

| Title        | Explicit form of quaternion modular embeddings           |
|--------------|----------------------------------------------------------|
| Author(s)    | Hashimoto, Ki-ichiro                                     |
| Citation     | Osaka Journal of Mathematics. 1995, 32(3), p.<br>533–546 |
| Version Type | VoR                                                      |
| URL          | https://doi.org/10.18910/11970                           |
| rights       |                                                          |
| Note         |                                                          |

# Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

# EXPLICIT FORM OF QUATERNION MODULAR EMBEDDINGS

#### **KI-ICHIRO HASHIMOTO**

(Received May 12, 1993)

### 1. Introduction

In this note, we describe some results on arithmetic of the modular embeddings of the upper half plane  $\mathfrak{F}$  into the Siegel upper half space  $\mathfrak{F}_2$  of degree two, with respect to the unit groups of Eichler orders of indefinite quaternion algebras over the rational number field Q.

Let **B** be an indefinite quaternion algebra over **Q** with discriminant  $D_0$ , and  $\mathcal{O}$  be an Eichler order of **B** of level  $D=D_0N$ , where N is a positive integer prime to  $D_0$ . Put  $\Gamma = \{\gamma \in \mathcal{O} ; \operatorname{Nr}(\gamma) = 1\}$ , where Nr denotes the reduced norm of **B**. Then  $\Gamma$  is regarded as a discrete subgroup of  $B_{\infty}^{(1)} \cong \operatorname{SL}_2(\mathbf{R})$  with finite quotient volume. As is well known,  $\Gamma \setminus \mathfrak{H}$  is the **C**-valued points of the Shimura curve S attached to  $\mathcal{O}$ , and interpreted as a moduli space of principally polarized abelian surface having quaternion multiplication by  $\mathcal{O}(\operatorname{cf.}[13], [14], [9])$ . More precisely, let  $\rho$  be an element of  $\mathcal{O}$  such that  $\rho^2 = -D$ ,  $\rho \mathcal{O} = \mathcal{O}\rho$ . Then the involution of **B** defined by  $\alpha \mapsto \alpha^{\iota} := \rho^{-1} \overline{\alpha} \rho$  is positive, and satisfies  $\mathcal{O}^{\iota} = \mathcal{O}$ . The points of  $S(\mathbf{C})$  are in one to correspondence with the set of isomorphism classes of  $(A, \psi, \Theta)$ , where  $(A, \Theta)$  is a principally polarized abelian surface, and  $\psi : \mathcal{O} \hookrightarrow \operatorname{End}(A)$  is an injective ring homomorphism such that the Rosati involution with respect to  $\Theta$  coincides with  $\iota_{\rho}$  on  $\psi(\mathcal{O})$ . This correspondence can be described by the quaternion modular embedding. Indeed, it is known that there is a holomorphic embedding

$$\boldsymbol{\varPhi}:\,\mathfrak{H}\to\mathfrak{H}_2,\,z\mapsto\mathcal{Q}(z),$$

which is compatible with the actions of  $\Gamma$ , Sp(4, Z), through an embedding of the group

$$\varphi: \Gamma \hookrightarrow \operatorname{Sp}(4, \mathbb{Z})$$

Our purpose is twofold. The first is to describe  $\varphi$ ,  $\varphi$  explicitly, by constructing a concrete model of  $\mathcal{O}$  and using its  $\mathbb{Z}$ -basis. This enables us to study various arithmetic properties of such embeddings, which is our second purpose. Especially,

#### К. НАЅНІМОТО

we can characterize the image of the embedding by determining all possible singular relations of Humbert's [7]. Also we can associate with it a definite binary quadratic form with discriminant -16D, which is an invariant of the equivalence class of the embedding. The form represents precisely those positive integers  $\Delta$ which are the discriminants of orders O of real quadratic fields, such that the locus of the Shimura curve S on  $\mathfrak{H}_2$  is contained in the Humbert surface  $H_d$ .

Most of the results of this note are not quite new except for being explicit everywhere, and are regarded as examples of general results given e.g., in [12],[13], [14], and [11]. However, we think it is convenient to have the explicit descriptions of the special cases as a step to further investigations. In fact, a motivation to the present work is [5] where we construct examples of concrete models of algebraic families over Shimura curves, the fibres of which are curves of genus two whose jacobians have quaternion multiplications by  $\mathcal{O}$ . There one of the key ingredients is to interpret the locus of a Shimura curve as a component of the intersection of two Humbert surfaces (cf. Corollary 5.3).

Finally we remark that all results in this note remain valid if we assume  $D_0 = 1$ , in which case we have  $\Gamma \cong \Gamma_0(N)$  so that we obtain a new (non-standard) interpretation of the modular curve  $X_0(N)$  as a moduli of certain abelian surfaces.

NOTATION. For an odd prime p and an integer  $a \in \mathbb{Z}$ ,  $\left(\frac{a}{p}\right)$  denotes the quadratic residue symbol modulo p. For  $a, b \in \mathbb{Q}$ ,  $(a, b)_p$  denotes the Hilbert symbol. A quaternion algebra B over a field K is a central simple algebra over K such that [B: K]=4.

### 2. Construction of Eichler orders

Let **B** be as above. We construct a model of an Eichler order of **B**. The idea is those of Ibukiyama [8], combined with a lemma of Hijilate [6] which characterize the Eichler (or split) order in  $M_2(\mathbf{Q}_p)$ .

As is well known, the isomorphism class of **B** is determined by the discriminant D(B/Q), i.e., the product of distinct primes at which **B** ramifies. We denote them by  $p_1, \ldots, p_t$ , and also put  $D_0 := D(B/Q) = p_1 \ldots p_t$ . Note that t is even, since **B** is assumed to be indefinite (cf.[15]).

