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1. Introduction

Elliptic boundary value problems for bounded domains have been studied by
many authors ([2], [7], [8], [9], etc.). A powerful tool was the so-called coercive
inequalities introduced by N. Aronszajn. Under the Lopatinski condition,
Schechter obtained L,-estimates of solutions of general elliptic boundary value
problems by using Fourier transforms. Agmon, Douglis and Nirenberg got
the Schauder estimates and L ,-estimates by means of singular integral operators.
We should mention among these, the work of Agranovich and Vishik [2], which
treated a vast class of elliptic boundary value problems. However there are
few literatures in the case of unbounded domains. Among these, we mention
Browder’s paper [4], in which he introduced the concept of uniformly regular
domains and investigated Dirichlet problems for such domains. In this paper,
extending Aronszajn’s coercive inequalities to unbounded domains, we study
general elliptic boundary value problems for fairly general unbounded domains.

Let Q be an open set of n-dimensional Euclidean space E” and let us
denote its closure and boundary by ) and T respectively. Let us consider a
linear partial differential operator of order 2m:

A= 3 au(x)D*,
K1<zm
where the coefficients au(x) are complex-valued functions defined in O and a
system of linear boundary operators of order less than 2m:

B]= Z bjy.(x)D“ j-:l, 2,"‘,m,
wl<m;

where the coefficients b;.(x) are complex-valued functions defined in some
neighborhood of T'.

We make the following assumptions on Q and (4, {B,}7-,) (precise defini-
tions and notations will be given in §2).

(A.1) Q is uniformly regular of class C*"****,
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(A.2) There exist constants § (0<6<<2z) and v,>0 (independent of x, £, and
A) such that

| P(x, ©)—N" [ Z 7 (€1 + N7

where A=7¢!®*™ and P(x, £) is the characteristic polynomial of 4.
Theroughout this paper A will mean complex numbers with argument 6/2m

(A.3) For every real, tangential vector 7 at x€I" and the unit inner normal
vector v, at x=T, the polynomial P(x, 742v,)--A*" in z has exactly m roots
zi(x, 7, \) (k=1, 2,---, m) with positive imaginary part for |x |-+ [7]|=0.
(A4) Set P,(3) = II (z—zi(x, 7, 1)) and

k=1

1 { O,(x, T+2v,)

ij(x, T, 7\,) = 2’7; —W—z”"dz,

where Q,(x, £) is the characteristic polynomial of B; and the integration is taken
along a closed curve in the complex z-plane enclosing all the roots 2y (x, T, \)
(k=1, 2,+--, m). We assume that there exists a constant ,>0 (independent of
x, T and \) such that

[det(Lu(x, 7, M) Z 71715+ [NV,
where N=31 (m;—j+1).
(A.5) {B;}T-, forms a normal system, that is,

(i) m;Emyif j =k, m;<2m.
(i) Q,(x, v,)=0 for xET.

(A.6) (Assumptions on the smoothness of coefficients)

(i) aux)eB(Q). In addition, if s=0, the coeflicients a.(x) for | u|=2m
are uniformly continuous in Q.
(i) bju(x)E B "i(T).

Then we have

Theorem 1. Under the above assumptions (A. 1)-(A. 6), there exist constants
¢ and r,> 0 such that for ue H***°(Q),

(LY ulamest M2 u < [[(A—N")u 34 [N [ (A—N")u|§
+i§ (<B].u>§m+s—m]'—‘(l/2)+ In] 2<2"’+S—mj—(l/z))<BJ_u>0)2]
if | )| >7,, where A=rei®™,

RemMARK 1.1. Theorem 1 is equivalent to the following
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Theorem 1'. Under the above assumptions (A. 1)~(A. 6), there esist con-
stants ¢’ and r1>0 such that for uc H*"*°(Q),

(L) e N1 B[ ANl (A~ Al
3 (Bt I [0 B )]

if I 2>,
Next we have to make stronger assumptions to obtain the existence theorem,
that is,

(A*. 1) Q is uniformly regular of class C®™*°*!,

(A*.2), (A*.3), (A*.4) and (A*.5) are identical with (A.2), (A.3), (A.4) and (A.5)
respectively (remark that (A.4) and (A.5) imply that there exists a constant
v,>>0 such that

1Qi(x, )| Z 041w, j=1,2,-,m,
where x€T" and » is any normal vector at x).

(A*.6) (Assumptions on the smoothness of coefficients)
(1) au(x)E B'"(Q).
(i) bu(x)E B"H(T).

