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1. Introduction

In [6], Hiramine, Matsumoto, and Oyama study translation planes of order
(f and kernel ^K^GF(qi) that admit an affine elation group E of order at least
(f and a Baer group ίB of order q-\-\ such that [E, J2]Φ1. It is shown in [6]
that for q odd, such translation planes always have solvable translation comple-
ments. Further, a construction is given by which translation planes of the above
type may be obtained from arbitrary translation planes of order h2 and kernel Ξ2

GF(h).
In this article, we extend the construction method of Hiramine, Matsumoto,

and Oyama and show how to obtain infinite sequences of potentially new deri-
vable translation planes. This method allows the identification of certain other
recently constructed translation planes.

In [2], Boerner-Lantz constructs a new class of semifield planes of order
(f. We show that these planes may be obtained by the construction methods
under consideration from the Desarguesian planes. Furthermore, there are
other similar but nonisomorphic semifield planes which may be constructed
from Desarguesian planes.

We also complete the study of the groups of the translation planes of order
ί?4, kernel GF(f) admitting elation and Baer groups as described above for q

even.

Acknowledgement. The author gratefully acknowledges the help of the
referee in the preparation of this article.

2. The collineation groups

In this section, we extend the results of Hiramine, Matsumoto, and Oyama
to include the even order case.

Theorem 2.1 (See Hiramine, et al. [6] for q odd.). Let π denote a transla-
tion plane of order cf and kernel >K^GF(f) which admits an elation group E of
order ><? and a Baer group <B of order #+1 such that \β, E]Φ 1. Then the full
collineation group is solvable.
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Proof. We give the proof as a series of lemmas.
Let the translation plane π={(xly XD y^ y2)\Xi, yitΞK, ί=l, 2,}. Choose

the axis of E as (xly x2)=(Q, 0). Let x=(x1, x2), y=(yly y2)y O=(Q, 0).

In [6], it is shown that the spread for π may be represented as follows:

x=O, y = x\ .U V

q where u, v^K and / is a function K-*K such that

uq+1Φ(v—s)(f(v)—f(s)) for any u, v, s\ v^ps in K. Further,

u 0

0

= EQ and & = -

1

We assume that E is the full elation group with axis ~C=(x=0). We
first observe

Lemma 2.2. £B fixes each E orbit of components.

Proof. EQ<E so that each E orbit is a union of EQ orbits. Let
7 \u o

LO */'

.0 /

Ij

T-U T O vi TU r u vThen V^ΛJ f >y=x\J Lf(v) θJ J lf(v) u
Let σe =

each E»orbit and

thus fixes each £" orbit of components.

Let £F denote the full translation complement of π.

Lemma 2.3. The axis J2 of E is 3'-invariant.

Proof. If the axis is not ΞF-invariant then the elations generate SL(2, g2),
Sz(q) or Sz((f). The proof of [3] shows that the group cannot be Sz( #?*")•
Furthermore, let Sz(2m) be a Suzuki group. Then ra=l mod 2 so that the
group cannot be Sz( %/f). Hence, the elations generate SL(2, (f) which
implies that the plane is Desarguesian (see [3]). However, as the group .2J
is Baer, we obtain a contradiction.

We recall the following theorem of Jha-Johnson-Wilke [8].

Lemma 2.4. Let Σ be a translation plane of even order m2 where the kernel
>GF(m). Assume Σ admits a nonsolvable reducible group 3 in the linear trans-
lation complement.
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(0) // the involutions of 3 are Baer then there is a derivable net 32 which
contains all of the Baer subplanes which are pointwise fixed by involutions in Q.

(1) If Σ admits affine elatίons with axes in Jl then the elatίons leave 37
invariant. Furthermore, any affine elation group must have order <m.

Lemma 2.5. // 3 is nonsolvable then 3\ J2 is nonsolvable.
Λ

Proof. Assume that 3 \ J2 is solvable. Let 3 denote the subgroup of 3

which fixes _£ pointwise. So E<3 where E is the full elation subgroup with
axis J2 of order >(f.

