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New Interaction Equation for Plate Buckling

Yukio UEDA *, Sherif M.H. RASHED ** and Jeom Kee PAIK ***

Abstract

This paper is concerned with proposal of an accurate elastic buckling interaction equation for simply supported
rectangular plates subjected to five load components such as compression and bending in two directions and shear. In
order to construct this interaction, data on buckling strength of plate under two load components partly calculated in the
present study and partly obtained from existing ones are first taken, and then buckling interaction relationships for any
two load components are developed. Based on these relationships, the new buckling interaction equation for five load
components is theoretically derived. Assessment of accuracy is performed and it is found that the proposed equation has
sufficient accuracy for practical designs. Some comparisons are also made with the interactions proposed by Lloyd’s
Register and Det Norske Veritas. The result indicates that the new interaction equation proposed in this paper yields

better accuracy in safety side.

KEY WORDS:

1. Introduction

Such many plate structures as ships are composed of
plate elements, which may sustain mainly in-plane loads
and therefore are designed to have sufficient in-plane stif-
fness and strength.

In these structures, plate buckling is one of the most
important design criteria and buckling load may usually
be obtained as an eigen-value solution of the governing
equations for the plate. However, in many cases, it is very
difficult to gain an exact solution for such complicated
buckled shape as under any combinations of loading and
different boundary condition. Even approximate solutions
tend to require a considerable analytical and/or numerical
efforts.

To estimate buckling strength for practical design,
simple and accurate buckling interaction equations are of
great interest to designers, and therefore, charts or simpli-
fied equations based on these solutions, included in many
handbooksl), have been proposed. However, from the
viewpoint of safety, high level accuracy has also been
required in evaluation of buckling strength in the design
stage.

In this paper, a new and accurate elastic buckling inter-
action equation is proposed for simply supported rectan-

(Elastic Buckling) (Rectangular Plate) (Buckling Interaction Equation)

gular plates subjected to combined five load components
such as compression and bending in two directions and
shear.

In order to construct this interaction, buckling strengths
are evaluated by using the incremental Galerkin method?).
and the finite element method in addition to the existing
data, and then buckling interaction relationships under
each combination of any two load components are
developed.

Assessment of the accuracy is carried out making some
comparisions with an interaction equation proposed
recently by Lloyd’s Register” and a design procedure

proposed by Det Norske Veritas®).

2. Methods Used in Evaluation of Plate Bucking Strength

Many different methods are available to evaluate the
buckling strength of rectangular plate. Theories behind
the methods can be found in many textbooks. In this
section, ordinary formulations which were used partly for
the existing data and partly for non-existing data, and
newly developed methods used for cases of non-existing
data are outlined.

2.1 Closed form solution by the energy method®)
In this method, the principle of minimum potential
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energy is used. When a rectangular plate under in-plane
loads as shown in Fig. 1, buckles, total potential energy
I1 due to lateral deflection w may be obtained as follows;

n=U-v (1)
where
U = strain energy stored in the plate due to buckling
deformation
D aw ) *w
=f[— +2(1 - ?
IS (G P +20 -9 GG

’w_ 0w 0w
+2 + 2 1dxd
W )G+ ()" Vdxdy
V = loss of potential -energy of external loads due to
buckling deformation

a a %)
=g o 2
+0, (—?%)2 | dxdy

Et3
12(1 —v?)°
ness, £ =modulus of elasticity and also o, 0, and 7
(= 7xy) are stresses loaded at plate edges as shown in Fig.
1. It is the entire volume of the plate that should be
integrated by the above-equation. The principle of mini-
mum potential energy gives the following buckling
criterion;

and D= v = Poisson’s ratio, ¢ = plate thick-

§I=0 )

For simply supported rectangular plates, the follow-
ing deflection function which is the form of a Fourier
series may be assumed,;

nm

o o omn
w=2 X A,,,sin—xsin—y 3)
m=1 n=1 a b
M
T ]
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Fig. 1 Simply supported rectangular plate and applied loads
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where
a,b = length and breadth of the plate, respectively
A, = coefficients

After substituting Eq.(3) into Eq.(2) and integrating it,
the buckling load is determined from the following

stationary condition, which represents simultaneous
equations.
al 0 ( 1 ) 2%
= m , n = ~ o0
04,1, 2%)

If the assumed deflection function is the exact one, the
final solution is the same as one obtained from the solu-
tion of the differential equation. However, in general, it is
very difficult to solve the homogeneous equation Eq.(2%)
analytically. Therefore, numerical procedures are usually
applied. ‘

2.2 Incremental Galerkin method?)

When buckling load as an eigen-value is calculated by
the previous method, it is generally necessary to take a
large number of terms of the assumed deflection function
in order to gain sufficient accuracy for such complicated
shape of buckling as with shear buckling.

As for numerical techniques, they also require con-
siderable computing time. These problems may also occur
when post-buckling behaviour of plates with initial
deflections is analyzed.

From the above viewpoints, the authors have develop-
ed the incremental Galerkin’s method for analysis of large
deflection behaviour of simply supported rectangular
plates under in-plane loads. In this paper, this method is
applied to establish non-exsisting data of buckling
strength.

Large deflection theory of plates with initial deflection
in the elastic range is governed by the following funda-
mental equilibrium and compatibility equations;

r OPF 3 (wtwg) | OPF 9% (wtwo)

P4y =—0
Ve o axr oy’
%2F *(w+
_ " (wtwo) @)
0x9y oxoy
é a2 aZ 82 82
pap=E (o OWIW ) O w O W,
0xoy ox* oy 0xdy 0xoy
9%we Zw  3%w 3w
= = a ] ®)
ox*“ ody ox* oy

where, F is a stress function satisfying the following
relationships;

_0*F _9*F _ °F
02 2% T a2 T T T axay
and w = deflection due to external load, wy = initial
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deflection.

