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1. Introduction

In [6], Hiramine, Matsumoto, and Oyama study translation planes of order
¢* and kernel DK ==GF(¢?) that admit an affine elation group E of order at least
¢ and a Baer group B of order g+1 such that [E, B]=1. It is shown in [6]
that for ¢ odd, such translation planes always have solvable translation comple-
ments. Further, a construction is given by which translation planes of the above
type may be obtained from arbitrary translation planes of order 42 and kernel ©
GFE(h).

In this article, we extend the construction method of Hiramine, Matsumoto,
and Oyama and show how to obtain infinite sequences of potentially new deri-
vable translation planes. This method allows the identification of certain other
recently constructed translation planes.

In [2], Boerner-Lantz constructs a new class of semifield planes of order
¢*. We show that these planes may be obtained by the construction methods
under consideration from the Desarguesian planes. Furthermore, there are
other similar but nonisomorphic semifield planes which may be constructed
from Desarguesian planes.

We also complete the study of the groups of the translation planes of order
¢*, kernel GF(¢%) admitting elation and Baer groups as described above for ¢
even.

Acknowledgement. The author gratefully acknowledges the help of the
referee in the preparation of this article.

2. The collineation groups

In this section, we extend the results of Hiramine, Matsumoto, and Oyama
to include the even order case.

Theorem 2.1 (See Hiramine, et al. [6] for ¢ odd.). Let z denote a transla-
tion plane of order ¢* and kernel > K ==GF(q*) which admits an elation group E of
order >q* and a Baer group B of order q+1 such that [B, E]l==1. Then the full
collineation group is solvable.
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Proof. We give the proof as a series of lemmas.

Let the translation plane z={(x;, x,, ¥1, y») |%;, ¥; €K, i=1, 2,}. Choose
the axis of E as (%, ,)=(0, 0). Let x=(x,, x,), y=(1, ), O=(0, 0).

In [6], it is shown that the spread for = may be represented as follows:

x=0, y=x[ “ P | where v, K and f is a function K—K such that
f(v) u
ut == (v—s)(f(v)—f(s)) for any u, v, s; v=s in K. Further,
I [16 O’:'_ 1
E2 “IueKi=Eand 8={| ¢ = ||le"=1ecK
0 I ] 1

We assume that E is the full elation group with axis L=(x=0). We
first observe

Lemma 2.2. B fixes each E orbit of components.

Proof. E,<JE so that each E orbit is a union of E, orbits. Let
7 [u O]
0 u* 0 o] T« ©“ v
Y= €E, Then y= —»=[ . Let o=
"o e A e e TR R
1

" e 1 <2 y:x[f(’;) Zq}&—’yzx[l e‘l}[f(:) :«][e 1]
=[y=x[fz‘:) u“i‘l:l:xl:f?;) (u‘z;)" :H Hence, B fixes each E, orbit and

thus fixes each E orbit of components.
Let & denote the full translation complement of 7.
Lemma 2.3. The axis L of E is F-invariant.

Proof. If the axis is not F-invariant then the elations generate SL(2, ¢°),
Sz(q) or Sz(¢?). The proof of [3] shows that the group cannot be S;( ¥/¢*).
Furthermore, let S;(2") be a Suzuki group. Then m=1 mod 2 so that the
group cannot be S;(¥¢'). Hence, the elations generate SL(2, ¢¢) which
implies that the plane is Desarguesian (see [3]). However, as the group B
is Baer, we obtain a contradiction.

We recall the following theorem of Jha-Johnson-Wilke [8].

Lemma 2.4. Let = be a translation plane of even order m* where the kernel
>GF(m). Assume 3, admits a nonsolvable reducible group G in the linear trans-
lation complement.
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(0) If the involutions of G are Baer then there is a derivable net Jl which
contains all of the Baer subplanes which are pointwise fixed by involutions in G.

(1) If = admits affine elations with axes in Jl then the elations leave Jl
invariant. Furthermore, any affine elation group must have order <m.