Let  $\alpha \mapsto \overline{\alpha}$  be the canonical involution on **B**, and let  $Nr(\alpha) := \alpha \overline{\alpha}$  be the reduced norm. Let N be an arbitrary positive integer which is prime to  $D_0$ , and put  $D := D_0 N$ .

DEFINITION 2.1. A subring  $\mathcal{O}$  of B is called an order, if  $\mathcal{O}$  is finitely generated Z-module.  $\mathcal{O}$  is called an Eichler order of level D if the following conditions are satisfied.

1. For each prime  $p|D_0, \mathcal{O} \otimes_z \mathbb{Z}_p$  is the (unique) discrete valuation ring of the division algebra  $\mathbb{B}_p$ .

2. For each prime divisor  $q^m || N$ ,

$$\mathcal{O}_q \cong R_q(m) := \begin{pmatrix} \mathbf{Z}_q & \mathbf{Z}_q \\ q^m \mathbf{Z}_q & \mathbf{Z}_q \end{pmatrix}$$

3. For each prime p not dividing D,  $\mathcal{O}_{p} \cong M_{2}(\mathbb{Z}_{p})$ .

Choose a prime p satisfying the following conditions, the existence of which is assured by the theorem of arithmetic progression :

1.  $p \equiv 1 \pmod{4}$ ; moreover,  $p \equiv 5 \pmod{8}$  if  $2|D_0$ , and  $p \equiv 1 \pmod{8}$  if 2|N.

2. 
$$\left(\frac{p}{p_i}\right) = -1$$
 for each  $p_i \neq 2$ .

3.  $\left(\frac{p}{q}\right) = +1$  for each odd prime factor q of N.

Then one can easily prove that, for a prime l,  $(-D, p)_l = -1$  if and only if  $l = p_i$  $(1 \le i \le t)$ . Hence **B** is expressed as

(1) 
$$\begin{aligned} \mathbf{B} &= \mathbf{Q} + \mathbf{Q}i + \mathbf{Q}j + \mathbf{Q}ij, \\ i^2 &= -D, \ j^2 &= p, \ ij = -ji. \end{aligned}$$

Note also that the conditions imply  $\left(\frac{-D}{p}\right) = +1$ , hence there exits an integer  $a \in \mathbb{Z}$  satisfying  $a^2D+1\equiv 0 \pmod{p}$ . Now put

(2) 
$$e_1=1, e_2=(1+j)/2, e_3=(i+ij)/2, e_4=(aDj+ij)/p.$$

Our first result is the following theorem, which is a slight generalization of Ibukiyama [8].

Theorem 2.2. Notation being as above, the Z-lattice

$$\mathcal{O} = \mathbf{Z}e_1 + \mathbf{Z}e_2 + \mathbf{Z}e_3 + \mathbf{Z}e_4$$

forms an Eichler order of **B** of level  $D=D_0N$ .

Proof. That the above  $\mathcal{O}$  forms a  $\mathbb{Z}$ -order is proved as in [8] by expressing the products  $e_h e_k$  as  $\mathbb{Z}$ -linear combinations. We omit the detail. Now we have

K. HASHIMOTO

$$\det(\operatorname{Tr}(e_h, e_k)) = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & \frac{p+1}{2} & 0 & aD \\ 0 & 0 & \frac{(p-1)D}{2} & D \\ 0 & aD & D & \frac{2D(a^2D+1)}{p} \end{pmatrix} = -D^2.$$

Next we note that  $\mathcal{O}$  contains a subring  $\mathbf{Z}[e_2] \cong \mathbf{Z}\left[\frac{1+\sqrt{p}}{2}\right]$  which splits, by q-adic completion, as

$$Z_q[e_z]\cong Z_q\left[\frac{1+\sqrt{p}}{2}\right]=Z_q\oplus Z_q$$

for any prime divisor q of N. Then a lemma of Hijikata [6] implies that  $\mathcal{O}_q$  is conjugate in  $B_q \cong M_2(Q_q)$  to a split order:

$$\mathcal{O}_q \cong R_q(n) := \begin{pmatrix} \mathbf{Z}_q & \mathbf{Z}_q \\ q^n \mathbf{Z}_q & \mathbf{Z}_q \end{pmatrix} (n \in \mathbf{Z}, n \ge 0).$$

Taking the standard  $Z_q$ -basis of  $R_q(n)$ , we have immediately

$$\det(\operatorname{Tr}(e'_{h}, e'_{k})) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & q^{n} \\ 0 & 0 & q^{n} & 0 \end{pmatrix} = -q^{2n}.$$

Comparing the above calculation, we obtain  $q^n || N$ .

We note that, since **B** is indefinite, any Eichler order of level D is obtained from  $\mathcal{O}$  by an inner automorphism of  $\mathbf{B}^{\times}$ . Therefore we can fix  $\mathcal{O}$  as above without loss of generality. Let  $\rho$  be an element of **B** such that  $\rho^2 < 0$ , and let  $\iota = \iota_{\rho}$  be an involution of **B** given by  $\xi^{\iota} = \rho^{-1} \overline{\xi} \rho$ . It is positive :  $\operatorname{Tr}(\xi \xi^{\iota}) \ge 0 (\forall \xi \in \mathbf{B})$ . Put

(3) 
$$E_{\rho}(\xi, \eta) := \operatorname{Tr}(\rho \xi \overline{\eta}) \quad (\xi, \eta \in \boldsymbol{B})$$

Then, since  $\overline{\rho} = -\rho$ , we have

$$E_{\rho}(\eta, \xi) = \operatorname{Tr}(\rho \eta \overline{\xi})$$
  
= Tr(-\rho \xi \overline{\eta})  
= - E\_{\rho}(\xi, \eta).