Equations (4) and (5) are nonlinear partial differential
equations with regard to F and w, so that it is very dif-
ficult to solve the above equations directly when the plate
buckles with complicated buckling shape.

Therefore, the fundamental equations are linearized by
the incremental technique, as follows:

At the (n)th step of load increments, deflection and
stress function may be expressed as follows;

w=w'"14+Aw

F=F""11+AF 6)

where,

w, F = total deflection and stress function for loading
from zero to the (n)th step of load increments,
respectively

w” 1 F"~1 =total deflection and stress function for
loading from zero to the (n—1)th step of load in-
crements, respectively

Aw, AF =increments of deflection and stress func-
tion due to load increment in the (n)th loading
step, respectively.

Substituting Eq.(6) into Egs.(4) and (5), and neglect-
ing the terms of Aw and AF of higher order than the 2nd
order which are negligible when increment of load and
deflection is very small, the following fundamental equa-
tions which are linear in an interval of a load increment
are obtained:

t 02AF 932 32AF 3%w
P aw) = [ e S SO T
D " oy ox ox oy
2F" 1 92Aw  9PF"! 9%Aw
+ +
0y? ox? ox? oy?
OPAF 3wy 0 F™! 32Aw
oxdy xdy oxdy  0xoy
(7)
2wy 32Aw  lwp 3*AwW -
PA(AF)=E [2 —F -
(AF) [ dxdy Axdy I
%w, 32Aw
7] 8)
ox oy

where,
wr=w"l4w,

Assuming Aw = Z ZAA,,, P, (x)-¥,(») as a deflec-
tion function which satisfies the boundary conditions
and substituting this assumed deflection function into
Eq.(8), AF can be expressed as a function of Aw. After
substituting this obtained AF and AW into Eq.(7), Aw
and AF can be obtained without difficulty by the
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Galerkin method. Ultimately, w and F are calculated as
follows;

n

w= 2 Aw;
=1
n

F= 3 AF,
=1

From the above, for simply supported rectangular
plates with initial deflections, it may be assumed that
shapes of deflection due to loading and initial deflection
are;

nm

mm
w= Z ZA,,, sin— x sin—y (9.a)
m n a b
wo =2 Z Agmn Sin T+ sin ﬂy (9.b)
m n a b
and the boundary conditions are;
9w 22
w=0,a7+v 3 vzv =0 atx=0,qa
Y (10.2)
0, 2% 2 g ay=0p
w = . —_— = 3 ,
oy? Y ox? aty
fob oyxtdy =P,
fg oytdx =P,
8 oxtydy =M, (10.b)
fé’ oytxdx =M,
Tay=T J

In this analysis, buckling load is obtained not as an
eigen-value but as the load applied at the point when
deflection in a plate with very small initial deflection in-
creases rapidly as external load is applied incrementally.

The accuracy of the solution also depends on the
number of terms taken in deflection series in Eq.(9) and
how accurately they can express the buckling shape. How-
ever, much more terms may be taken in this method since
the linearized fundamental equation gives linear homo-
geneous equations that are solved directly without
difficulty.

Furthermore, buckling load can easily be evaluated
with good accuracy if small initial deflection is taken.

If a larger number of terms of deflection series are
taken, it converges from upper bound value to exact one.
2.3 Finite element method®

According to the theorem of minimum potential
energy mentioned in sec. 2.1, the fundamental equation
for determination of buckling load by FEM can be deriv-
ed: A rectangular plate is subdivided into finite elements
and deflection of the total plate due to buckling is ex-
pressed as an assembly of the deflection of each element;
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that is,

w= [Ab] {Wn} (11)

where,
[43] = shape function
{wy,, } = nodal displacement

After substituting Eq.(11) into Eq.(1), partial dif-
ferentiation with respect to the nodal displacements is
performed, leading to stationary conditions;

0=(Z [Kpp] +Z [K[]) (W} (12)

where,

[Kpp] = bending stiffness matrix of a finite element

[K;] = stability coefficient matrix of a finite element,

which is a linear function of stresses

Z = assembly of all elements

Equation (12) has a trivial solution {w,, } =0. Non-
trivial solution exists only if the following equation is
satisfied;

IZ[Kpp] +Z[K7]1=0 (13)

In the above procedure, when a combination of stresses
associated with [K;] is reached such that, Eq.(13) is
satisfied the buckling load is determined as an eigen-value.

The accuracy of buckling load determined by this
method depends on the assumed shape function, the
number of element and the complexity of the buckling
shape.

3. New Buckling Interaction Equation

In this paper, a simply supported rectangular plate
which has a, b and ¢ that are length, breadth and thickness
of the plate respectively, is considered as shown in Fig. 1.
When the plate is subjected to combined in-plane loads,
such as uniform compression and bending in two direc-
tions and uniform shear, a new buckling interaction equa-
tion is derived.

3.1 Buckling interaction equation for two load com-
ponents

As the first step for constructing a new interaction
equation, the interaction between each pair of load com-
ponents such as o, and g,,, 03, and 04y, etc.is considered.

Figure 2 to 11 represent these interaction relationships
for different values of aspect ratio of the plate. The x axis
can always be chosen parallel to the longer side of the
plate, so that g/b becomes greater than 1.0 and it is un-
necessary to consider plates with aspect ratio a/b smaller
than 1.0 in constructing interaction relationships.