Lemma 2.5. If & is nonsolvable then F|_L is nonsolvable.

Proof. Assume that F|_L is solvable. Let & denote the subgroup of F

which fixes £ pointwise. So E <F where E is the full elation subgroup with
axis L of order >¢%.

Let |E|=¢-2!, ¢=2" so that ¢?+2!=2%"** for 0<t<2r. There are ¢ _

A
24r=@r+0)=22r~t E_orbits on the line at infinity /.. —(c0) where LN [l.=(c0).

Since E is solvable and &F|_L is assumed solvable, it must be that there
exists a homology % in . Let the cocenter O of & be in the E-orbit T' on
lo—(o0). Then by Andre’s result [1], T" is F-invariant. And, (F N GL(4, ¢))e
has Baer Sylow 2-subgroups. Note that E<ISF since L is invariant. Hence,
(FNGLH#, ¢))=(FNGLH#, ¢))e-E. Thus, (FNGLH4, ¢®))e=F|E so that
(FNGL4, ¢®))e must be nonsolvable. However, this is a contradiction from
(2.4) (1). 'This proves (2.5).

Lemma 2.6. Let FNGL(4, ¢)=FC. Let F<FC denote the subgroup
which fixes L pointwise so that F€| L=FC|F. We may assume that SL(2, 2°)<
Q’G/EAF for some s>2.

Proof. FS/F is a nonsolvable subgroup of GL(2, ¢?). Furthermore, F¢
contains the kernel homology group K* of order ¢#—1. Hence, & G/E’i’" contains
the subgroup K*/EAZ’ NK* = K*ﬁ%/ﬂ‘& =~ K*. Since ¢ is even, GL(2, ¢)=
Z(GL(2, ¢)) x SL(2, ¢°) where Z denotes the center. However, K*=Z.

Let & G/ﬂ'& =4 Recall that Fix B, B the Baer group of order ¢+ 1, must
be a K-space by Foulser [5] and hence B must fix a 1-space over K on [
pointwise. That is, considering L as the Desarguesian affine plane of order ¢
then B acts as a homology group of order ¢g+1 in GL(2, ¢*).

Furthermore, BF |F=B<Y. So 4 is a nonsolvable subgroup of
GL(2, ¢®) and (¢+1)(¢*— 1)| | K| (smce K*B=<91).

Let ANSLZ2, ¢)= Jl. Then Yl isa nonsolvable subgroup of SL(2, ¢%)
and so is isomorphic to SL(2, 2°) for some s. This proves (2.6).

Lemma 2.7. The subgroup F which fixes _L pointwise is E.

Proof. If & contains a homology then there is an -invariant E-orbit I" of
components by André’s result [1]. However, if Q€T then FGE=FC. How-
ever, the involutions in &F§ are all Baer. Since &§ is nonsolvable, we obtain a
contradiction by (2.4) (1).
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Lemma 2.8. Let M denote the preimage of Y. Let N denote the kernel
of the representation F€ induces on the set of E-orbits on the line at infinity l..—(oo).
Then M(H) acts faithfully or trivially on this set.

Proof. M|N=M|E[NJE as ECN. Since E=F then M|E=Jl=SL(2,2)
for s>2 by (2.6).
Hence N/E is M|[E=JY] or E. This proves (2.8).

We now complete the proof to (2.1).
By (2.2), B fixes each E-orbit of components and so does the kernel homo-

logy group K*. Note that .CBI.L’z{[(l) 2] |al=q—{—1} and K*I.E={[g 2]‘1)
eGF(qz)}. Then for a=b-, [(1) 2_2}[3 2]:[3 g_l]eﬂ. Since |a|=

672 =]b], ¢+1| IJA[ | and it follows that 4 cannot act faithfully on the set of
E-orbits on I,—(o0). So by (2.8), Il acts trivially on this set. Let T be any
such E-orbit. Then for Q&T', M=MyE and N/E =MQE/EzMQgJ2 =SL(2,2%
for s>2 by (2.6). However, this is a contradiction by (2.4) (1) since the involu-
tions in My are Baer and the plane of order ¢* admits an affine elation group of
order >4

3. A construction method

In this section, we extend slightly the procedures of Hiramine, Matsumoto,
and Oyama who also characterize the planes considered in (2.1) in terms of
matrix spread sets.