Hence  $E_{\rho}$  defines a skew symmetric form on **B** over **Q**.

**Lemma 2.3.** (i) The right multiplication of  $\gamma \in B$  defines a similitude

transformation of  $(\boldsymbol{B}, E_{\rho})$  with multiplicator  $Nr(\gamma)$ . (ii) The left multiplication of  $\alpha \in \boldsymbol{Q}(\rho)$  defines a similitude transformation of  $(\boldsymbol{B}, E_{\rho})$  with multiplicator  $Nr(\alpha)$ .

Proof. Both assertions follow from

(4)  
$$E_{\rho}(\alpha\eta\gamma, \alpha\xi\gamma) = \operatorname{Tr}(\rho\alpha\eta(\gamma\overline{\gamma})\overline{\xi}\overline{\alpha})$$
$$= \operatorname{Tr}(\overline{\alpha}\rho\alpha\eta(\gamma\overline{\gamma})\overline{\xi})$$
$$= \operatorname{Nr}(\alpha)\operatorname{Nr}(\gamma)E_{\rho}(\xi, \eta).$$

**Lemma 2.4.**  $E_{\rho}$  is Z-valued on  $\mathcal{O}$  if and only if  $\rho i \in \mathcal{O}$ . Moreover,  $E_{\rho}$  defines a non-degenerate skew symmetric pairing on  $\mathcal{O} \times \mathcal{O}$  if and only if  $\rho i \in \mathcal{O}^{\times}$ .

Proof. This is a consequence of the fact that the dual lattice of  $\mathcal{O}$  with respect to the symmetric bilinear form  $(x, y) \mapsto \operatorname{Tr}(xy)$  is the two-sided ideal  $i^{-1}\mathcal{O} = \frac{i}{D}\mathcal{O}$ . Indeed, we have for  $\rho = i^{-1}$ 

$$E_{i-1}(e_h, e_k) = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & (p-1)/2 & 1 \\ 1 & -(p-1)/2 & 0 & -aD \\ 0 & -1 & aD & 0 \end{pmatrix},$$

hence det  $(E_{i-1}(e_h, e_k)) = 1$ .

Throughout the following of this note, we assume that  $\rho = i^{-1}$ . To get a symplectic Z-basis of  $\mathcal{O}$  with respect to  $E_{i^{-1}}$ , we put

(5) 
$$\eta_1 = e_3 - \frac{p-1}{2}e_4, \ \eta_2 = -aDe_1 - e_4, \ \eta_3 = e_1, \ \eta_4 = e_2$$

Then we obtain

$$(E_{i^{-1}}(\eta_h, \eta_k)) = J := \begin{pmatrix} 0 & 1_2 \\ -1_2 & 0 \end{pmatrix}$$

Now put

$$\Gamma := \{ \gamma \in \mathcal{O} ; \operatorname{Nr}(\gamma) = 1 \}.$$

Then  $\Gamma$  is a discrete subgroup of  $(\boldsymbol{B} \otimes_{\boldsymbol{Q}} \boldsymbol{R})^{(1)} \cong SL_2(\boldsymbol{R})$ . From the above lemmas, we have the following:

**Proposition 2.5.** The data  $\{i^{-1}, \vec{\eta} = (\eta_1, \ldots, \eta_4)\}$  determine an embedding

 $\square$ 

K. HASHIMOTO

(6) 
$$\varphi_{\vec{\eta}} \colon \Gamma \longrightarrow \operatorname{Aut}_{\mathbf{Z}}(\mathcal{O}, E_{i^{-1}}) \cong \operatorname{Sp}(4, \mathbf{Z})$$

of  $\Gamma$  which is optimal w.r.t. Sp(4, Z), i.e.  $\varphi_{\overline{\eta}}$  is not extended to an embedding of a bigger subgroup of SL<sub>2</sub>(R) into Sp(4, Z).

We denote the natural extension of  $\varphi$  to  $SL_2(\mathbf{R})$  by the same letter :

$$\varphi_{\vec{\eta}} : \operatorname{SL}_2(\mathbf{R}) \longrightarrow \operatorname{Aut}_{\mathbf{R}}((\mathbf{B} \otimes_{\mathbf{Q}} \mathbf{R})^{(1)}, E_{i^{-1}}) \cong \operatorname{Sp}(4, \mathbf{R}).$$

Proof. For any  $\gamma \in \Gamma$ ,  $\eta \gamma := (\eta_1 \gamma \dots, \eta_4 \gamma)$  is also a symplectic basis of  $\mathbb{Z}$ -basis of  $\mathcal{O}$  with respect to  $E_{i^{-1}}$ , hence there exists  $M_{\gamma} \in \operatorname{Sp}(4, \mathbb{Z})$  such that

(7) 
$$\vec{\eta} \gamma = \vec{\eta} \,^t M_{\gamma}.$$

The map  $\varphi_{\dagger}(\gamma) = M_{\gamma}$  gives a desired embedding, for which the last assertion is easily seen from Lemma 2.3.

