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Introduction

In 1925, R. Nevalinnna established the second main theorem for mero-
morphis functions on the complex plane C and developed the value distribu-
tion thoery. His theory was extended by many authors. In particular, H.
Cartan proved the second main theorem for holomorphic mpas from C to the
complex projective space P"(C) (cf., e.g., S. Lang [7]). And J. Noguchi [9]
studied holomorphic maps from C to algebraic verieties and showed a version
of second main theorem for these maps. Nevanlinna’s lemma on the logarith-
mic derivative plays a crucial role in these theory.

On the other hand R. Nevanlinna also gave the second main theorem on a
disk of finite radius (cf., e.g., W. Hayman [5]).

In this paper we shall study holomorphic maps from a disk of finite radius
into an algebraic variety and derive a version of the second main theorem.

Let V be a nonsingular projective algebraic variety and = an effective divisor
of simply normal crossing. Let Q be a Kahler form on V and A(R) the disk of
C around the origin with radius R. In this paper, we assume that R is greater
than 1 for technical reasons. Let us denote by T'(r) and N /(r, =) the charac-
tearistic function of f relative to Q and the counting function for = without
multiplicities (see §1) respectively. Suppose that V-3 satisfy condition (4) in
§1; namely, there exists a system of logarithmic 1-forms {w;} ] along = such
that o; A" A @; A+ A w,4; are linearly independent over C, where n is the
dimension of V. 4 holomorphic map f: A(R)—V is by definition degenerate with
respect to {w;} 71 if the image f(A(R)—f~(=)) is contained in a subvariety

{xeV-3: g a( A A ;A A\ ©npy); = O}

with (ay, ***, @y41)F(0, -+, 0) (¢;€C). Then the main theorem of this paper is
stated as follows.

Theorem A. Let V, S and {w}}ti be as above. Let f: A(R)—V be a
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holomorphic map which is nondegenerate with respect to {w;}iti. Then

1
S0, M

€T/ <N ,(r, %)+ 0(log* T (1)) +O(log
where k is a constant independent of r and f. Furthermore if f is of finite order,
then

1
R—r

KT r) <N (r, £)+O(log ——)+0(1), (1)

Throughout this paper we shall write, @(r)<¢(r)|| when o(r) <$(r) except
on an open set E with [z(R—r)"'dr<<co. As applications of Theorem 4, we
shall prove the following two results.

Theorem B. Under the same assumptions as in Theorem A, if
R _
S N (t, =) (R—t)*! di< oo
I
for a positive number u, then the holomorphic map f is of finite order and

SP T (t) (R—t)* dt < oo
I
holds.

Corollary C. Let V, S, {o;}i] and f be as in Theorem A, and let supp
f*=={ay, a5, --:}. Suppose that

> (R— la;| 1 <oo (A>0).
Then for any effective divisor D such that f(A(R))d supp D, we have
SR |} H<eo,
where f*D—b,+b,+ .

We remark that when V=PYC), Theorem B and Corollary C are well
known (cf., e.g., [17] P. 140, [13] P. 104).

In §1 we recall some definitions and known results. §2 is devoted to the
extension of Nevanlinna’s lemma on the logarithmic derivative. Theorem A4
(resp. Theorem B and Corollary C) will be proved in §3 (resp. §4). In §5,
we shall discuss holomorphic maps from A(R) into an algebraic variety with
bounded charactaristic functions.

I would like to thank Professor S. Murakami for his encouragement, Pro-
fessor J. Noguchi for his guidance in preparing this paper and Professor A.
Kasue for his reading the manuscript of this paper.
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1. Preliminaries

(1) We call a meromorphic 1-form » a logarithmic 1-form along 3 if
any point acV we can take a holomorphic coordinate system U, (xy, -, x,)
around a such that {x,:--x,=0}==N U (k<n) and

o = ay(x) =2 dx‘ +-+a k(x)—k+77 on U,

where a,(x), :--, a;(x) are holomorphic functions on U and 7 is a holomorphic 1-
form on U. Let H°(V, Qy(log =)) be the vector space of logarithmic 1-forms
along 3 on V. An element of H°(V, Qy(log X)) is d-closed on V-X and

dim H(V, Qy)+dim H(V, Qy(log =)) = dim H(V—3,C)

where Q} denotes the sheaf of germs of holomorphic 1-forms (see Delgine [2]).
We assume the following condition (4):

(A) “Three exists a system {o;} 71 of n+1 logarithmic 1-forms w; in H®
(V, Qy(log X)) such that the n-forms

oA A ;N\ N\ Oniy (=1, ntl)
are linearly independent over C, where 7 is the dimension of V.”
A holomorphic map f: A(R)—V is by definition degenerate with respect to
{o;} 751 if the image f(A(R)—f~}(=)) is contained in a subvariety
xeV—3: 'ga;(wl/\-"/\ BiA A @par)e = O},

where (a;, -+, a,4,)F (0, -+, 0) (;&C). TIf f is degenerate with respect to
{o;} 121, then f(A(R)) is cotained in the support of an element of the complete

i=ly

linear system | K,+3|.