Then we have

Theorem 2. Under the above assumptions, let |\|>r,. Then, for any
f(x)€ H*(Q), there exists a unique solution u(x)< H*™"*(Q) satisfying

(A—N™u=fin Q,
Bu=0onT, J=12,-,m.

Theorem 1 will be proved in §6 and Theorem 2 in §8. Notations and
precise definitions of terminologies mentioned above will be given in §2. In
§3 we give the definition of the boundary norms. §§4-5 are devoted to the study
of linear partial differential operators in a half space. We consider the adjoint
boundary system in §7.

Finally, I would like to express my gratitude to Professor S. Mizohata for
various suggestions and corrections. I would also like to thank Mr. K. Asano
for helpful discussions.

2. Notations and definitions

Let Q be an open set in E” and let us denote its closure and boundary by
Q and T respectively. Let x=(x,, &,, -+, x,) be a point of E”, E=(&,, &, -+, &,)
be any real vector and p=(g,, g, ", #,) be any n-tuple of non-negative inte-
gers. We shall use the following notations:
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lpl= pytpot ot p,,
gt = EfagheeEom
D* = D{1Djz-+-Din

where D,=38/iox,, k=1, 2,---, n.
For operators A and B; introduced in §1, we denote their characteristic
polynomials by

P, &) = 3 au(x)g*

|=2m
and

Oj(x, &) =m§ibw(x)§#

respectively.
Furthermore, the formally adjoint operator A* of A will be defined, if it

has a meaning, by

A*v = 3 D¥au(x)v)

1] <2m

and the characteristic polynomiai of A* is
P, £) = 33 au@)E".

Now, we give the definitions of domains considered here and the function
spaces on them (We use the notations and terminologies of Browder [4] on the
definition of domains).

DrrFINITION 2.1. Let m and s be two integers such that m>0 and s>0.
Q is said to be uniformly regular of class C*”**** if there exist an open covering
{N,} of T, a family of homeomorphisms {®,} of N, upon the unit ball
B,={y; |y|<1}, and an integer R such that the following conditions are
satisfied:

(1) Let Nj=®;'(B,,), where B,,={y;|y|<4}. Then UN/ contains
the R™*-neighborhood of T. '

(2) For each k, ®y(N,NT)=Bi ={y;|y|<1, y,>0}, while ®(N,NT)
=21:{y; lyl<1, yn=0}

(3) Any (R+1) distinct open sets {N,} have an empty intersection.

(4) Let ¥, be the mapping of B, on N, which is inverse to @,. Then &,
and ¥, are mappings of class C*”*°, and if ®,, and ¥, are the j-th com-
ponents of @, and ¥, respectively, there exists a constant M (independent of x, y
and k) such that |DP®(x)| < M, |DPV u(y)| <M, | D (%) < M -dist (x, T)
for |G| <2m-+s, x&€ N, and yE B,.

(5) To the normal direction at x&T" corresponds the normal direction at

Yn=0.
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In Browder’s definition the condition (5) is not explicitly stated, but we
make this assumption to avoid the ambiguity in our reasoning. Of course, our
domains defined above are uniformly regular of class C*”*° in Browder’s sense.

The following lemma due to Browder [4] makes clear the structure of unifor-
mly regular domains of class C*”+°**,

Lemma 2.1. Let QCE" be uniformly regular of class C*™*°*'.  Then there
exists a constant 8,0 such that given & with 0<<8<3,, there exist a countable open
covering {N,} of Q with the diameter less than §, a family of functions {ny} with
(%) E C™(N,), and a family of homeomorphisms {®,} of N, into E™ which
satisfy the following conditions:

(1) There exists an integer R (independent of 8) such that at most R distinct
numbers of {N,} have a non-empty intersection.

(2) For every k, the image N, under ®, is the ball B; of radius & about the
origin. If NyNT =%, O(N.NQ)=B;={y; | y| <8, y,> 0}, (N, NT)=2]s
={y; |y1<8, y,=0}. Furthermore, let ®,={®;} and ¥, ={¥ ;,}. Then D,
and ¥, are mappings of class C*™*°, and there exists a constant K (independent of
%, ¥, k and 8) such that | DP®;(x)| <K, |DP¥,;(y)| <K for all B with |B|<
2m+s, x€ N, and y< Bs.

(3) There exists a constant K (independent of x but depending on 8) such that
for every a and B with || <2m-+s, |B| <2m+-s,

,?2! Dny(x)|*| DPyy(x) | < K.