## 3. Quaternion modular embeddings

Let B,  $\mathcal{O}$ ,  $\Gamma$  be as in §2.  $\Gamma$  is regarded as a discrete subgroup of  $B_{\infty}^{(1)} \cong SL_2(\mathbb{R})$  with finite quotient volume. Moreover, the quotient  $\Gamma \setminus SL_2(\mathbb{R})$  is compact if B is a division algebra. As is well known, the space  $\Gamma \setminus \mathfrak{P}$  is the C-valued points of the Shimura curve S attached to  $\mathcal{O}$ , and interpreted as a moduli space of principally polarized abelian surface having quaternion multiplication by  $\mathcal{O}(cf. [13], [14])$ . More precisely, we have

$$S(\mathbf{C}) \xleftarrow{1:1} \left\{ (A, \ \psi, \ \Theta) \middle| \begin{array}{c} (A, \ \Theta): \ \text{principally polarized abelian surface} \\ \psi: \ \ \mathcal{O} \hookrightarrow End(A) \\ Rosati \ \text{involution } w.r.t. \ \Theta_{|\mathcal{O}} = \iota_{\rho} \end{array} \right\}.$$

The above isomorphism can be described by the quaternion modular embedding

 $\boldsymbol{\varphi}: \quad \mathfrak{H} \to \mathfrak{H}_2, \ z \mapsto \mathcal{Q}(z),$ 

which we shall describe explicitly. The following fact is well known as a special case of a result of Shimura ([13], [14]):

**Proposition 3.1.** Let A be a principally polarized abelian variety of dimension two such that

1.  $\operatorname{End}(A) \supseteq \mathcal{O}$ 

2. The Rosati involution coincides with the involution  $\iota_{\rho}$  on  $\mathcal{O}$ .

Then there exists an element  $z \in \mathfrak{H}$  such that A is isomorphic to  $A_{\mathfrak{Q}(z)}$  as principally polarized abelian variety.

DEFINITION 3.2. Notation being as above, A is said to have Quaternion

Multiplication by  $(\mathcal{O}, \iota_{\rho})$ . We call  $\tau \in \mathfrak{H}_2$  a QM point of type  $(\mathcal{O}, \iota_{\rho})$  if  $A_{\tau}$  belongs to this type.

Let  $z \in \mathfrak{H}$  and let  $\eta_1$ ,  $\eta_2$ ,  $\eta_3$ ,  $\eta_4$  be the basis of  $\mathcal{O}$  given in (5). We identify  $\boldsymbol{B} \otimes_{\boldsymbol{Q}} \boldsymbol{R}$  with  $M_2(\boldsymbol{R})$  by

$$i \mapsto \begin{pmatrix} 0 & -1 \\ D & 0 \end{pmatrix}, j \mapsto \begin{pmatrix} \sqrt{p} & 0 \\ 0 & -\sqrt{p} \end{pmatrix},$$

and by **R**-linearlity. For  $z \in \mathfrak{H}$ , we define an **R**-linear isomorphism

(8) 
$$f_z: \mathbf{B} \otimes_{\mathbf{Q}} \mathbf{R} \longrightarrow \mathbf{C}^2, \ \alpha \mapsto \alpha \binom{z}{1}.$$

Using  $f_z$ , the **R**-vector sapace  $M_2(\mathbf{R})$  is equipped with the complex structure. The following lemma shows that this is compatible with the fact that the center of the maximal compact subgroup gives the complex structure on  $SL_2(\mathbf{R})/SO(2) \cong \mathfrak{H}$ . Put  $i_0 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$  and for each  $z \in \mathfrak{H}$ , take an element  $\gamma_z = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{R})$  such that  $\gamma_z(\sqrt{-1}) := \frac{a\sqrt{-1}+b}{c\sqrt{-1}+d} = z$ .

Lemma 3.3. We have

(9) 
$$f_z(\xi(\gamma_z i_0 \gamma_z^{-1})) = \sqrt{-1} f_z(\xi) \quad (\forall \xi \in M_2(\mathbf{R})).$$

Let  $L_z = f_z(\mathcal{O})$  be the image of  $\mathcal{O}$ . It is easily seen that  $L_z$  is a lattice in  $\mathbb{C}^2$ . Define a pairing  $E_z: \mathbb{C}^2 \times \mathbb{C}^2 \longrightarrow \mathbb{R}$  by

(10) 
$$E_{z}(f_{z}(\xi), f_{z}(\eta)) := -E_{\rho}(\xi, \eta) = -\operatorname{Tr}(\rho \xi \overline{\eta}) \quad (\xi, \eta \in \boldsymbol{B})$$

Then, by Lemma 2.4 we see that it induces a nondegenerate skew symmetric pairing

$$E_z: L_z \times L_z \longrightarrow \mathbf{Z}.$$

Moreover, as  $t_{\rho}$  is a positive involution, we have

$$E_{z}(f_{z}(\xi), \sqrt{-1}f_{z}(\xi)) = \operatorname{Tr}(\eta\eta^{\iota}) > 0 \ (\forall \xi, \in M_{2}(\mathbf{R}), \ \xi \neq 0)$$

where  $\eta = \xi \gamma_z \gamma_0$ . Thus  $E_z$  is a Riemann form on the complex torus  $C^2/L_z$ . Put

$$\omega_1 := f_z(\eta_1) \qquad \omega_2 := f_z(\eta_2) \ \omega_3 := f_z(\eta_3) \qquad \omega_4 := f_z(\eta_4)$$

Then  $\{\omega_1, \omega_2, \omega_3, \omega_4\}$  is a symplectic basis, i.e.,  $E_z(\omega_i, \omega_j) = J$ . Put  $(\Omega_1(z)\Omega_2(z)) = (\omega_1\omega_2\omega_3\omega_4)$ , and

(11) 
$$\mathcal{Q}_{\vec{\eta}} := \mathcal{Q}_2(z)^{-1} \mathcal{Q}_1(z).$$

**Proposition 3.4.** The map  $\Phi_{\vec{\eta}}: z \mapsto \Omega_{\vec{\eta}}(z)$  is a holomorphic embedding of  $\mathfrak{H}$  into  $\mathfrak{H}_2$ . Moreover, for each  $\gamma \in SL_2(\mathbf{R})$ , the following diagram is commutative:

$$\begin{array}{cccc} \mathfrak{F} & \stackrel{\varPhi_{\vec{\eta}}}{\longrightarrow} & \mathfrak{F}_{2} \\ \mathfrak{f} & \stackrel{\varPhi_{\vec{\eta}}}{\longrightarrow} & \stackrel{\downarrow_{\varphi_{\vec{\eta}}}(\gamma)}{\mathfrak{F}} \\ \mathfrak{F} & \stackrel{\bigoplus_{\tau}}{\longrightarrow} & \mathfrak{F}_{2} \end{array}$$

where the action of  $\gamma(resp. \varphi(\gamma))$  on  $\mathfrak{H}(resp. \mathfrak{H}_2)$  is the usual one.