Choose the axis of E as x=0 and the Baer subplane pointwise fixed by B as
{(x1, 0, 0, 35) |2y, 3, E K=GF(¢)}, x=(x1, %3), Y=(J1» Ya)» w={(%1, %2, Y1, ¥2) | s
y:€K=GF(¢’), i=1, 2}. Note that B must fix the axis of E in order that = be
non Desarguesian and z cannot be Desarguesian as B is Baer of order ¢+-1.

Furthermore, it is shown in [6] that the spread may be represented as

follows:
. . u, v
=0 r=slg )
where
u 0
_ d [0 u”] ~
E = ueK=GF({)
O I
and
1
P = € ¢ ett=1, eeK},
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where f is a function K—K such that u?*'==(v—s)(f(v)—f(s)) for any u,v,s,v=s
in K. Hence, (v—s)(f(v)—f(s)) & GF(q) for any v, s, v=s of K.

Now suppose that t&GF(¢®)—GF(q) where *=t0-+p, 6, p constants in
GF(g). Then write

fla+Bt) = g(a, B)—h(a, B)t
for functions g, k: GF(q) X GF(q)—GF(q). Then (v—s)(f(v)—f(s))=GF(q)

e (a+B)—(8+71))(g(a, B)—&(S, 7))
—(h(et, B)—h(3, 7)) GF(q)

& t-component in the previous equation is 0
=(B—7)(&(a, B)—&(8, 7)) —(a—3)(h(a, B)—h(3, 7))

—(B—7)(h(e, B)—h(3, 7)) =0
=(B—7)[(gler, B)—&(8, 7)—0(h(et, B)—h(3, ¥))]

—(a—38)(ia, B)—h(3, 7)) =0
=(B—7)[(g(er; B)—0h(e, B)—(5(3, v)—6h(3, ))]
—(a—38)(k(a, B)—h(3, v) =0

- a B _ S v
det[[g(a, B)—0h(a, B) h(e, ﬂ):l [é’(S, ¥)—06h(3, v) h(3, ')’)ﬂ
=0.
Hence, we have (see also H-M-0 [6]):
Theorem 3.1.

J— u’ v —
y—x[f(v)’ u”]’ x=0, u,v,=GF)
represents a translation plane = of order q* kernel GF(¢?) if and only if
a B
= ) , x=0
=L e, 050, ), )"

for a, BEGF(q) represents a translation plane n° of order q* and kernel GF(q)
where f, g, h are functions interconnected by f(a-+ Bt)=g(a, B)—h(a, B)t,
f: GF(¢®)— GF(¢%), g, h: GF(q)X GF(q)— GF(q) and GF(¢®)=GF(q)[t] where
#=1t0+p for 6, pGF(q).

The plane z° will be called a contraction of = and = an extension of =°.

4. Examples

ExampLE 4.1. Let 7, be the translation plane of odd order ¢* and kernel
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GF(g) given by x=0, y=x[ a BJ for a, BEGF(q), &, p Aut GF(q) and
[24

] 76,
7 a nonsquare in GF(g).
Let GF(q)[t]=GF(q*) for #=1t0+p, 0, pGF(q). Construct the translation

plane 7 as in (3.1) of order ¢* and kernel GF(¢%): x=0, yzx[ “ o v"] where
flv), u
f(©) = f(a+Bt) = g(a, B)—h(a, B)t
and

'YBP = g(d, B)ﬂeh(a’ B)) o’ = h(a’ 18) .