(2) We denote by supp D the support of a divisor D on A(R) or V. For
an effect,ve divisor D on V such that f(A(R))Esupp D we denote by n,(t, D)
the sum of orders of the divisor f¥*D N A(¢). We define # (¢, D) the number of
points of supp f*D in A(). We denote 740, D) the order of f*D at 0 and
#1,(0, D) the order of supp f*D at 0. Set

N,(r, D) = S {n(t, D)—n,(0, D)} ¢ +n,(0 D)logr,
N r, D) = g {7(t, D)~ (0, D)} ——l—n,(O D)logr.

(3) For a meromorphic function & in A(R) we write
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m(r, a) = 2—1” S:’ log* | ce(re’®) | 46 ,
N(r,a)= S; {n(r, a)—n(0, @)} ‘%-{—n(o, a)logr,

where log*|a| =max {log ||, 0}, and n(¢, @) denotes the number of poles of
o in A() with counting multiplicities and 7(0, ) the order of o at 0. We also
set

T(r,a)=m(r,a)+N(r, a).

(4) Let f be a holomorphic map from A(R) to V. The characteristic
function T'(r) of f relative to Q is defined by

1,0 = L, .

Ar)

We say that f is of finite order A [0, o) if

and of infinite order if

limsup M = 00 ,
r>R

log

R—r

We note that f is of finite order \ if and only if
R oo (for pw<<A)
Ty(t) (R—t)*1dt =
Sx /) ) {ﬁnite (for w>2n).

(5) Let [D]—V be the line bundle over ¥ defined by a divisor D on V.
Let ¥ ¢ ([D]) be the first Chern form defined by a fiber metric ||+|| in [D] and
take a section o €T (V, [D]) such that o defines the divisor D and ||o||<1, then
the first main theorem says that

T4(r, ei([D])) = N(r, D)+m,(r, D)+0O(1),

where T(r, c,([D])):S; th SM e

and myir, D) = [ " log (l(oof) (eI do

(cf., e.g., Shabat [16], p.61). Since Q is positive definite and ¥ is compact,
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there exists a constant X >0 such that
(1.1) Ty(r, ci([DD)SK Ty(7) .

Let R(V) be the field of rational functions over V and {¢,, :*-, ¢,} the generators
of R(V) such that each f*¢; is defined. Put

T (r) = max {T(r, f*¢,)} -
Then we have
(12) B’ T,()+0()< T (0 <B T,()+0(1),
where B and B’ are positive constants (cf., [12]).

(6) Let ¥V and = be as in Theorem 4. We denote by MM¥(Z) the sheaf of
germs of non-zero meromorphic functions whose zeros and poles are contained
in 3, and HYV, Ay(log =)) the Z module of meromorphic closed 1-forms whose
germs concide with d log § where {€MMF(Z). Let Z,(i=1,2, ---) be the irre-
ducible components of = and 3. the seto of regular points of . For each poiat
of 3N'=; we can take a neighborhood U and a holomrorphic coordinate system
(%, +*+, %,) such that {#,=0} =3, N U. Then every seation w in H°(V, Wy (log X))
is written in U as

dx.
W = V; _1+77 ’
%

where »; is an integer and 75 is a holomorphic 1-form. The integer »; is inde-
pendent of the choice of a local coordinate system (xy, -+, x,). Since ;N S is
connected ; is constant on 3;NS. We define the residue of & on 3;N3. by

res (o, 2;) = v; .
Thus we get a divisor D=3, res (o, 3;) %;.

(7) Proposition. There exists a basis {w;} of the vector space HY(V, Qy
(log %)) over C such that every w; ts an element of HY(V, Uy (log =))

Proof. See Iitaka [6] Sections 2~+4.