Proof. Writing  $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ , put  $(\Omega'_1(z)\Omega'_2(z)) = (f_z(\eta_1\gamma), f_z(\eta_2\gamma), f_z(\eta_3\gamma), f_z(\eta_4\gamma)).$ 

Then from the equality

$$\gamma \binom{z}{1} = \binom{az+b}{cz+d} = (cz+d)\binom{\gamma(z)}{1},$$

we have

$$\boldsymbol{\Phi}_{\bar{\eta}\gamma}(z) = \boldsymbol{\Phi}_{\bar{\eta}}(\gamma(z)) = \boldsymbol{\Omega}_{2}'(z)^{-1} \boldsymbol{\Omega}_{1}'(z) (= \boldsymbol{\Omega}'(z), say).$$

On the other hand, using (7), we have the following equalities of matrices with coefficients in  $M_2(C)$ :

$$(\eta_1\gamma, \eta_2\gamma, \eta_3\gamma, \eta_4\gamma)\zeta = (\eta_1, \eta_2, \eta_3, \eta_4)^t M_r \zeta$$
  
= $(\eta_1, \eta_2, \eta_3, \eta_4)\zeta^t M_r, \qquad \left(\zeta = \begin{pmatrix} z & \overline{z} \\ 1 & 1 \end{pmatrix}\right).$ 

Writing  $M_r = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ , and taking first columns of each components in  $M_2(C)$ , we obtain

$$\begin{aligned} (\mathcal{Q}_{1}'(z)\mathcal{Q}_{2}'(z)) &= (\eta_{1}\gamma, \ \eta_{2}\gamma, \ \eta_{3}\gamma, \ \eta_{4}\gamma) \binom{z}{1} \\ &= (f_{z}(\eta_{1}\gamma), \ f_{z}(\eta_{2}\gamma), \ f_{z}(\eta_{3}\gamma), \ f_{z}(\eta_{4}\gamma) \binom{^{t}A \quad {^{t}C}}{{^{t}B} \quad {^{t}D}} \\ &= (\mathcal{Q}_{1}(z)\mathcal{Q}_{2}(z)) \binom{^{t}A \quad {^{t}C}}{{^{t}B} \quad {^{t}D}} \\ &= (\mathcal{Q}_{1}(z)^{t}A + \mathcal{Q}_{2}(z)^{t}B, \ \mathcal{Q}_{1}(z)^{t}C + \mathcal{Q}_{2}(z)^{t}D). \end{aligned}$$

Hence we have

$$egin{aligned} &\mathcal{Q}'(z) = {}^t \mathcal{Q}'(z) \ &= {}^t (\mathcal{Q}'_2(z)^{-1} \mathcal{Q}'_1(z)) \ &= (A{}^t \mathcal{Q}_1(z) + B{}^t \mathcal{Q}_2(z))(C{}^t \mathcal{Q}_1(z) + C{}^t \mathcal{Q}_2(z))^{-1} \ &= (A \mathcal{Q}(z) + B)(C \mathcal{Q}(z) + D)^{-1}. \end{aligned}$$

This proves

$$\boldsymbol{\varPhi}_{_{\vec{\eta}\gamma}} = \boldsymbol{\varPhi}_{_{\vec{\eta}}} \circ \gamma = \varphi_{_{\vec{\eta}}}(\gamma) \circ \boldsymbol{\varPhi}_{_{\vec{\eta}}}.$$

Summing up the above results with a direct calculation using  $\rho = i^{-1}$  and  $\vec{\eta}$  we have the following explicit form of a quaternion modular embedding.

Put 
$$\varepsilon$$
:  $=\frac{1+\sqrt{p}}{2}$ .

**Theorem 3.5.** Let  $\mathcal{O}$  be an Eichler order of  $\mathbf{B}$  of level  $D=D_0N$  as given by (2), and let  $\eta_1, \ldots, \eta_4$  be a symplectic  $\mathbf{Z}$ -basis of  $\mathcal{O}$ . Then the following map  $\Phi_{\overline{\eta}}(z) = \Omega(z)$  gives a modular embedding of  $\mathfrak{H}$  into  $\mathfrak{H}_2$  with respect to  $\Gamma$  and  $\operatorname{Sp}(4, \mathbf{Z})$ :

(13) 
$$\Omega(z) = \frac{1}{pz} \begin{pmatrix} -\overline{\varepsilon}^2 + \frac{(p-1)aD}{2}z + D\varepsilon^2 z^2, & \overline{\varepsilon} - (p-1)aDz - D\varepsilon z^2 \\ \overline{\varepsilon} - (p-1)aDz - D\varepsilon z^2, & -1 - 2aDz + Dz^2 \end{pmatrix}.$$

In particular,  $\Phi_{\vec{\pi}}$  induces an embedding of the modular varieties :

$$\begin{array}{cccc} \mathfrak{H} & \stackrel{\mathfrak{O}_{\overline{d}}}{\longrightarrow} & \mathfrak{H}_{2} \\ & & & & \\ \pi \downarrow & & & & \\ \Gamma \backslash \mathfrak{H} \cong S(\mathbf{C}) & \stackrel{\mathfrak{O}_{\overline{d}}}{\longrightarrow} & \operatorname{Sp}(2, \mathbf{Z}) \backslash \mathfrak{H}_{2} \end{array}$$