Let |E I =(? 2t

y q=2r so that f^=22r+t for 0<t<2r. There are ? ==
(f 2*

2^-(2r+t}=22r't E -orbits on the line at infinity L -(<*>) where £{\ L=(<*>).
Since E is solvable and 3\JC is assumed solvable, it must be that there

exists a homology h in 3. Let the cocenter Q of h be in the E"-orbit Γ on
/oo— (°o). Then by Andre's result [1], Γ is £F-invariant. And, (3 Π GL(4, ί2))^
has -Bfltfr Sylow 2-subgrouρs. Note that E<\3 since X is invariant. Hence,
(3ΓiGL(4,f)) = (3nGL(4,f))Q E. Thus, (&ΠGL(4, f))Qe*&IE so that
(£? Π GL(4, gf2))<? must be nonsolvable. However, this is a contradiction from
(2.4) (1). This proves (2.5).

Lemma 2.6. Let 3Γ\GL(4, (f) = 3G. Let 3<3G denote the subgroup

which fixes J2 pointwise so that 3G\£^3GI<3. We may assume that SL(2, 2s) <

for some s>2.

Proof. 3GI3 is a nonsolvable subgroup of GL(2, <f). Furthermore, £FG

contains the kernel homology group K* of order <f— 1. Hence, 2ΓG/2Γ contains

the subgroup K*13 Π K*^K*3I3^ K*. Since ? is even, GL(2,q2) =
Z(GL(2, <f)) X SL(2, ϊ2) where Z denotes the center. However, K*^Z.

Let 3GI3=M Recall that Fix 3), 3$ the Baer group of order q+l, must
be a ^-space by Foulser [5] and hence Ά must fix a 1 -space over K on _£
pointwise. That is, considering _£ as the Desarguesian affine plane of order (f
then ί B acts as a homology group of order q-\-l in GL(2, ^).

Furthermore, SE£\3 = -S ̂  < .̂ So ̂  is a nonsolvable subgroup of
GL(2, ?

2) and (j+l)^-!)! |Λ| (since K*$^Λί).

Let c^nSL(2, <f)=Jl. Then ^ is a nonsolvable subgroup of 5L(2, ̂
and so is isomorphic to *SL(2, 2s) for some s. This proves (2.6).

Lemma 2.7. Γλe subgroup 3 which fixes J2 pointwise is E.
Λ

Proof. If 3 contains a homology then there is an £F-invariant £-orbit Γ of
components by Andrέ's result [1]. However, if Q^T then 3G

QE=3G. How-
ever, the involutions in 3% are all Baer. Since 3% is nonsolvable, we obtain a
contradiction by (2.4) (1).
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Lemma 2.8. Let M denote the preimage of M. Let N denote the kernel
of the representation 3G induces on the set of E-orbits on the line at infinity /„— (°°).

Then M(M) acts faithfully or trivially on this set.

a =

Proof. MIN^MIENIEzsE^N. Since E=<3 then M/E=l^SL(2J 2s)
for s>2 by (2.6).

Hence NjE is M/E=A or E. This proves (2.8).

We now complete the proof to (2.1).
By (2.2), 3ϊ fixes each E'-orbit of components and so does the kernel homo-

logygroup^*. Note that <8|-£={[J JJ] \a\=q+ί } and ̂ *l-£={[

€ΞGF(fi}. Then for a=b~\ [J J.2][* °] = [* J-JeΛ. Since

I J-2 1 = I δ I , q+ 1 \ \ A \ and it follows that M cannot act faithfully on the set of

jB-orbits on L— (oo). So by (2.8), M acts trivially on this set. Let Γ be any

such JE-orbit. Then for Q(Ξ Γ, M=MQE and NIE=MQEIE^MQ^M^SL(2, 2s)
for s>2 by (2.6). However, this is a contradiction by (2.4) (1) since the involu-
tions in MQ are Baer and the plane of order q* admits an affine elation group of
order >(f.

3. A construction method

In this section, we extend slightly the procedures of Hiramine, Matsumoto,
and Oyama who also characterize the planes considered in (2.1) in terms of
matrix spread sets.

Choose the axis of E as x= O and the Baer subplane pointwise fixed by 3$ as

{(*ι, 0, 0, y2) I #!, y2^K^GF((f)} , x=(xλ, x2), y=(y» yώ> π= {(xι> X2> Jι> Λ) I *«>
y^K^GF(f), i=l, 2}. Note that ίB must fix the axis of E in order that π be
non Desarguesian and π cannot be Desarguesian as 3$ is Baer of order j+1.