Hence, yB°+0a°=g(a, B). So f(a+Bt)=(vB*+0a’)—a’t and =i is x=0,
S+t , atpt

y=Xx * L Ao’
(7). v
If s is chosen so that & GF(q) then a plane z{ may be similarly constructed
dt+os , a+@s ]
vB°—a’s, (8+vs)

for all &, v, a, B=GF(q),  a constant.

of order ¢ with matrix spread set x=0, yzx[ t is

clearly possible that 7z} is not isomorphic to 7.
Reversing the technique, consider a plane defined by

x=0,y=x|:u’ s]

,YSP’ uq

of order ¢*, kernel GF(¢?) for u, s€GF(¢?), p€Aut GF(¢%), v a nonsquare in
GF(¢®). Then assume that GF(¢®)=GF(q)[t] for #=t0+X for 0, X=GF(q).
Then f(s)=vs". Writing s=a-+@Bt then fla+RBt)=v(a+RBt)" =v(a’+B°t").
Letting #*=18,+ 8, for §,, §,= GF(g), we obtain:
fla+Bt) = gla, B)—h(a, B)t
= (V(a@"+B°,))+(vB°8,)t .

We want to obtain the plane of order ¢

_ _ o , g
*=0y= ”[g(a, 8)—0h(a, B), h(a, B)] '

However v a nonsquare cannot be in GF(q) so y=ty,+, for v,#0. Then

&a, B)—h(ar, B)t = (tv,+7:)(*+ B’ 8;)+ (27, +7.) (B8, t)
= (7’ +B°8,)+X7,8°3,)
+(vi(@®+B°8)+7.8°8,+60v,8°8))t .

So
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&la, B) = v(a"+B"8,)+Xy,8°8, ,
ke, B) = —[(vi(a®+B°8,)+ 7.8 8,+07,8°8))] .

So the contraction plane has the form x=0),

qaf+cBt, da’+d,p°
for certain constants ¢, ¢,, d,, d,.

4.2. 'The semifield of Boerner-Lantz.
In [2], Boerner-Lantz constructs a class of semifields as follows:

Theorem ((3.2) [2], p. 115). Let g=p" with p>3. Choose o € GF(q) such
that #*—¢ is irreducible over GF(q) and 1+4¢ is a nonsquare. Identify GF(¢?)
as {ot+aalay, a,=GF(q)}, where acEGF(q) is a root of x*=¢, and S as
{a+Bs|a, BEGF(¢%)} where s GF(¢?). Define addition+on S to be the usual
vector addition. If multiplication is defined on S by

(a+B5)+(v+38s) = ar+B(8'a—8,)+(ad+B7%)s
where 8§=38,+38,a; 8,, §,=GF(q), then the triple (S, +, +) is a semifield of di-

mension two over GF(¢).
In terms of a matrix spread set, the spread for the associated semifield
plane 7 of order ¢* and kernel GF(¢?) is easily seen to be:

x=0,y= x[b‘”a()—,—b‘lz iq]

where 8§ =38, 8,a taking x,-+x,5=(x,, x,)=x. Note that a’=—a so that
8'a—38, = (8,—8,a)a—38, = —(8,+38,0)+38,a
so the matrix forms become

y=x[ s R 8=81+82a:|.
*(814’320')“‘81“, 7’

If we take, in the notation of (3.1), t=a then f(8;,+8,a)=—(8,48,0)+8,a and
8(8;, 8)=—(8,+8,0) so A(3,, §,)=—38,. The contraction plane z° of order ¢
and kernel GF(q) is

e s . 8
*=0 x[—(61+82a), —sj

for all 8,, §,GF(¢q). Now we change bases in z° as follows: First change
bases by
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7

[0 11/

then by
m 1 0
-1 1]
s I
and finally by
I
1 0
0 —1
to obtain the spread
) 3
—0, y=a| 20 %],
T T e, 5,

Since ¥*—x—o is irreducible (see [2], p. 115), we clearly obtain a field of
matrices so that z is Desarguesian. That is,

Theorem 4.3. The semifield planes of Boerner-Lantz may be obtained from
the Desarguesian planes by the extension procedure given in (3.1).