Interaction relationships presented in Refs. 1, 5,7 and
8 are reproduced in these figures except Figs. 5 and 7,
which are constructed using the incremental Galerkin
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method, and Fig. 11, which is partly calculated by the
finite element method. The sources of these figures are
shown in Table 1.

Since the accuracy of these buckling loads expressed
by solid lines in Figs. 2 to 11 is sufficient, they are con-
sidered as reference solutions for comparison of accuracy
with buckling load obtained by different formulae.

The interaction equations formulated in this paper are
also plotted in Figs. 2 to 11. Subscript cr in the follow-
ing interaction equations means buckling strength of
plates under a single load (see appendix).

Table 1 Sources of elastic buckling interaction relationships
between different load components

Calculated by
Energy Method

Oy Ref. 7 Ref. 7

Calculated by
Shy Inc. Energy
Method & Ref.7

Calculated by
Refs. 5 and 7 | Inc. Energy
Method

Calculated by
Ref, 7 F.E.M. and
Ref. 7

T Ref. 7 Ref. 8

q, %y 1

(1) Biaxial compressions, 0, and o,

Figure 2 shows the buckling interaction relationships
of plates with different aspect ratios subjected to biaxial
compressions. These relations are obtained by the energy
method. Only one term of the deflection series, Eq.(3), in
each direction is necessary and the solution in this case is
exact.

The interaction relationship is represented by a straight
line for 1 < a/b <+/2, where buckling occurs in one-half
buckling wave. When a/b is greater than /2 the buckling
mode changes into multi-half buckling waves depending or
a/b and o, /0.

For any aspect ratio, /b, the number of half buckling
waves decreases as 0, /0, decreases until it reaches one-
half buckling wave for small values of 6,/0,,.

The interaction relationship in this case is represented
by a group of intersecting straight lines, as shown in Fig.
2. Each straight line corresponds to a buckling mode and
the intersection points (knuckles) indicate transition of
the buckling mode.

As a/b increases, the buckling interaction relationship
between o, and o, becomes more convex with more
knuckles on it, as shown in Fig. 2. This also implies that
the interaction between o, and o0, becomes less pro-
nounced. If o, and oy, are applied to a rectangular plate,
the exact solution may be used to represent the buckling
interaction relationship. However, a continuous equation
is preferable in order to derive an interaction equation for
general load components.
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0.8

. 0.6
1%
o>»
\>:
o
0.4 a/b=1.75
1<a/bs /2
0.2 F —— : Theoretical
——— : Eq. (18)
0 -l L ]
0 0.2 0.4 0.6 0.8 1.0
o'X/O‘XCY‘

Fig. 2 Buckling interaction between o, and o),

Although it is difficult to express accurately the exact
solution for all /b ratios by a single continuous equation,
the following equation gives a good, rather slightly con-
servative, approximation of the exact solution, as shown
by the dotted lines in Fig. 2.

o
(&_)a1+(_3’_)062_ 1=0 (14)
Oxcr Oycr
where,
o, =a, =1.0 1<B<V2
oy = 10 \/—2_<6<2

a; =1.1108 — 0.569

a, =0.4508+0.10

<
a, =0.1258 + 1.40 } 2<p=4
a; =0.2082 — 1.608 + 5.10

<
o, = —0.308+3.10 }4<’3 8
o =5.10
a, =0.70 }8<{5
B=a/b

(2) Longitudinal compression o, and longitudinal bend-
ing Opx

Figure 3 shows the buckling interaction relationships
of plates with different aspect ratios subjected to axial
compression o, in the x direction and in-plane bending
0px in the same direction. These relations are obtained
using the energy method. Although the solution in this
case is approximate (upper bound), it should be quite
accurate because only a few terms (2 or 3 terms) of
the deflection series are required for convergence.

As may be seen from Fig. 3, this relationship is insensi-
tive to the a/b ratios and may be represented accurately
by the following equation, which is also plotted by a
dotted line in the figure.

Oy/Oyer

0.2F ———: Theoretical
—~——: Eg. (15)
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0
%bx/Obxcr

Fig. 3 Buckling interaction between o, and oy

Ix 4 2pxy_1=9 (15)

Oxcr Opxcr

(3) Transverse compression o, and longitudinal bending
Opx

The buckling interaction relationships in this case are
also obtained by the energy method and presented in
Fig. 4. As in case (2), only a few terms of the deflec-
tion series are necessary to obtain convergence and the
solutions may be quite accurate. These relations are
well approximated by the following equation (see Fig. 4):

o
()% (e 1=0 (16)
Oycr O pxer

where,

o3 =0y =1.508-030 1<p<1.6

Oy/Oycy

———: Theoretical
———: Eq. (16) A
0 L 1 1 j
0 0.2 0.4 0.6 0.8 1.0

%bx/%bxcr

Fig. 4 Buckling interaction between oy, and opy
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ay = —0.6256+3.10
<3.
s =6.256 — 7.90 }r6<p<32
oz =1.1
=121 }3a<p

(4) Longitudinal compression o, and transverse bending
Opy

The buckling load for small a/b ratios may be calcu-
lated accurately using 3 terms of the deflection series. As
a/b increases, more terms would be necessary to obtain
accurate solutions by the energy method.

The buckling interaction relationships presented in
Fig. 5 for a/b =1 and 1.25 are calculated by the energy
method and those for a/b =3 and 5 by the incremental
Galerkin method using a larger number of terms of the
deflection series (7 to 11 terms).