Furthermore, it is shown in [6] that the spread may be represented as
follows:

where

and

E =

« or
.0 u"\

I

= 1, e<=K
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where /is a function K-+K such that uq+1=£(v— s)(f(v)— f(s)) for any u)vίs>

in K. Hence, (v—s)(f(v)—f(s))$GF(q) for any v, s, v*s of K.
Now suppose that t^GF(f)—GF(q) where t2=tθ+p, θ, p constants in

GF(q). Then write

f(a+βt)=g(a, β)-h(a, β}t

for functions g, h: GF(q)χGF(q)-»GF(q). Then (v-s)(f(v)-f(s))ς=GF(q)

~((a+βt)-(8+7t))((g(ay β)-g(8, y))

-(h(a, β)-h(S,

<=>ί-component in the previous equation is 0

~(β-Ύ)(g(a, β)-g(S, <y))-(a-8)(h(a, β)-h(S, 7))
~(β-Ύ)(h(a, β)-h(8, Ύ))θ = 0

(α, ft-g(δ, Ύ))-θ(h(a, β)-h(S, 7))]

-(α-8)(A(α, β)-h(8, y)) = 0

(«, β)-θh(a, β)-(g(8, 7)-θh(8, γ))]

-(α-8)(A(α, /3)-A(δ, y) = 0

f t Ί-Γ
(a,β)\ lg(8,*(α, β)-θh(a, β) h(a,β) lg(8, Ύ)-θh(8, 7)

= 0.

Hence, we have (see also H-M-0 [6]) :

Theorem 3.1.

represents a translation plane π of order q4 kernel GF(<f) if and only if

v = xl a> & Ί x = O
y ίg(a, β)-θh(a, β), h(a,β)l'

for a, β^GF(q) represents a translation plane π of order (f and kernel GF(q)
where f,gyh are functions interconnected by f(a + βt)= g(a, β)—h(a, β)t,
f: GF(f)-+GF(f), g, h: GF(q)χGF(q)-*GF(q) and GF(q2) = GF(q)[t] where

The plane π will be called a contraction of π and π an extension of π :.

4. Examples

EXAMPLE 4.1. Let τcl be the translation plane of odd order (f and kernel
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GF(q) given by x=O, y=x\ a\ ^1 for α, β£ΞGF(q), σ, pt=AutGF(q) and

γ a nonsquare in GF(q).

Let GF(g)[*]^GjF(<f) for t?=tθ+p, 0, p^GF(q). Construct the translation

plane π{ as in (3.1) of order g4 and kernel GF(f)\ x—O, y=x\ U ' v \ where
Lf(v), uq J

f(v) =f(a+βt)=g(a, £)-A(α, β)t

and

7β" = ί(α, β)-θh(a, β), a" = h(a, β) .

Hence, ^βt>^Γθaσ=g(a, β). So f(a+βt)=(<γβf+θa'r)-a''t and »J is *=(?,
, a+βt

y=x for all δ, γ, α, β^GF(q), θ a constant.

If s is chosen so that s2^GF(q) then a plane ?rί may be similarly constructed

of order q4 with matrix spread set x=O, y=x\ ^S ' θί-\-ps \ jt jg

Lγy8p— a% (S+γί)9J
clearly possible that ri is not isomorphic to π{.

Reversing the technique, consider a plane defined by

of order q*, kernel GF(tf) for u, s^GF(q2), pGAutGF(q2), <y a nonsquare in

GF )̂. Then assume that GF(q2)=GF(q)[t] for f=tθ+% for ^, X(ΞGF(q).

Then /(ί)=γίp. Writing ί = α+/3ί then /(or+/3ί)='y(«+/3ί)P = 7(«p

Letting ίp=ίδι+δ2 for δlt 82eGF(q), we obtain:

f(a+βt) =g(a, β)-h(a, β)t

= (-y(«p

We want to obtain the plane of order q2,

= x a

α, β)-θh(a, β), h(a,β)

However γ a nonsquare cannot be in GF(q) so J=tfγl-\-rγ2 for OΊΦO. Then

g(a, β)-h(a, β)t = (*

So



SEQUENCES OF DERIVABLE TRANSLATION PLANES 525

g(a, β) = Ύ2

h(a, β) = -

So the contraction plane has the form x=O,

= x\
ka

for certain constants cl9 c2, d'19 d2.