We now consider semifield planes obtained more or less directly from the
Desarguesian planes using (3.1).

Lemma 4.4 (see [7], (3.2)). If &®+fx—g is irreducible over P =GF(q) for

fixed f, g in P then
a, B
e atarlieeer]
is a field of order .

Now let 7, be a Desarguesian affine plane with points {(x,, x,, ¥;, ¥,) | %;, ¥

- af—ﬁf]’ x=0 for y=(y1, y), ¥=(%,, %7)

€P, i=1, 2} and spread set y=x[
Bg,

and #?+fx—g irreducible over P.

We may use the construction method of (3.1) directly from this spread set
to obtain the following semifield plane: Let GF(¢*)=PJ[t] for #=1t0+p for
fixed , peP. Letting h(at, B)=a+Bf, g(a, B)—O0h(a, B)=/g, then

g(a, B)=PBg+0(a+Bf)=0a+B(g+f0).
Hence,

f(d—l—ﬁt) =g(a’ B)—h(a’ IB)t
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so that
fla+B2) = Oa+B(g+f0)—(a+BS)t.
4.5. 'The semifield plane of order ¢* and kernel GF(¢?) has the following

form:

SR AR EEL PRI ANy [

It is probable that this class of semifield planes is not isomorphic to the class
of (4.2) even though they are constructed from the same Desarguesian plane.
Notice that this also shows that a basis change in a base plane may lead to dis-
tinct planes in this extension process.

4.6. Other examples—the H-M-O example.

In Hiramine, et al., an example which is potentially new, of a translation
plane of order ¢* and kernel GF(¢%) is given which admits collineation groups
of the type we are considering.

We note here that this example may be constructed from the regular nearfield
plane (see [6], Example (2.5)): Assume p is a prime >2 and e GF(¢*)—GF(q)

24 2g—1
such that = GF(q). Define f('z;)ze”[q 2 ], then x=0, y:xl: “ o 'v] for
f(@), '
all u, ve GF(¢?) defines a “new” translation plane of order ¢* and kernel GF(¢).

q.
Note that f(v):{ ev . v a square } Now represent v=qa-+Ge for
—ev’; v a nonsquare

a, B€GF(q) and note that (a+Be)’=a—Be. Hence, if f(a+Be)=g(a, B)—
h(a, B)e for &=ef-+p, we have §=0 and

e(a+Be)! = e(a—Be) = —Bp+ae
for e+ e a square and,
—e(a+Be)' = —e(a—Be) = Bp—ae

for ¢+ Be a nonsquare. 'Thus,

fla+Be) = {—BP—I—ae, for a+Be a square } .

Bp—ae, for o+ Be a nonsquare

The contraction to the translation plane of order ¢ and kernel GF(q) gives
gla, B)==Bp where + is 4 or — depending on where @+ Be is a nonsquare
or square and %(a, B)=-a. The contraction plane is given by the spread:

_ _ a, B
*=0y "x[iﬁp, ta
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where x*—p is irreducible.

To see that this is the regular nearfield plane, we start from the André
construction.

Consider (GF(¢%), +, ), ¢ odd, and define a multiplication ‘o> as follows:
xoy=x"+y if y"* is a nonsquare and xoy=wx-y if y"*? is a square for all x, y
GF(¢%). Then it follows that (GF(¢?), 4, °) is a regular nearfield of order ¢* and
kernel GF(q). Let teGF(¢®)—GF(q) so that ##=¢v is a nonsquare in GF(q).
x'=(tw,+x,)'=—tx,+x, for x,, x,&GF(q). Hence, xoy=(—tx,+x,)+(y,+¥,)
for #y,+y, a nonsquare. Thus, xoy=t(x,y,—x,y,)— VX9, +%,y, for t,y+y, a
nonsquare and