(4) For x€0, 0<7(x)<1 and 3} m(x=1.
k=1

(5) There exists a constant p with 0<p<<1 (depending only on n) such that
QC UNY, where N,=Y (Bys), with Bys={y; | y| <p8}.
k

Remark 2.1. If N,NT'=¢, we can take as N, a nm-dimensional ball of
radius less than § with some point in Q as a center and if N,NT'+¢, the
image of a n-dimensional ball contained in B, under ¥, of Definition 2.1. If
N,NT=*¢, @, satisfies the condition (5) of Definition 2.1.

Next we give the definitions of some function spaces.

DEFINITION 2.2. H/(Q). Let Q be an open set in E*. u€H/(Q) if
D*ucs L}(Q) for |a| <j. H’(Q) is a Hilbert space equipped with the inner
product

(v, v); = |Z<" (D*u, D*) 2 .
%<
We set
ullf = (u, w); for ucHIQ).

We also use the semi-norm
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|} ZIF.“Dmu”izm) .
=J

DeFINITION 2.3, $7/(Q), B/(T'). Let Q be a domain of E" whose
boundary T is a hypersurface of class C*”** in the ordinary sense. We say that
a(x)E B(Q), 0<j<m, if a(x)= C/(Q) and D%(x), || <Jj, are bounded in Q.
B/(Q) is equipped with the norm

la(x)|} g =1§' sup|D%a(x)|* .

i x€Q

Let b(x) be a function defined in a neighborhood of T'. We say that b(x)
belongs to B/(T"), 0<j<2m+s, if b(x)eC7 in the domain of definition and if
for all |a| <j, D®b(x)| are bounded on I". We give the following norm

18(*)15, g, = 23, sup|D®b(x)|".

o<

ReEMARK 2.2. The neighborhood of T" mentioned above may depend on each
b(x). Moreover, in the above definition, we can require the domain of definition
only to be a part of ) containing a neighborhood of I". In fact, such a function
can be extended as a C/-class function into a neighborhood of T

The following lemmas due to Browder [4] are used in a later section in
proving a priori estimates and the regularity of the solutions of our boundary

value problems.

Lemma 2.2. Let Q be uniformly regular of class C*™°™* and {n,(x)} be
a family of functions satisfying the conditions of Lemma 2.1. Then, there exist
constants K; and K; >0, 0<j<2m+-s, such that for us H*""(Q),

I3 < K, 33 Il
> bl <K ol

Lemma 2.3. Let Q be uniformly regular of class C*”***'.  Then, there
exist constants C; and C;,>0 such that for uc H*""(Q), we have, for

0<j<2m-+s,
[l |3 < &llulzmrs+C; el el
”u||3<5|u]:m+s+0j,e|ul§ ’

x2(2m+s—j)“u”§< ||u||§m+s—§— C,.m(zms)HuII% s

where \ and & are arbitrary positive numbers.

3. Boundary norms

In this section we give the definition of the boundary norms employed in
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Theorem 1. To begin with the simplest case of a half space, we shall use the
following notations: ¥ = (¥, ¥Yp-1), &' =En 2 Ens)y EX={y=(", ¥,)
y,>0}. Let v(y)=v(y’, y,) EH/(E?). We know that the trace v(y’, +0)
belongs to H/~“/®(E™""). Let us introduce a new notation for boundary norms.
Let v,, v,& H/(E?}), then

B @ewdiaw =, |E1E, +OBE, F0)E
where

(2) e, 0 = o[ ey, 0y
In particular denote

(33) -t = @ Dy

We know that
(3.4) oY am<c;|vld  for ve HI(EY),

where ¢; is a constant depending only on j (see, for example, Schechter [8]).
The following lemma is also useful for our reasoning.

Lemma 3.1. For ve H(EY), we have
3.5) W< oli+A[vle,

where \ is an arbitrary positife number.

Proof. —lo(y', +0)1* = — [ 2 ey, )iy, = —{ (T2 00 1 v,

8 gy < Sw s
Y 0|9

oo 2 o
<zso o] dy,,—}—xgo lo%dy, .