4.2. The semifield of Boerner-Lantz.

In [2], Boerner-Lantz constructs a class of semifields as follows:

Theorem ((3.2) [2], p. 115). Let q=pr with p>3. Choose σ^GF(q) such
that of— σ is irreducible over GF(q) and l+4cr is a nonsquare. Identify GF(<f)

as {aι+a2a\ct1J a2^GF(q)}, where a$ΞGF(q) is a root of x2=σ, and S as
{a+βs\a, β^GF(f}} where s&GF(<f). Define addition+on S to be the usual
vector addition. If multiplication is defined on S by

(a+βs) (7+Ss) = a7+β(S9a-81)+(aS+β7q)s

where S=81+82a; 8ly 82<=GF(q), then the triple (5, +, •) is a semifield of di-
mension two over GF(f).

In terms of a matrix spread set, the spread for the associated semifield

plane π of order j4 and kernel GF(q2) is easily seen to be:

X = O v = x\ 7 , 8 1
' * Lδ'α—δi, γ'J

where δ=δ!4-δ2α taking x1-\-xίs=(xl, x2)=x. Note that α*=— a so that

so the matrix forms become

If we take, in the notation of (3.1), t=a then /(δ1+δ20)=— (δ1+δ2σ)+δ1α and

£(δι, δ2)=— (δi+δ2σ) so h(8ly 82) = —81. The contraction plane π of order <f
and kernel GF(q) is

x = 0,y = x\i__ δl ' δz]

for all 81? 82^GF(q). Now we change bases in τrc as follows: First change
bases by
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[7

then by

and finally by

B -flJ

U -?

Γl OΊ
LO -ιj_

to obtain the spread

o2σ, G!—

Since of—x—σ is irreducible (see [2], p. 115), we clearly obtain a field of
matrices so that π is Desarguesian. That is,

Theorem 4.3. The semίfield planes of Boerner-Lantz may be obtained from
the Desarguesian planes by the extension procedure given in (3.1).

We now consider semifield planes obtained more or less directly from the
Desarguesian planes using (3.1).

Lemma 4.4 (see [7], (3.2)). If x?+fx—g is irreducible over P^GF(q) for
fixed f} g in P then

(Γ«,
IL/3&

is a field of order (f.

Now let ττι be a Desarguesian affine plane with points {(x19 x2, yly y2) \xiy y{

, i= 1, 2} and spread set y=x[g ' f o J' X=O for ^=CVι» ̂ )> Λ?=(^I, ^2)

and x?+fx—g irreducible over P.
We may use the construction method of (3.1) directly from this spread set

to obtain the following semifield plane: Let GF(<f)=P\f\ for t2=tθ+p for
fixed (9, peP. Letting h(a, β)=a+βf, g(a, β}—θh(a, β)=βg, then

Hence,

(a, β)=βg+θ(a+βf)=θa+β(g+fθ).

f(a+βt)=g(a, β}-h(a, β)t
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so that

f(a+βt) = θa+β(g+fθ)-(a+βf)t .

4.5. The semifield plane of order j4 and kernel GF(f) has the following

form:

Ξ=Γ V = J a+βt '[/ Lθs+Ύ(g+fθ)-(8+Ύf)t,

It is probable that this class of semifield planes is not isomorphic to the class
of (4.2) even though they are constructed from the same Desarguesian plane.
Notice that this also shows that a basis change in a base plane may lead to dis-

tinct planes in this extension process.

4.6. Other examples — the H-M-O example,

In Hiramine, et al., an example which is potentially new, of a translation

plane of order <f and kernel GF(<f) is given which admits collineation groups

of the type we are considering.

We note here that this example may be constructed from the regular nearfield

plane (see [6], Example (2.5)): Assume^) is a prime >2 and e^GF(<f)—GF(q)

such that e*EΞGF(q). Define f(v)=e9^ +¥~1\ then x=O, y=x\ U ' ^ Ί for
Lf(v), uqΔ

all u, v^GF(<f) defines a "new" translation plane of order cf and kernel GF(f).

Note that /(»)=( ^;^ascluare ). Now represent v = a+βe for
I— evq; v a nonsquareJ

α, β^GF(q) and note that (a+βe)q=a—βe. Hence, if f(a+βe)=g(a, β)~

h(a, β)e for e2=eθ+ρ, we have ^=0 and

e(a+βe)q = e(a-βe) = —βp+ae

for a-\-βe a square and,

-e(a+βe)q = —e(a-βe) = βp-ae

for a-\-βe a nonsquare. Thus,

// I β \ = f—βp+cte, for a+βe a square 1
I βp—ae, for a+βe a nonsquare/ *

The contraction to the translation plane of order (f and kernel GF(q) gives

g(a, β)=+βp where ± is + or — depending on where a+βe is a nonsquare

or square and h(a> β)=±a. The contraction plane is given by the spread:

a , ί
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where of— p is irreducible.