(8) Ochai’s theorem (cf., [14], [9].). Suppose that there exists a system
{w:} 11} of logarithmic 1-forms on V satisfying (A). Let f be a holomorphic map
from A(R) to V which is non-degenerate with respect to {w;}iti. Then for every
rational function pER(V) such that f*¢ is defined, the meromorphic function f*¢
is algebraic over the field generated by {£P: 0<k<n—1, 1<i<n+1}, where §; is
defined by f*w;=&; dz and £ denotes tne k-the derivative of §;.
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(9) Proposition. Let F be a meromorphic function on A(R) and A;
(1=0, -+, 1) holomorphic functions on A(R) such that A,%=0 and

Ay F 4+ A, F' 7 44, F+4,=10.
Then
T, F)< 3 T(r, 4)+0(1) .

Proof. See Noguchi-Ochiai [12] Lemma (6.1.5).

2. A generalization of Nevanlinna’s lemma on logarithmic deri-
vative

In this section we give a generalization of Nevanlinna’s lemma on logarith-
mic derivative.

Lemma 2.1. Let ¢(r) be a positive valued C* function with non-negative
derivatives on [0, R). Then

PV < = I

Proof. Suppose that @®(r)/(@(r))*>(R—r)™* for a subset E of [0, R).
Then

S & < P01 g
EADLR) R—r  JEnO,R) (¢(r))2
<[ (P F<a(1)™. QE.D.

Let V, =, and f be as in Theorem A, and let 3; denote the irreducible
components of 3 . For an element » of H°(V, Ay(log 3)) we set f*o={(2) d=.
Then £(<) is a meromorphic function with poles of order one and their residues
are integers. Set

G(z) = So Ffo (mod. 27i), g(z) = exp(G(2)).

By the same arguments as in [9: lemma 2.2] we get the following

Lemma 2.2. There exists constants K(>0), A and B such that
1\ d 2
T(r, 9)<K {(5) L T+ AV "+ T/} +B.

Next we shall prove

Main lemma 2.3. Let f, w and § be as above. Then
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1
R—r
Furthermore, if f is a map of finite order, then { is of finite order and

1
R—r

m(r, £)< O(log*T(r))+ O(log ———)+O(1) .

m(r, §)<O(log )+0(1).

Proof. Applying Lemma 2.2 and the classical Nevanlinna’s lemma on
the logarithmic derivative to {(z), we have

m(r’ C) = m(r, g(l)/g)

<O(log* T(r, §))+O(log

R—r
<O(log" (K {(2) ™ (r 4 T(r)-+ A+ T ()} +B))

1
R—r

)+0) Il
(2.3.1)

+O(log )+OM) .

It follows from Lemma 2.1 and (2.3.1) that

1
R—r

m(r, £)<O(log™ T 4(r))4-O(log +O01) |l .

This is the first part of the lemma.
By Lemma 2.1 the inequality

d -

L =T F R
holds except for a disjoint union E=U; I; of intervals I;=(aj, b;) such that
Se(R—7)"Ydr=M<co. We define ' by

r=r if r&E,
rl - b" if rEIJ = (aj, bl) .

Then
r (i Tf) (n<r' (dir T,) ()< R(T,r"))? (R—1")

dr
R—r \2+2 1 \2+2
<RR—r') <R ( ) ) ,
( ) R—7r’ <R—r

where p is the order of f.  On the other hand,

" dt S dt _
Sr R—tS ER—t <

and hence
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Therefore we obtain

r (gr‘ Tf) (r)<R ®+M (ﬁl__ )2M-+z -

—T

Since f is of finite order, it follows from Lemma 2.2 that g is also of finite order.
Hence by the classical Nevanlinna’s lemma on logarithmic derivative, we get

m(r, £) = m(r, g”/g)<O(log 1) +0(D).
Moreover
N(r, §)<N ((r, Z)SN(r, Z) = O(T((r)) -
It follows that N(r, {) is of finite order. Therefore { is of finite order. Q.E.D.

For the sake of convenience we use the following notation:
1
$(r) = O(log" T, (")+0(log z)1+0(1) |
if f is of infinite order, and
1
SA(r) = O(log —)+0(1
) = Olog =1)+0(1)
if f is of finite order.
Corollary 2.4. Let § and § bs as above. Then
T(r, §)<N (r, D)+S/(r),
where D =3, |res(w, =) |3;.

Proof. Sinse & has a pole at 2 only if f(2) belongs to supp D and every pole
of & has order one, we have

N, L‘)SNf(r, D).
Hence our assertion follows from Main lemma 2.3. Q.E.D.