### 4. Singular relations for period matrices

We recall some work of Humbert [7] on singular relations. A point  $\tau = \begin{pmatrix} \tau_1 & \tau_{12} \\ \tau_{12} & \tau_2 \end{pmatrix}$  of  $\mathfrak{H}_2$  is called to have a singular relation with invariant  $\Delta$ , if there exist relatively prime integers  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ ,  $\varepsilon \in \mathbb{Z}$  such that (c.f. [7]):

(14) 
$$\alpha \tau_1 + \beta \tau_{12} + \gamma \tau_2 + \delta(\tau_{12}^2 - \tau_1 \tau_2) + \varepsilon = 0,$$

(15) 
$$\Delta = \beta^2 - 4\alpha\gamma - 4\delta\varepsilon.$$

Define

$$N_{\Delta} = \{\tau \in \mathfrak{h}_2 | \tau \text{ has a singular relation with invariant } \Delta\}$$

and

 $H_{\mathcal{A}} := \text{ image of } N_{\mathcal{A}} \text{ under the canonical map } \mathfrak{H}_2 \longrightarrow \mathrm{Sp}(4, \mathbb{Z}) \setminus \mathfrak{H}_2.$ 

 $H_{\Delta}$  is called *the Humbert surface* of invariant  $\Delta$ . For  $\tau \in \mathfrak{H}_2$ , let  $L_{\tau}$  be the lattice in  $\mathbb{C}^2$  spanned by the columns of the matrix  $(1_2 \tau) = (p_1, \ldots, p_4)$ , and put  $A_{\tau} := \mathbb{C}^2/L_{\tau}$ . Then  $A_{\tau}$ , together with the standard Riemann form E on  $\mathbb{C}^2$  defined by  $E(p_h, p_k)=J$ , forms a principally polarized abelian surface. Let  $End(A_\tau)$  be the endomorphism algebra of  $A_\tau$ . Using the rational representation, it is expressed as

$$\operatorname{End}(\mathcal{A}_{\tau}) = \{ \phi \in M_2(C) | \exists M \in M_4(Z) \text{ s.t. } \phi(\tau \ 1_2) = (\tau \ 1_2) M \cdots (\ast) \}.$$

Writing  $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ , we see that the above condition (\*) is equivalent to  $\phi = \tau B + D, \ \phi \tau = \tau A + C \iff \tau B \tau + D \tau - \tau A - C = 0 \cdots (**)$ 

Let *E* be the Riemann form associated to the polarization  $\Theta$ . Then *E* defines an involution on End( $A_{\tau}$ ),  $\phi \mapsto \phi^{\circ}$ , called the Rosati involution, which is determined by  $E(\phi z, w) = E(z, \phi^{\circ} w)(\forall z, w \in C^2)$ . We have

$$\phi^{\circ} = \phi \qquad \Longleftrightarrow \qquad {}^{t}M \begin{pmatrix} 0 & 1_{2} \\ -1_{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1_{2} \\ -1_{2} & 0 \end{pmatrix} M$$
$$\iff \qquad A = {}^{t}D, B = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}, C = \begin{pmatrix} 0 & c \\ -c & 0 \end{pmatrix}$$

Put  $A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$ . Under the assumption  $\phi^\circ = \phi$ , it follows that

$$(**) \quad \iff \quad a_2 \tau_1 + (a_4 - a_1) \tau_{12} - a_3 \tau_2 + b(\tau_{12}^2 - \tau_1 \tau_2) + c = 0.$$

Then we have

$$\phi = \tau B + D = \begin{pmatrix} -b\tau_{12} + a_1 & b\tau_1 + a_3 \\ -b\tau_2 + a_2 & b\tau_{12} + a_4 \end{pmatrix}$$

and

$$Tr\phi = a_1 + a_4$$
  
det  $\phi = -b\{a_2\tau_1 + (a_4 - a_1)\tau_{12} - a_3\tau_2 + b(\tau_{12}^2 - \tau_1\tau_2)\} + a_1a_4 - a_2a_3$   
 $= a_1a_4 - a_2a_3 + bc.$ 

So the characteristic polynomial of  $\phi$  is

$$T^2 - (a_1 + a_4)T + (a_1a_4 - a_2a_3 + bc)$$

and its discriminant  $\varDelta$  is

$$\Delta := (a_1 + a_4)^2 - 4(a_1a_4 - a_2a_3 + b_c) = (a_4 - a_1)^2 - 4a_2(-a_3) - 4bc$$

Let  $O_{\Delta}$  be the order of discriminant  $\Delta$  in the real quadratic field  $Q(\sqrt{\Delta})$ . The above argument gives a simple proof of the following well known fact (cf. [7], [2]):

**Proposition 4.1.** End( $A_{\tau}$ ) contains  $O_{\Delta}$  optimally if and only if  $\tau \in H_{\Delta}$ .

#### 5. Invariants of QM points

Applying the results of §3 to those in §4, we can characterize the image of  $\Phi_{\pi}$ , by determining the singular relations satisfied by its points simultaneously.