= Hx,01+%,92) + Y%, Y1+ %57,

for #y,+v, a square.
The matrix spread set is, for x=1#x,+x,=(x,, x,),

—os={% ]
Yo Y2
for ty,-+y, a nonsquare and
=42 2
Y

for ty,+y, a square. It is now clear that by making the proper identifications
the Hiramine, Matsumoto, Oyama plane of order ¢* may be constructed (ex-
tended) from the regular nearfield plane of order ¢. However, the nearfield
plane can conceivably construct (extendt o) a number of distinct nonisomorphic
planes.

4.7. Non semifield planes from semifield planes.

By looking at the form of (3.1), it follows that g(a, B) and A(a, B) are
(bi)additive if and only if f(a+Bt) is also additive.

Thus, starting from a non Desarguesian semifield plane of order ¢# and
kernel GF(q) then, by choosing x=0 to represent the shears axis, the exten-
sion plane of order ¢* is also a semifield plane. However, by choosing a non-
shears axis to represent x=0), the associated functions g(«, B), #(a, 8) will not
be additive so that the matrices of the plane of order ¢* will not be additive.
Since this plane also admits a shears axis with group of order ¢* in this repre-
sentation, it follows that we now do not have a semifield plane.

An example will suffice to illustrate this idea.

Consider the semifield plane of odd order ¢* with spread:

=043 2]
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for v a nonsquare in GF(q), w, o €Aut GF(g) (see (4.1)). First let a=p°"" so
a”=p and B=—X so that the spread has the form

-1
x=0,y=x|:P o _le.
—')’X, P

Change bases by (x, y)e>(y, x) to obtain the spread in the form

P X )

-y Ap, v’ Bp v
x:@,y:x[p J x] =|ly=ux P':Y f:_l
Ap, v’ Ap, v

where
pd"l —X =141 X +1
A, y = Det [ ’ ]—— T _xetl |
0, __(yxw, P P 7

We may now follow the example of (4.1) to obtain a ‘“‘new’ non semifield transla-
tion plane.

5. Sequences of derivable planes
Let =, be any translation plane of order ¢* and kernel GF(q). Write 7, in

the form x=0, y= x[gl(;i ,3): h(of /9)]. Extend GF(q) to GF(¢*) writing

GF(¢*)=GF(q)[t]. If £=t0+X, let g(ar, B)=g\(at, B)—Oh(ex, B). Construct the
plane z{ of order ¢* and kernel GF(¢%): x=0,

7=y, ]

where f(v)=f(a+Bt)=g(a, B)—h(a, B)t. Now extend GF(¢’) to GF(¢") by
writing GF(¢*)=GF(¢*)[t,] for ti=1,0,+X,.
Let f(v)=f(v)+64" so that the components of the plane of order ¢* have

the f =,=[ R
e form x=0, y xfl('o)—ﬁlu", iy

and kernel GF(q') with components \:f? )’ "2 ] where f,(m)=f,(u+vt,)
W(m), u

=(fy(v)—u’t)). In this way, we obtain a sequence of derivable translation planes

from any translation plane of order ¢* and kernel GF(q).

]. Construct the plane (z{)1 of order ¢*

moo~ oAl = @ (e e

order ¢  order ¢! order ¢® order ¢'¢

Clearly, there are many other ways to vary the sequence. The isomorphism ques-
tions are completely open.
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The preceding shows that there are a vast number of new translation planes
of order ¢* and kernel GF(¢*) which may be constructed by (3.1) from transla-
tion planes of order ¢* and kernel GF(q). The point of view might be there-
fore to identify the planes obtained from one another by (3.1).

Also, each of the constructed planes of order ¢* is derivable where the
derivable net is not a regulus over the field in question. Note the derivable net
is x=0, y=x[v’ Oj]VvEGF(qZ).

0, o°

The translation plane derived from replacing this net has order ¢* and

kernel GF(g).
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