Corollary 2.5. Let o be an element of H(V, Qy(log 3)) and put f*o=
§(2)dz. Then

T(r, ) SN ((r, 2)+S/r) .

Proof. By the proposition of Section 1 (7) there exist



HoromorpHIC MAPs FROM THS Disk 631
w; €H(V, Ay(log =)
and ¢;€C (j=1, --+, g) such that
O = ¢ o+ w10,
We set f*w;={;(2) d2. Then
= b+ bt t,.
By Main lemma 2.3 we obtain
m(r, )< 3 m(r, L) +0(1) = S/0) .
Since any pole of { is of order one and ¢ has a pole at z only if f(z) belongs to
supp =, We have
N(r, L‘)slvf(r, 3).
Hence we ha have
T(r, 5) <M ((r, Z)+S,(7) . Q.E.D.

RemARk. Using the same idea as in Noguchi [11: p. 224, Remark (1)], we ob-
tain from Corollary 2.5 the classical Nevanlinna’s second main theorem for
meromorphic functions on A(R).

3. Proof of Thorem A.

We keep the same notation as in Theorem A. Let {; be the meromorphic
function on A(R) defined by f*w;={; dz. Applying the classical Nevanlinna’s
lemma on logarithmic derivative to k-th derivative of §; we have

T(r, E)< (k+1) T(r, £)+0(log* T(r, £7)
(3-1) +0(log =) +OM)II.

Moreover, combining Corollary 2.5 with the first main theorem and (1.1) we
have

log* T'(r, £;)<log* N /(r, =)+log* S,(r)+0O(1)
<log* T(r, [E)+S,1)+0(1)
<O(log* T/r)+S,r)+0(1)
= O(log" T(r)+0(log Z1)+0(1).

This inequality and (3.1) imply
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T(r, §P)<(k+1) T(r, £)+0(log" T(r))

+0(log 1 )+OM) I

Hence by Coroallary 2.5
T(r, EM) <K (k+1) N y(r, Z)+O(log* T((r))

+0(log = )+O()|I.

(3.2)

Let {$;} j-1,..; be a system of generators of the rational function field R(V) over
C such that f*¢; are defined. Then by the Ochiai’s theorrm (§1(8)) there
are algebraic relations

(3-3) (F*)" 1+ Ru(EP) (f*by)m7 4+ Ry (8°) = O

j=1, ---, 1 where R; (") are rational functions of £ k=0, ---,n—1,i=1, -+,
n+1. By making use of [10] we see that there is a positive constant K inde-
pendent of 7 and f such that

T(r, f*$;) <K N ((r, 2)+0(log" T (1))

+0(log =2 )+0(M) |

for allj. 'Thus we have
T, = max T'(r, f*¢;)
(34) <K N/(r,Z)+O0(log*T(r))

+0 log = )+O()II.

Inequalities (1.2) and (3.4) yield the inequality (I). This completes the first
part of Theorem 4. By the assumption that f is of finite order, and by Lemma
2.3 we see that {; is of finite order. Then by the classical Nevanlinna’s lemma
on logarithmic derivative, we have

T(r, §¥)<(k+1) T(r, )+ O(log -, o).

R—
And by the same arguments as in the first part of Theorem A we obtain

1
R—r

Thus inequalities (1.2) and (3.5) yield the inequality (II). Q.E.D.

(3.5) T (r)<K N ;(r, =)+O(log

)+0(1).

4. Proof of Theorem B and Corollary C

Proof of Theorem B. Without loss of generality we may assume 7'(r)— oo
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as 7—>R. We shall prove that f is of finite order. By the assumption, we have
N ( 2) O( ( 1 )l’-+1
7, = s ’
s )

and hence by Theorem A we get

1
R—r

+ M, log

B+1
WS (5) -+ log T )

1
R—r

+M3 ” ’

where L,, M,, M, and M, are constants. On the other hand, there exists a
constant & (>0) such that

rx—M, log* x>8x

for sufficiently large x. Therefore

1

M.
R—r + M

B+l
8T,(r)£L1( ) My log

1
R—r

except the countable disjoint union of open intervals E= U ; I; such that

dr
=M, .
SE R—r e

We define ' as follow
r=r if r&E
r':—b, if TEIJ= (a,, bj).