1.0
\\ S
0.8} NN N ”
: N S
N ~
N ~
~ N
N 5 N
. 0.6 F AN
= 3 AN \
Red N N \
o QR A \
N A\ \
0.4 1.25<eR\ \
\
- Q
a/b=1 \\\ \
0.2 ) ——: Theoretical \\\ \
——-: Eq. (17) N \\
\Y
\
0 ] J 1 1
0 0.2 0.4 0.6 0.8 1.0
%py/Opycr

Fig. 5 Buckling interaction between o, and Opy

Convergence has been checked and ensured. These
solutions are believed to be highly accurate. For a/b
= oo the problem handies biaxial compressions since the
effect of the short boundaries vanishes. In this case, the
interaction relationship for biaxial compressions (Fig. 2) is
adopted.

The following equation yields a good approximation to
these relationships as may be seen in Fig. 5.

Ox

o
(== )%+ (—2=)% ~1=0 a7
Oxcr Opycr
where,
as =0.9308% — 2.8906 + 3.160
o =120 }1<p<2
as = 0.06682 — 0.2468 + 1.328
056:1.20 }2<B<5
as = 1.1178 — 3.837
ag = —0.1678 + 2.035 }s<p<s
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as =5.10 "
<
o =0.70 }8 b

(5) Transverse compression o, and transverse bending
Opy

The buckling shape in this case may be represented
accurately by a few terms of the deflection series. The
energy method is used with enough accuracy in deriving
the buckling interaction relationships for a/b =1, 1.25
and 5. These relationships are shown in Fig. 6.

When a/b approaches infinitely, 05, may be replaced
by transversely uniform compression as stated in (4). The
relationship between oy, and 0,,, becomes a straight line as
shown in Fig. 6.

The following equation yields a good approximation to
these relationships as may be seen in Fig. 6.

o
(=2 + (=2 )% —1=0 (18)
Oyer Opyer
where,
0q = 1.0
<8<
o= (140 65 L <B<TS
a;=1.0
o = 1.0 } 75<8

a/b Syl

0.2 b —: Theoretical
~——: Eq. (18)
0 1 1 1
0 0.2 0.4 0.6 0.8 1.0
°by/°bycr

Fig. 6 Buckling interaction between oy, and op,,

(6) Biaxial bendings 0, and oy,

The buckling shape associated with this load combina-
tion requires many terms of the deflection series in order
to obtain accurate solutions. It is not appropriate to use
the energy method in this case.

The interaction relationships presented in Fig. 7 are
obtained by the incremental Galerkin method using 9 to
22 terms of the deflection series with convergence check-
ed and ensured.
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under the influence of shear stress, require much more
terms of the solution series to obtain convergence spe-

cially for higher aspect ratios.

Solutions presented in these figures are obtained by the
energy method. They usually tend to be less accurate
than the cases of normal stresses. However, they are con-

sidered to have reasonable accuracy for practical purposes.

1.0
0.8 ®
5 0.6
2‘: Although available solutions do not cover the whole range
& of a/b ratios, they cover the more used range.
0.4 These relationships may be approximated reasonably
and rather conservatively by the following equations,
0.2} ——: Theoretical which are plotted in respective figures.
== B (19) The buckling interaction relationship between longi-
tudinal compression o, and uniform shear 7 is expressed
%0 0.2 0.4 0.6 0.8 1.0 as follows (see Fig. 8):
9by/bycr o, T B
Fig. 7 Buckling interaction between opy and opy, Oxe +( Tor Y —1=0 (20)
Y Xxcr
These relations may be well approximated by the fol- where,
lowing equation as may be seen in Fig. 7. a;; =—0.16082+1.0808+1.082 1<B<3.2
o ay; =2.90 32<8
o b
(=) 4 (——)%0 ~1=0 (19)
Obxer Obyer (8) Transverse compression g, and uniform shear 7
where, In the same manner as stated in (7), the buckling equa-
o9 =0.0508 + 1.080 } 1<p<3 tion between transverse compression ¢, and uniform
a0 =0.2688 — 1.248/8 +2.112 <Bs< shear 7 is expressed as (see Fig. 9) :
ag =0.1468% — 0.5338 + 1.515
Y f }3<p<s o i |
a0 =0.2688 — 1.248/8+2.112 +( Y2 _1=0 (21)
ag =3.208 — 13.50 } s<p<g Oyer Ter
a0 =—0.708 + 6.70 B= where,
o = 12.10 }e<p @, =0.108+1.90 1<B<2
a0 = 1.10 a5, =0.708+0.70 2<B<6
(7) Longitudinal compression o, and uniform shear T oy, =4.90 6<8
Figures 8 to 11 represent the buckling interaction
relationships between shear 7 and each of the other four (9) Longitudinal bending o, and uniform shear 7
load components considered in this paper. Solutions, As may be seen from Fig. 10, the interaction relation is
1.0 1.0]
0.8 0.8
. 0.6 _ 0.6
g &
6° >
0.4 0.4
0.2k —: Theoretical 0.2 —: Theoretical
’ ———: Eq. (20) -——: Eq. (21)
0 \ 1 1 1 0 1 L 1 1
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.
T/ Ter ©/Ter
Fig. 9 Buckling interaction between oy, and 7

Fig. 8 Buckling interaction between o, and 7
165
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1.0
0.8
5 0.6
x
DQ
~
=
D.D
0.4
0.2 : Theoretical
———: Eq. (22)
0 1 1 1 |
0 0.2 0.4 0.6 0.8 1.0

/Tep

Fig. 10 Buckling interaction between op, and 7

insensitive to the a/b ratio and may be approximated ac-
curately by the following equation, which is also plotted
in the figure.