**Theorem 5.1.** Let  $\Phi_{\vec{\eta}}: \mathfrak{H} \longrightarrow \mathfrak{H}_2$  be the modular embedding given by (13). Then  $\tau = \Phi_{\vec{\eta}}(z)$  satisfy simultaneously the following sinfgular relations parametrized by two independent integers  $x, y \in \mathbb{Z}$ :

(16) 
$$x\tau_1 + (x+2aDy)\tau_{12} - \frac{p-1}{4}x\tau_2 + y(\tau_{12}^2 - \tau_1\tau_2) + (a^2D - b)Dy = 0$$

where we put  $a^2D+1=pb$ . Moreover, if  $z \in \mathfrak{H}$  is not a CM point, then it has no other singular relation.

Proof. From (13), we easily have

$$\begin{pmatrix} \tau_1 \\ \tau_{12} \\ \tau_2 \\ \tau_{12}^2 - \tau_1 \tau_2 \\ 1 \end{pmatrix} = \frac{-1}{pz} \begin{pmatrix} \overline{\varepsilon}^2 & -\frac{(p-1)aD}{2} & -D\varepsilon^2 \\ -\overline{\varepsilon} & (p-1)aD & D\varepsilon \\ 1 & 2aD & -D \\ 2aD\overline{\varepsilon} & -(p-1)a^2D^2 - D & -2aD^2\varepsilon \\ 0 & -p & 0 \end{pmatrix} \begin{pmatrix} 1 \\ z \\ z^2 \end{pmatrix}.$$

Suppose first that z is not a CM point. Then from the above equality, we immediately see that (14) holds with  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ ,  $\varepsilon \in \mathbb{Z}$  if and only if

$$\begin{cases} \overline{\varepsilon}^2 \alpha - \overline{\varepsilon} \beta + \gamma + 2aD \overline{\varepsilon} \delta = 0, \\ \frac{(p-1)aD}{2} \alpha - (p-1)aD\beta - 2aD\gamma + ((p-1)a^2D^2 + D)\delta + p\varepsilon = 0. \end{cases}$$

Since 1,  $\overline{\varepsilon}$  are linearly independent over Q, we see from  $\overline{\varepsilon}^2 = \overline{\varepsilon} + \frac{p-1}{4}$  that the first equality is equivalent to

$$\alpha - \beta + 2aD\delta = 0, \frac{p-1}{4}\alpha + \gamma = 0,$$

and then from the second equality we obtain

$$\{pa^2D^2-D(a^2D+1)\}\delta-p\varepsilon=0.$$

Hence they are solved by two independent integers x, y:

$$a=x, \beta=x+2aDy, \gamma=-\frac{p-1}{4}x, \delta=y, \varepsilon=(a^2D-b)Dy.$$

This gives the relation (16), which are satisfied for any  $z \in \mathfrak{H}$  by continuity.

К. НАЅНІМОТО

 $\square$ 

The invariant  $\varDelta$  of the singular relation (16) is

which is an integral positive definite quadratic form in x, y, and its discriminant is

$$16a^2D^2 - 4pbD = -16D$$
,

which is independent of the choice of O,  $\rho$ . As a corollary, we obtain the following

**Theorem 5.2.** For a positive non-square integer  $\Delta$ , such that  $\Delta \equiv 1, 0 \pmod{4}$ , the following conditions are equivalent:

(i)  $\Delta$  is represented by the quadratic form  $\Delta(x, y)$  with relatively prime integers  $x, y \in \mathbb{Z}$ .

(ii) There exists an embedding  $\psi: \mathbf{O}_{\Delta} \to \mathcal{O}$ , such that  $\psi(\xi)^{\iota} = \psi(\xi) \quad \forall \xi \in \mathbf{O}_{\Delta}$ , and that  $\psi$  is optimal :  $\psi(\mathbf{Q}(\sqrt{\Delta})) \cap \mathcal{O} = \mathbf{O}_{\Delta}$ 

(iii) The image  $\Phi_{\pi}(S(C))$  of the Shimura curve is contained in the Humbert surface  $H_{d}$ .

Proof. Let x, y be integers such that  $\Delta(x, y) = px^2 + 4aDxy + 4bDy^2 = \Delta$ . To such pair (x, y) we associate

(18) 
$$\xi_{4} := -xe_{1} + 2xe_{2} + 2ye_{4} \in \mathcal{O}.$$

Then we have

(19) 
$$\begin{aligned} \xi_d^2 &= -\operatorname{Nr}(\xi_d) \\ &= p \Big( x + \frac{2aD}{p} y \Big)^2 + \frac{4D}{p} y^2 \\ &= \mathcal{A}(x, y). \end{aligned}$$

Moreover, one easily sees that  $\xi_{4}^{\prime} = \xi_{4}$ . Suppose first that  $\Delta \equiv 1 \pmod{4}$ . Then x is odd, and we see that  $(1+\xi_{4})/2 \in \mathcal{O}$ . Thus, putting  $\psi((1+\sqrt{\Delta})/2)=(1+\xi_{4})/2$ , we see that  $\psi$  gives the embedding of the order  $O_{4} = \mathbb{Z}[(1+\sqrt{\Delta})/2]$ . The converse assertion is clear from the above equality. Also we see from (19) that gcd(x, y)=1 if and only if  $\psi$  is optimal. Next suppose that  $\Delta = 4\Delta_{0}, \Delta_{0} \in \mathbb{Z}$ , hence  $x=2x_{0}$  is even. Then we see that the element

$$\eta_{A_0} := \frac{1}{2} \xi_A = -x_0 e_1 + 2x_0 e_2 + y e_4$$

is in  $\mathcal{O}$ , and satisfies  $\eta_{d_0}^2 = \Delta_0$ . So putting  $\psi(\sqrt{\Delta_0}) = \eta_{d_0}$ , we get the embedding of the order  $\mathbb{Z}[\sqrt{\Delta_0}]$  of discriminant  $\Delta$ . Again we have  $gcd(2x_0, y) = 1$  if and only if  $\psi$  is optimal This proves the equivalence of (i) and (ii). The rest of the assertion

follows from Proposition 4.1.