Then we see that

5 T,()<8 T)<L (- )““ M, log—t M
1(N<8 Ty(r)<L, R—y +M, OgR—r'+ 3.
Moreover, since
” o dt 1 1
M>S _ar 1 :
=), R—¢ o8 R—7r’ ogR—r
we obtain
RT <exp (M).
—r

Therefore we get

1
R—r

1

—r

+M6 ’

B4l
8 T/ <Ly exp (u+1) Mo) (=) +Mlog
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where M; is a constant. Hence f is a map of finite order. Therefore it follows
from Theorem A4 that

+M,,

k T, <N (r, )+, 1ogR1 -

where M,, M, are constants. 'Therefore
R R _
of Ty R—ty < N0 3) Rty ar
! — (R 1 ! — (R
1M, S log —— (R—#)*! dt+ M, S (R—t)*-1dt .
1 R—t 1
On the other, hand by the assumption
R __
Sl N (t, 5) (R—t)* 1 dt<oo ,
we obtain
SR T(t) (R—t)* dt<oo . Q.ED.
1

Proof of Corollary C. This is an immediate consequence of Thoerem B
and the following

Lemma 4.1. Let p be a positive number and D an effective divisor on V
which satisfies f(A(R))d supp D, Then for supp f*D={a,, a,, as, -*:},

Sl N [, D) (R—t)*1 dt

Sl 7i,(t, D) (R—1)*dt, and
> (R—|a| )+

1<|a,l<r
are convergeni or divergent at the same time as r—R.

Proof. The same argument as in Shimizu [17] (p.107) can be applied for
this case.

RemArRk If g(2)=exp % then
—2

1 —
1—r

lim log T'(r, g)/log 0,
r>1
and

lim log log M(r, g)/log IL =1,
r>1 —7r
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where M (r, g)=1'\/{ax | g(2)].

5. Holomorphic maps of bounded characteristic functions

In this section we study holomorphic maps from the unit disk to an alge-
braic variety with T/(r)=0O(1). Here we shall prove some analogous result to
the classical Fatou’s and Blaschke’s theorems concerning bounded holomorphic
functions on the unit disk.

Let f be a holomorphic Map from A(R) to a nonsinglar algebraic variety
V and Q a Kihler form on V.

Proposition 5.1. Suppose that (Zdr’ T,)(r)=0(1) as r—R. Then the

length of a curve of the image of {te’®; 0<t<<R} by f with respect to the Hermitian
metric h determined by Q is finite for almost all 9, i.e.

lim S (s(te®) 2 dt  (s(2) dzdz = f*h)
>R Jo
is finite for almost all 4.

Proof. By Schwarz’s inequality
2% r o r 2 pr
S (S (s (e )2 diy? doss (rS s(te) dt) dGSRs S s(te'%) dtdo
0 0 0 0 0 []
2 o7 2 01
SRS Ss(te“’) tdtd0+RS Ss(te"’) dtdo
[} 0 0 0
_(d
_r(d_r Tf)(r)-R—}—B-R
2¢ 1 .
(B—_—S Sos(te“’) dtdg) .
1

Hence we get using the assumption

r>R

2% r
limS ( S (s ()2 dt) d < oo .
0 1
Therefore we see
S" (lim S (s ()2 diy dO < oo .
[} >R JO
Thus
: § i0)\1/2
lim So(s(te V2 d

are finite for almost all 4. Q.E.D.

Before showing a Blaschke-type theorem we need a lemma (cf.,e.g., Shimizu
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[17] p.107).
Lemma 5.2. Let D betan effective divisor on V with f(A(R))dsupp D.
Then for f*D=a,~+a,++--

N/r, D), S; n(t,D)dt, and 3 (R—|a)

are convergent or divergent at the same time as r—R.

Theorem 5.3. Suppose that T,(r)=O(1) as r—R Then for any effective
divisor D on V which satisfies f(A(R))d supp D we have

(5.3.1) N/r,D)=0(1) (r—R)
(5.3.2) n,(r, D) = o0 (er> (r— R)
(53.3) = R-la)<e,

where f*D=a,+a,++--.

Proof. By the first main theorem and (1.1) we obtain (5.3.1). and from
Lemma 5.2, we have

[ ntt, D)y dt<o
1

Since n(t, D) is non-decreasing (5.3.2) holds. Moreover by Lemma 5.2 we
obtain (5.3.3). Q.E.D.

Finally we shall given an example related to the above results. W. Rudin
[15] gave an example of a holomorphic map from A(1) to A(1) with

Sl | fO(re®) |dr = oo for almost all 4 .
[}

this map is an example such that

[FAreenl g
SERy I

for almost all . This map has the property r <£ Tf> (r)—>occ as r—1. But
clearly Ty(r)=0O(1) as r — 1. dr
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