T

Op
(=) +(
bxcr

Y_1=0 (22)

Ter

(10) Transverse bending oy, and uniform shear T

In case of transverse in-plane bending 04, and uniform
shear 7, which may be an important combination in design
of deep girder, a series of eigen value analysis for the plate
with a/b = 3 is carried out by the finite element method
to extend the available range of a/b ratio.

However, these relationships may be insensitive to a/b
ratio, and may be approximated resonably by the follow-
ing equation (see Fig. 11).

~<

0.8

5 0.6
=
g
<
OZ’ a/b=1.67

0.4 |

a/b=3
0.2 b ——: Theoretical
———: Eqg. (23)
0 L 1 1
0 0.2 0.4 0.6 0.8 1.0
/T

Fig. 11 Buckling interaction between opyand 7
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g by
( )+ (
Opyer Ter

Y _1=0 (23)

3.2 Buckling interaction for five load components

A general interaction relationship among the five load
components is derived on the basis of the interaction
relationships between two load components as presented
insec. 3.1.

At the first step, a set of two interaction relationships
between two load components are chosen so that one of

~ the load components is common in both relationships.

The two relationships are combined to obtain, a new
relationship among three load components.

By carrying on this procedure furthermore, the intera-
tion relationship among the five load components is
obtained.

In the following, the procedure for finding out the
interaction among five load components is presented in
detail.

(1) Interaction among three load components

Equations (14), (15) and (16) are respectively the
interactions between o, and 0y, 0, and 0, and o, and
Opx- Making combination of these relationships, an inter-
action relationship among three load components, o, gy
and oy, is first derived. Its schematic representation is
shown in Fig. 12.

Let’s consider the plate that buckles under these three
load components which are denoted by oy, 0, and o},
respectively.

When no transverse compression is applied oy, =0, the
interaction among 0y, 0, and o,,, corresponds to that
between o, and op,, Eq.(15). In this case, the critical
value 0¥ of the longitudinal compressive stress o, which
together with o, causes buckling of the plate may be
obtained by Eq.(15) as follows:

) %

X oxer

K _
Opy = const.

%%/ bxcr
Eq. (16)

_ bx
X %xer

Fig. 12 Combining buckling interaction equations
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0% = 0xer[1 '“(ng/abxcry] (24)

o¥ is represented by point 4 in the S, — M, plane in
Fig. 12. Similarly, when no longitudinal compression is
applied o, = 0, the transverse compressive stress 3 which
causes buckling of the plate may be obtained by Eq.(16).

O; = Uycr[ 1—(0%x/0pxer)™ ] 1es 25)

o} is represented by point B in the S, — My plane in
Fig. 12. It may be assumed that a similar relation to
that of Eq.(14) exists between o, and o0,, in any plane of
M, = 0py/Opxer = cOnstant.

Replacing oy, and 0, in Eq.(14) by o¥ and o} res-
pectively, the following buckling interaction relationship
among o, 0, and 0, may be obtained;

(0x/C10xer)™ +(0,/C20,,6)* —1 =0
where,

G =1- (abx/obxcr)’/Z

Gy = [l - (Obx/obxcr)a4 ] 1/

(26)

(2) Interaction among four load components

In a similar way, Eqs.(17), (18) and (19) may be com-
bined with Eq.(26) to obtain a relationship among oy, oy,
Opyx and oy, as follows:

Under any value of o}j which is smaller than oy,,,,
the longitudinal compression ¢%* which causes buckling
of the plate may be obtained by Eq.(17) when 0, = 04,
=0. »

0™ =0y [ 1 —(Og)ﬂj/abycr)a6 ] Les 27)

Under the same value of o}, the transverse compres-
sion 0%* which causes buckling of the plate may also be
obtained by Eq.(18) when o, = 0,, =0

ajvk* = Uycr [1 _(Uz;k/obycr)as ] e

Under the same value of o%;f, the longitudinal bending
o%¥ which causes buckling of the plate may be obtained
by Eq.(19) when 0, =0, =0 '

(28)

0?»2“ = Opxer [ 1 _(0?;;7abycr)&lo ] Ve (29)

o%*, 03* and o3 in the above equations are represent-
ed in Fig. 12.and they are substituted in 0y, 0, and
Opxer i Eq.(26), respectively.

Assuming that the relation among oy, 0y, and o, for
0}y = constant is similar to that for 64, = 0. The follow-
ing interaction relationship among oy, 0y, 05, and oy,
may be obtained by substituting o¥*, o}* and o} for
Oxcr» Oyer A0d Opye, in Eq.(26).

(Ox/C3 C4 Cxcr)a1 + (Uy/cs C6 O'ycr)o‘2 —-1=0 (30)

167

(367)

where,
C; =11 “(Oby/obyz:'r)a6 ] 1/es
C4 =1 _(Obx/c70bxcr)2
Cs =11 _(Uby/obycr)aB ] e
Co = [1—(0px/C70pxer) 1 1%
C, =11 —(Oby/gbycr)aw ] e

(3) Interaction among five load components

Finally, Eqgs.(20), (21), (22) and (23) are combined
with Eq.(30) as follows:

Under any constant value of uniform shear 7#** which
is smaller than 7., o%** which causes buckling of the
plate may be obtained by Eq.(20) when the other load
components vanish; '

OF** = Oygp [ 1 — (%% 1, )11

(31)

Similarly, o}**, of#* and of;* may be obtained by
Eqgs.(21), (22) and (23) repectively.

