, eEZ if and only if

g’a— EB+r+2aDES=N,
{ch—@—nam—zww((p—1)aZDZ+D)a+ pe=0.

Since 1, & are linearly independent over @, we see from £°= & + pzl that the

first equality is equivalent to

a—pB+2aD5=0, pll a+y=0,

and then from the second equality we obtain
{pa’D*— D(a’D+1)}6 — pe=0.

Hence they are solved by two independent integers x, ¥ :

a=x, B=x+2aDy, y=— pzlx, 8=y, e=(a*D—b)Dy.

This gives the relation (16), which are satisfied for any 2&49 by continuity.
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The invariant 4 of the singular relation (16) is
(17) A(x, v)=px*+4aDxy+4bDy?,

which is an integral positive definite quadratic form in x, ¥, and its discriminant
is

16a*D*—4pbD=—16D,

which is independent of the choice of O, o. As a corollary, we obtain the
following

Theorem 5.2. For a positive non-square integer 4, such that 4=1, 0 (mod
4), the following conditions are equivalent :
(i) 4 is represented by the quadratic form A(x, y) with relatively prime integers
x,VEZ.
(ii) There exists an embedding ¢:04— O, such that $()'=¢(€) VEES 04 and
that ¢ is optimal : ¢(Q(V4))N O =0y
(iii) The image @ ;(S(C)) of the Shimura curve is contained in the Humbert
surface H,.

Proof. Let x, y be integers such that 4(x, y)=px*+4aDxy+4bDy*=4.
To such pair (x, y) we associate

(18) Esi=—xe1t2xe:+2ye, 0.

Then we have

(19) & =—Nr(&s)
_ (.. 2aD Y 4D
_1’(“ b y) TR
=d(x, ).

Moreover, one easily sees that £5=&,. Suppose first that J=1(mod 4). Then x is
odd, and we see that (14+&4)/2€ O. Thus, putting ¢((1+v4)/2)=1+E4)/2, we
see that ¢ gives the embedding of the order O,=Z[(14+vV4 )/2]. The converse
assertion is clear from the above equality. Also we see from (19) that gcd(x, v)=
1 if and only if ¢ is optimal. Next suppose that 4=44,, ZbE Z, hence x=2x, is
even. Then we see that the element

Nao - = %‘EA: —xoe1+2x0e2+ Ve
is in O, and satisfies 745=24o. So putting ¢(vVdo )=74,, we get the embedding of

the order Z[v/4b ] of discriminant 4. Again we have gcd(2x0,y)=1 if and only if
¢ is optimal This proves the equivalence of (i) and (ii). The rest of the assertion
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follows from Proposition 4.1. ]

Corollary 5.3. The Shimura curve S attached to (O,c,) is contained as a
component of the intersection Hs,(\ Ha, of two Humbert surfaces, if and only if
4y, 4y are represented by A(x, y) with relatively prime integers x, Y.

EXAMPLE 5.4. The first two cases of maximal orders with smallest di-
scriminants are :

D=Dy=2-3, (p, a, b)=(5, 2, 5): A(x, v)=5x*+48xy+120y?
D=Dy=2-5, (p, a, b)=(13, 3, 7): A(x, y)=13x*+120xy+280y>.

The integers represented by J(x, y) with relatively prime x, y are {5, 8, 12, 21,
29, ...}, {5, 8,13, 28, 37, .. .}, respectively. Thus we see that the Shimura curves for
D=D,=6, 10 are components of HsN Hs (see [5]).

Next we give some cases for which there are more than one equivalence classes of
the modular embeddings, for maximal orders of fixed discriminant D= Ds,, which
shows that @ ;(z) really depends on the choice of p.

ExAMPLE 5.5. D=Dy=2-13. The following two models give nonequivalent
modular embeddings :

(p, a, b)=(5, 2, 21): A(x, v)=5x%+208xy+2184?,
(p, a, b)=(149, 19, 63) : d(x, y)=149x2+1976xy + 65522

Indeed, the integers represented by A(x, y) with relatively prime x, v are {5, 21, 24,
28, 37, ...}, {8, 13, 21, 45, 60, ...}, respectively.

ExXAMPLE 5.6. D=Dy=3-5. The following two models also give none-
quivalent modular embeddings :

(p, a, b)=(13, 6, 97) : A(x, y)=13x%+840xy+ 1358042,
(p, a, b)=(73, 5, 12) : A(x, v)=T73x*+700xy+1680y>.

The integers represented by A(x, y) with relatively prime x, y are {5, 28, 33, 48,
73, ...}, {12, 13, 17, 33, 45, .. .}, respectively.
Finally we prove the following :

Proposition 5.7. The quadratic form A(x, y) represents a non-zero square
over Q if and only if D=1, or equivalently, B=M(Q).

Proof. A(x, y) represents a non-zero square if and only if the ternary
quadratic form F(x, v, z) : =x*+4Dy*— pz’ is isotropic over @. By Minkowski-
Hasse principle, this is equivalent to (—4D, p),= —1 for all primes /. On the other
hand, we have
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(—4D, p)i=—1 = I=p(1<i<t).

This proves the assertion.
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