**Corollary 5.3.** The Shimura curve S attached to  $(\mathcal{O}, \iota_{\rho})$  is contained as a component of the intersection  $H_{d_1} \cap H_{d_2}$  of two Humbert surfaces, if and only if  $\Delta_1, \Delta_2$  are represented by  $\Delta(x, y)$  with relatively prime integers x, y.

EXAMPLE 5.4. The first two cases of maximal orders with smallest discriminants are:

 $D = D_0 = 2 \cdot 3, (p, a, b) = (5, 2, 5) : \Delta(x, y) = 5x^2 + 48xy + 120y^2$  $D = D_0 = 2 \cdot 5, (p, a, b) = (13, 3, 7) : \Delta(x, y) = 13x^2 + 120xy + 280y^2.$ 

The integers represented by  $\Delta(x, y)$  with relatively prime x, y are {5, 8, 12, 21, 29, ...}, {5, 8, 13, 28, 37, ...}, respectively. Thus we see that the Shimura curves for  $D=D_0=6$ , 10 are components of  $H_5 \cap H_8$  (see [5]).

Next we give some cases for which there are more than one equivalence classes of the modular embeddings, for maximal orders of fixed discriminant  $D=D_0$ , which shows that  $\Phi_{\bar{\tau}}(z)$  really depends on the choice of  $\rho$ .

EXAMPLE 5.5.  $D=D_0=2\cdot 13$ . The following two models give nonequivalent modular embeddings:

 $(p, a, b) = (5, 2, 21): \Delta(x, y) = 5x^2 + 208xy + 2184y^2,$  $(p, a, b) = (149, 19, 63): \Delta(x, y) = 149x^2 + 1976xy + 6552y^2.$ 

Indeed, the integers represented by  $\Delta(x, y)$  with relatively prime x, y are  $\{5, 21, 24, 28, 37, \ldots\}$ ,  $\{8, 13, 21, 45, 60, \ldots\}$ , respectively.

EXAMPLE 5.6.  $D=D_0=3\cdot 5$ . The following two models also give nonequivalent modular embeddings:

> $(p, a, b) = (13, 6, 97): \Delta(x, y) = 13x^2 + 840xy + 13580y^2,$  $(p, a, b) = (73, 5, 12): \Delta(x, y) = 73x^2 + 700xy + 1680y^2.$

The integers represented by  $\Delta(x, y)$  with relatively prime x, y are {5, 28, 33, 48, 73, ...}, {12, 13, 17, 33, 45, ...}, respectively.

Finally we prove the following :

**Proposition 5.7.** The quadratic form  $\Delta(x, y)$  represents a non-zero square over Q if and only if  $D_0=1$ , or equivalently,  $B \cong M_2(Q)$ .

Proof.  $\Delta(x, y)$  represents a non-zero square if and only if the ternary quadratic form  $F(x, y, z) := x^2 + 4Dy^2 - pz^2$  is isotropic over Q. By Minkowski-Hasse principle, this is equivalent to  $(-4D, p)_l = -1$  for all primes l. On the other hand, we have

 $\square$ 

$$(-4D, p)_i = -1 \iff l = p_i (1 \le i \le t).$$

This proves the assertion.

#### References

- [1] M. Eichler: Zur Zahlentheorie der Quaternionen-Algebren, J.reine angew. Math., 195 (1955), 127 -151.
- [2] G.v.d. Geer : Hilbert modular surface. Springer-Verlag, Berlin, Heidel-berg, 1988.
- [3] K. Hashimoto: Elliptic conjugacy classes of the Siegel modular group and unimodular hermitian forms over the ring of cyclotomic integers, J.Fac.Sci.Univ. of Tokyo, 33-1 (1986), 57-82.
- [4] K. Hashimoto: Base change of simple algebras and symmetric maximal orders of quaternion algebras, Memoirs of Sci. & Eng. Waseda Univ., 53 (1989) 21-45.
- [5] K. Hashimoto and N. Murabayashi: Shimura curves as intersections of Humbert surfaces and defining equations of QM-curves of genus two, Tohoku Math.J. 47 (1995), 271-296.
- [6] H. Hijikata : Explicit formula of the traces of the Hecke operators for  $\Gamma_0(N)$ , J.Math.Soc.Japan 26(1974), 56-82.
- [7] G. Humbert : Sur les fonctions abeliennes singulieres, (Oeuvres de G. Humbert 2, pub. par les soins de Pierre Humbert et de Gaston Julia, Paris, Gauthier-Villars, 1936, 297-401.
- [8] T. Ibukiyama: On maximal orders of division quaternion algebras over the rational number field with certain optimal embeddings, Nagoya Math. J. 88 (1982), 181-195.
- [9] B.W. Jordan : On the Diophantine Arithmetic of Shimura Curves, Thesis, Harvard Univ. (1981)
- [10] D. Mumford : Abelian varieties. Oxford University Press, London, 1970.
- [11] I. Satake: Algebraic structures of symmetric domains, Publ. Math. Soc. Japan 14 (1980)
- [12] G. Shimura: On the zeta-functions of the algebraic curves uniformized by certain automorphic functions, J. Math. Soc. Japan, 13 (1961) 275-331.
- [13] G. Shimura : Construction of class fields and zetafunctions of algebraic curves. Ann. of Math. 85 (1967), 58-159.
- [14] G. Shimura: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan 11 (1971)
- [15] M.F. Vigneras: Arithmetique des Algebres de Quaternions, Lecture Notes in Math. 800, Springer (1980).

Department of Mathematics Waseda University 3-4-1, Okubo Shinjuku-ku Tokyo, 169 Japan