0;** = 0ycr[l —(T*¥*[1,,) %2 ] (32)
0% = Oy [1—(7%%%/7,,)7] 05 (33)
03;“* = Opyer [1 _(7'***/7'0;')2 ] 05 34)

Assuming that the interaction among oy, 0, 0, and
0py for any value of shear 7#%* = constant is similar to
that for 7 =0, the following interaction equation is ob-
tained by substituting o¥**, o}¥*, o}¥* and of}* for
Oxcrs Oyers Opxer a0d 0y, repectively into Eq.(30).

I'p =(CsCyC10)* (C11C12C13)* [(0x/C5Co C100xcr)™
+(0,,/C11C12C130yg,) 2 —1] (35.2)

where,

Cs = 1 —(1/1¢,) "1

Co=1[1- (oby/C14 (7bycr)m6 ] L/exs

ClO =1 _(abx/CM Clsabxcr)2

Ci = 1—(7/15) ™2

C12 = [ 1 _(Uby/CM Ubycr)as ] 1/
C1s = [1=(0px/C1aCis Opxer) e 1 1%
Cis = [1- (T/Tcr)z I 05

Cis = [1-(04y/C1a Obycr)alo ] 1/e

Consequently, the buckling interaction equation
among five load components is obtained as follows:

=0 (35.b)

Coefficients «; to «;, included in the above equation
are given with Eqgs.(14) to (21). If I'p is smaller than zero
with applied stresses substituted into Eq.(35), the plate
does not buckle. If the applied stresses are gradually
increased until they satisfy Eq.(35.b), the plate buckles.
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3.3 Method of solution of proposed equation

At first sight, Eq.(35) seems somewhat complicated to
solve analytically. However, it is not difficult to solve it
numerically. Procedure of solution may differ according
to the particular problem in hand, such as finding out the
buckling stresses in case of proportionally increasing load,
or finding out the critical value of a load component
which increases gradually while other load components
are kept constant, or finding out the critical thickness of
the plate under a given load, etc.

However, in the following, general procedure is pro-
posed ‘to solve a general problem. Many other problems
may be treated in a similar way.

(a) Definition of problem

As shown in Fig. 1, a simply supported rectangular
plate (@ X b X t) is subjected to a set of initial stresses
composed of 0,°, 0,°, 04y, 04,°, 7 and a gradually
increasing load which produces additional stress no,,
N0y, NOpx, NOpy, NT, Where n is a load factor.

It is required to find out the critical value of load
factor n with which the plate just buckles. In this pro-
blem, by setting non-existing load components at zero or
equating the initial load components to zero, a wide
variety of problems may be formulated.

(b) Method of solution

For any value of 7, the stresses acting on the plate

(0x, 0y, Opx, Opy, T) may be calculated as follows:

Ox =0x°+nox
oy, =0," +no,
_ ° 4
Opx ~ Opx T MOpx
_ [«]
Opy = 0py Tt MOpy

(36)

r=7"4+q7
g
alt Ny /3
0 I | |
nCY‘

Fig. 13 Evaluation of n,, by plotting I'g against n;'
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The solution may proceed as follows:

1. Evaluate first the pure buckling stress such as o,
Oyers Obxers Opyer and 7., when a rectangular plate is
subjected to a single load (See Appendix)

2. Compute the values of a; to ay,

3. Substitute the initial load into Eq.(35) and calculate
I'p to see that the plate does not buckle under the
initial load (I'g is negative)

4. Guided by I'g obtained in 3, assume two or three values
of load factor, n,, n, and n3, substitute them in Eq.
(36) and put the resulting stresses corresponding to
each n into Eq.(35). Then, calculate values of I'g.

5. Plot I'g against n as shown in Fig. 13 and find out the
value of 7 at which I'p becomes equal to zero. This n
may be denoted by 7., and is the critical value of the
load factor when the plate just buckies.

4. Assessment of Accuracy of Proposed. Interaction
Equation

4.1 Buckling interaction equation for two load com-
ponents

As shown above, a buckling interaction equation is
derived for a simply supported rectangular plate subjected
to five load components. From this equation, Eq.(35), the
interaction equation between each two load components,
Eqgs.(14) to (23) can easily be derived.

As may be seen in Figs. 2 to 11, these equations are
accurate enough to be applied to practical design. For
infinitely long plates, @/b =<0, the buckling interactions
seem to change suddenly, therefore the accuracy of the
new proposed interaction equation may be reduced.
However, for practical aspect ratios, the accuracy is good
enough and the estimated buckling load tends to be
conservative. k
4.2 Buckling interaction equation for three load com-

ponents

Further assessment of accuracy is carried out for cases
with three load components, with four or five load
components.

As mentioned above, it was assumed that the interac-
tion relationship among three load components is similar
to that between two load components, as shown in Fig.
12. This assumption does not have much effect on ac-
curacy for practical aspect ratios of the plate and a similar
accuracy may be expected as shown later.

In the following, the accuracy of buckling load sub-
jected to combined three load components is investigated
by comparison between estimated values, Eq.(35) and
values calculated by either the incremental Galerkin
method or the energy method.