To see that this is the regular nearfield plane, we start from the Andrό

construction.

Consider (GF((f), + , •), q odd, and define a multiplication "o" as follows:
χoy=xq y if y1+q is a nonsquare and χoy=χ y if y1+q is a square for all x,y^

GF(f). Then it follows that (GF(<f), +, o) is a regular nearfield of order cf and

kernel GF(q). Let t&GF(f)—GF(q) so that t2=γ is a nonsquare in GF(q).
Xq=(tx1+x2)

q=—tx1+x2 for xl,x2^GF(q). Hence, X°y = (—tx1+x2) (ty1+y2)
for tyί+y2 a nonsquare. Thus, X^y=t(x2yl—xly2)—^xlyl+x2y2 for

nonsquare and

for ίyi+Λ a square.
The matrix spread set is, for x=tx1+x2=(x1, x2),

Tl
JJ

for ty1-\-yi a nonsquare and

for ty1-}-y2 a square. It is now clear that by making the proper identifications

the Hiramine, Matsumoto, Oyama plane of order q4 may be constructed (ex-
tended) from the regular nearfield plane of order (f. However, the nearfield
plane can conceivably construct (extendt o) a number of distinct nonisomorphic

planes.

4.7. Non semifield planes from semifield planes.

By looking at the form of (3.1), it follows that g(a, β) and h(a, β) are
(bi)additive if and only iff(a+βt) is also additive.

Thus, starting from a non Desarguesian semifield plane of order (f and

kernel GF(q) then, by choosing x=O to represent the shears axis, the exten-
sion plane of order q4 is also a semifield plane. However, by choosing a non-

shears axis to represent x=O, the associated functions g(a, /3), h(a> β) will not

be additive so that the matrices of the plane of order q* will not be additive.

Since this plane also admits a shears axis with group of order q2 in this repre-
sentation, it follows that we now do not have a semifield plane.

An example will suffice to illustrate this idea.

Consider the semifield plane of odd order <f with spread:
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for γ a nonsquare in GF(q), zo, σ eAut GF(q) (see (4.1)). First let a
a<r=p and β= — % so that the spread has the form

= so

Change bases by (#, , x) to obtain the spread in the form

%
Δp, 7 Δp, γ

k Δp, 7 ' Δp,
where

>.*=Det

We may now follow the example of (4.1) to obtain a "new" non semifield transla-
tion plane.

5. Sequences of derivable planes

Let KI be any translation plane of order (f and kernel GF(q). Write πλ in

the form x=O, y=x[ a ' ^ Ί. Extend GF(q) to GF(f) writing
Lft(α, β), h(a, β)J

GF(q2)^GF(q)[t]. If t2=tθ+X, let ̂ (α, β)=g1(a, β)—θh(a, β). Construct the
plane π{ of order q* and kernel GF(f): x=O,

y = x\ u > v

L/w, u
where f(v)=f(a+βt)=g(a, β)—h(a, β)t. Now extend GF(<f) to GF(ί*) by
writing GF(^)=GF((f)[tl} for ίf=ί1β1+%1.

Let fι(v)=f(v)+θ1u
q so that the components of the plane of order q* have

the form x=O, y=x\ ' V . Construct the plane (τrίVι of order (f
L/ι(^)—^Λ w9J

and kernel GF(q*) with components w ' m \ where /2(»ι)=/2(tt+ί;ί1)
L/2(m), ιιf J

—(fι(v)—u9tι) In tn^s waY> we obtain a sequence of derivable translation planes
from any translation plane of order (f and kernel GF(q).

order (f order (f order
(W)'1)'2
order q16

Clearly, there are many other ways to vary the sequence. The isomorphism ques-

tions are completely open.
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The preceding shows that there are a vast number of new translation planes

of order (f and kernel GF(q2) which may be constructed by (3.1) from transla-

tion planes of order (f and kernel GF(q). The point of view might be there-

fore to identify the planes obtained from one another by (3.1).

Also, each of the constructed planes of order (f is derivable where the

derivable net is not a regulus over the field in question. Note the derivable net

The translation plane derived from replacing this net has order q* and

kernel GF(q).
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