(@) Biaxial compressions o, and o, and shear T
Figure 14 compares the buckling load of a rectangular
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plate with different aspect ratios estimated by Eq.(35)
and that calculated by the incremental Galerkin method?)
for a plate subjected to biaxial compression and shear, of

which the load ratio is 0y /0y, = 04,/0)c, = T[T They
show good agreement.
1.0 ¢
e SO
0.8 F Oxer "ycr_"-'cr
£
5
b
- 0.6 F
3
S
>
. 0.4+
&
& —@—: Incremental Energy Method
0.2 ————: Proposed ( Eq. (35) )
0 R ; . . -
0.5 1.0 1.5 2.0 2.5 3.0 3.5

a/b

Fig. 14 Comparision between proposed equation, Eq.(35) and
theoretical buckling load of rectangular plates sub-
jected to oy, oyand 7

(b) Biaxial compressions o, and o, and longitudinal
bending oy,

Figures 15.a, b and c¢ show the buckling interaction
relationships of rectangular plates with different aspect
ratios subjected to biaxial compressions and in-plane bend-
ing in the longitudinal direction, of which the load ratios
Opx/Obxer With respect to 0,/0,,, are varied from 0.5,
1.0 t02.0. The results by Eq.(35) are compared with those
by the energy method”. The buckling loads estimated by
Eq.(35) are seen to be accurate enough.

(c) Transverse compression o0, longitudinal bending
Opx and shear T

The buckling interaction relationship of an infinitely
long plate subjected to transverse compression, longitu-
dinal in-plane bending and shear is presented in Figs. 16.a
and b.

In Fig. 16.a, 7/7,,—0py/0pxcr relationship are pre-
sented for two cases of constant transverse compres-
sion, of which o,,/0,,, is 0.5 and 0.8. On the other hand,
the 0,/0,. against 7/, relationship are shown in Fig.
16.b for four cases of constant in-plane bending, of which
Opx/Opxcr 18 0.0,0.5,0.8 and 0.9.

The solid lines show the result calculated by the energy
method”, while the dotted ones show those by Eq.(35).
It may be seen from the above two figures that Eq.(35) is
accurate enough for engineering purposes.

5. Elastic — Plastic Buckling

In the previous section, elastic buckling of the plate
subjected to combined five load components has been dis-
cussed.

If the plate is perfectly flat, that is it has no initial
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1.0 [-
——: Theoretical
———: Eq. (35)
0.8 |
. 0.6 F
5
E>a
5 Oyloxer=0.2
0.4 | I
=== 0.5
0.2 | i 0.8 —
%x/Gbxcr = 2 Oy/Oycr
0 1 1 L 1 L : : J
0.5 1.0 1.5 2.0 2.5 3.0 w
a/b .
Fig. 15.a Comparision between proposed equation, Eq.(35)

and theoretical buckling load of rectangular plates
subjected to oy} 0y and opy

’— ——— Theoretical
—~=: Eq. (35)
0.8 |
< 0.6 F
(%3
&
<
>
0.4
0.2 |
%x/Fpxcr c’y/cycr'
0 1 ] 1 L L ‘: : J
0.5 1.0 1.5 2.0 2.5 3.0 @

a/b

Fig. 15.b Comparision between proposed equation, Eq.(35)
and theoretical buckling load of rectangular plates
subjected to oy, oy, and opy

1.0 r
——: Theoretical ——
—~—~: Eq. (35) ==
0.8 |-
0.6 |
—
o
b>>
<
ks
0.4 |
0.2 |
Opx/Obxcr= 0-3 Oy/Oycr
0 i 1 1 1 1 Il : ]
0.5 1.0 1.5 2.0 2.5 3.0 o

a/b

Fig. 15.c Comparision between proposed equation, Eq.(35)
and theoretical buckling load of rectangular plates
subjected to oy, 03 and opy

imperfections, the plate will buckle elastically or plas-
tically under uniform in-plane compression or uniform
shear. Elastic — plastic buckling may not occure in
this case but under in-plane bending, elastic — plastic
buckling may take place in the plate because the plastic
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0 1 1 | 1

0 0.2 0.4 0.6 0.8 1.0
/Ty
Fig. 16.a Comparision between proposed equation, Eq.(35)

and theoretical buckling interaction relationship of
infinite plate subjected to 0y, Opx and 7

0.8

0.6

Oy/Oycr

0.4

Spxcr

The-oretica‘l \\

£q. (35)

\
|
\
|
\

0 1 g
0 0.2 0.4

/Tep

Fig. 16.b Comparision between proposed equation, Eq.(35)
and theoretical buckling interaction relationship of
infinite plate subjected to oy, Opx and 7
range is expanded from the edges to the inside as bending
moment increases.

Results of theoretical analyses of buckling and ultimate
strengths of a rectangular plate are shown with respect to
its slenderness ratio A= b/t~/0o/E , (0o = yield stress) in
Fig. 17). The plate has different values of unitial deflec-
tion and residual stresses.

According to Fig. 17, if the plate has no initial im-
perfections, it reaches ultimate limit state after elastic
buckling or fails by plastic collapse.

In general, a plate with initial deflection and welding
residual stress may not exhibit clear buckling phenom-
enon and reaches its ultimate strength state, as the load
increases. Thin plates, in which the slenderness ratio is
greater than about 2.4, the ultimate strength is higher
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1.0 \ © : FEM analysis (wo/t=0.01)
2bt/b=0.1 N\ & ¢ FEM analysis iw.,/t=0J)
0,/0, N O ¢ FEM analysis (wo/t=0.2)
Y —\\ & @ FEM analysis (wo/t=0.3)
0.8 \ R o/t =0.01
\
0.6}
b =1000 mm
Oy = 28 kg/mm*
0.4f { N R
ot -————: Ultimate strength, Ref. 9 S
0.2 | —-—: Buckling strength free suckling T~
— from residual stresses strength
—=--—: Ultimate strength free from
residual stresses, Ref. 9
)

1 ' 1
1.5 2.0 2.5 3.0 3.5

b/t /OY7E
Rectangular plate with residual stresses (2by/b=0.1)

Fig. 17 Ultimate strength of a rectangular plate with initial
imperfections due to welding
than the buckling strength of a similar flat plate and the
later is regarded as a failure condition.

On the other hand, in case of thicker plates, of which
slenderness ratio is smaller than 2.4, initial imperfections
cause a plate to fail by plastic collapse below elastic or
plastic buckling strength. This type of behaviour is a
phenomenon of plastic collapse. The nature of this
behaviour is different from that arising in elastic buckling.
Therefore, buckling strength is not likely to be valid for
such thick plates as a failure condition.

From the above discussion, it may be better to treat
plastic collpase phenomenon separately rather than to
make corrections to the elastic buckling relationships.
This paper concentrates on elastic buckling, while interac-
tion relationships for plastic collpase are planned for
future research.

6. Buckling Interaction Equations Proposed by Lloyd’s
Register and Det Norske Veritas and Their Accuracy

6.1 Comparison with an interaction equation proposed
by Lloyd’s Register
Lloyd’s Register® proposed the following buckling
interaction equation for a simply supported rectangular
plate subjected to five load components.

(o () (B Y (B

Oxcr Oyer Obxcr bycr

H(——) =1 (37)
cr

where,

«a=0.6+04/8 03<p<1.0

a=06+048 10<B<35

B=a/b

It is should be noted that the above equation is valid
for 1/3.5<a/b<3.5. In case of two load components,
this equation yields good approximation in some cases.
However, in some other cases, it yields estimation on the
non-conservative side of the theoretical relationships as
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may be seen in Figs. 18.b,d,e and f.

Equation (35), proposed in this paper, is plotted in the
same figures for comparison with Lloyd’s equation. In
case of in-plane bending and shear, both equations yield
the same result as shown in Figs. 10 and 11. Eq.(39),
however, yields better results for all other load combina-
tions.

For combination of more than two load components,
Lloyd’s equation just adds nondimensional load compo-
nents. Such direct addition may need justification.

6.2 Comparison with an interaction equation proposed
by Det Norske Veritas

DnV* proposed the following equation as a buckling
interaction relationship for rectangular plates

n =\/n2cs+2(§ )2 Nesnetn? e (38)

where,
n = usage factor and when the factor of safety is con-
sidered to be more than 1.0, n is regarded as 1.0
Nes = usage factor for the combination of shear and
compression in one direction

For thin plates (1.4 <A, which is modified reduced
slenderness ratio and defined in 3.3 of Ref 4)),

_ 1+y ¢

Mes 4 o,

VT ZPRCLE (39)

where,
ne = usage factor for compression in the other direc-
tion, i.e. o/0,, in the other direction
o= reference stress for compression in any one direc-
tion
critical value of the reference stress
Y = stress multiplier, the ratio of stresses at plate
edges as shown in Fig. 19 and is used to combine
axial compression in one direction and in-plane
bending in the same direction
DnV specifies values for o, as follows:

m’E t
=C ————— (—)?=C 40
% =C 3oy () T COE (40)
where, in the x direction,
8.4
= o<y<l
Yy+1.1 4

C=T76—-64y+10y? —1<y<0
and in the y direction,
b 2.1
C= (4P =

o<y <1
y+1.1 Vs

C=(1+¢)Ca—xpCb+10w(1+¢/)(§)2 —1<y<0
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This relationships are also plotted in Figs. 18.a to &
together with Eq.(35) proposed in this paper. Eq.(38) pro-
posed by DnV makes accurate estimation of buckling
strength in some cases. However, it underestimates buckl-

ing strength greatly in some other cases of complicated
interaction.

7. Conclusion

In this paper, a new elastic buckling interaction equa-
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Fig. 19 Stress multiplier y in Eq.(39)

tion for simply supported rectangular plates subjected to
five load components is proposed. In order to formulate
this equation, buckling strengths of a plate under two load
components are calculated, in addition to the existing
data, and buckling interaction equations under each two
load components were developed. Based on these equa-
tions, a new buckling interaction equation for five load
components is theoretically derived.

A method of solution to the proposed equation is
presented and assessment of its accuracy is performed.
It is found that the proposed equation has sufficient
accuracy for practical purposes.

Some comparisions with an interaction equation pro-
posed by Lloyd’s Register and a design procedure propos-
ed by Det Norske Veritas are also carried out.

The result indicates that the new elastic buckling inter-
action equation proposed in this paper yields better ac-
curacy on the safe side.

Appendix

Buckling strength for simply supported rectangular
plates under a single load component can be calculated as
follows;

Oxer =kxO0p, Oy =ky0g
Opxer = KoxOE, Opyer = Kpy0p
Ter = KTOR
where,
2
0 = St ()
12(1—»2%) °b
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E = modulus of elasticity, » = Poisson’s ratio

and coefficients k., k,,, kpy, kp, and k, may be calcu-
lated for rectangular plates (a/b > 1) as follows:

kx = (m/B + B/m)* )

exact solution
k,=(1.0+ 1.0/82)? ( )

kbx =239
kpy =239 1<B<15 )
=15.87+1.878°+8.6/8% £>1.5

(approximate
formula)

k,=534+4.0/p* (approximate formula)

where,
B=a/b
m = buckling wave number in the x direction and the
minimum integer to satisfy the condition

B<v/m(m+1)
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