The integration in y’ gives (3.5).
Now let b(y")e B/E™ ), ve H/(EY). Applying (3.4), we get

(Y YDF - am<e; 1b(y" )0l -

Hence

(3.6) by )25 <51 B(y") 15, gegn-nl10113
more precisely,

(3.7) By Y- <y (1130134 bI3l0l_,)

Let Q be a uniformly regular of class C*™***! and take {N,}, {®,} and {n,}
corresponding to a fixed § (0<8<§,) in Lemma 2.1. Let u(x)EH(Q)
(0<j<2m+s). Then (nju) (¥x(y))EH/(B;). Since this function vanishes in
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a neighborhood of | y|=8|, we can consider this as an element of H/(EY),
hence its trace to the hyperplane y,=0 belongs to H/~/?(E""). Now we
define the boundary norm on T as follows:

DeriniTION 3.1, For u€ H/(Q) (0<j<2m-s), let us denote

(38) <u>§—(1/2),r‘ =Nk 2 <(77§u)(\lfk(y))>§—(1/2),l~:" -l

NT*¢
The convergence of the right-hand side is shown as follows: By (3.4),

<(77§u)(\1,k(y))>§—(1/2)<cj l (n%u)(‘l’k(y)) l 3,E"+ <Cjcjal |nf(x)u(x)|]§ ’
where ¢;; is a constant independent of k. Taking account of Lemma 2.2, we
get
(3.9) <”>§—(1/z),r‘<cj||u||§ .

It should be remarked that the left-hand side of (3.8) depends on the
partition of the unity. However as we shall show in Appendix, the norms
<u>§_(1/2),p—|—<u>§_p are equivalent to each other. Hence we can define the space
H7=/(T") independently of the choice of the partition of the unity.

Finally, let b(x)e B/(T'), (0<j<2m-+s) (see Definition 2.3). For
u(x)E HA(Q),

<b(‘I'k(y ' 0))(7ﬁu)(‘1’k(y ’ 0)>?—(1/2),E"’1
<CHB (3" 0) 3o RL)E (DI s »
where we used (3.6) by putting b(y')=5b(¥(y’, 0)) and taking its j-norm on
E"'N B;. Now from the expression,

(T(y’, 0)) = b(¥ix(", 0), -+, Wur(¥', 0)) 5
taking account of (W,,(y’, 0), -+, ¥,.(»’, 0))ET, we see that
| b(‘I,k(_yl: O)) I j,E*1 <¢ I b(x) I 7B

Thus we have

(3.10) <b(x)u(x)>5 70, < const. | b(x) |5 g poll(x)][F .
Finally let us remark the following estimate:
(3.11) <b(x)u(x)>5 r<const.|b(x) ] g pollu(x)l]F .

4. A priori estimates for operators with constant coefficients in a
half space

In this section we consider operators with constant (complex) coefficients
in a half-space E}. Modifying the notations of preceding sections, we denote
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the points of E} by x=(x’, #), where x'=(x,, -, x,,_,), and the points in the dual
space by £=(&’, 7).

Let s be a non-negative integer, and u= H°(E?). In this case the norm [|u]],
and the semi-norm |u#|, can be expressed by means of the Fourier transform
inx’. In fact, let a(&, ¢) be the Fourier transform of « in x’, then

iz = 33| [T+ 1g eyt Dta, oy,

E®-1

iz | (g eoripiae, orazar.
k=1JE""1Jo

We need the following interpolation lemma, whose proof we refer, for
example, to Mizohata [6].

Lemma 4.1. There exist constants C;>0 and C;,>0 (depending only on s, j
and &) such that for uc H*(E?}) and 0<j<s,

4.1) NE2u3<Ci(1ul 342" ulg) , A>0.
(4.2) llullf<é&luli+Cjelult

and if A>1,

(4.3) APl [F<Cy(u 340" ul8) .

Now let us consider linear differential operators with constant coefficients
in the half space E}:

AD,, D)) :IMZ au, Dy D¢

th=zm

BJ'(Dx” D,) =' P bleDﬁ’Df s

M|+ p=m;

where m;%=my, m;<<2m, j=1, 2,+--, m, and we denote the characteristic poly-
nomials by

A(E,, T) = 1 all‘ngk ’

Yh=2m
By, 7) :M”:mj bt T .
We assume now that (4, B;) satisfies the following conditions:
(L-l) lau| <7v,, |bjn|<’>’1-
(L.2) LA, )= =7 I*+ IN]*+7)"  for (¢, T)EE" and
A=y ei0/2m

(L.3) For every (&', 7)=(0, 0) the polynomial in 7 A(¢', T)—\"" has just m
roots 73 (&', \) with positive imaginary part,
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(L4) Set A, (¢, 2\ T)= H(T (', \)) and

B, 7)

’ 1 !
djk(f,x)=zgfm7k e

where the integration is taken along a closed curve in the complex T-plane
enclosing all the roots 7;(£’, A). We assume that

ldet (d;s(E", M) Zvs(1E, [P+ [NV (N :,;1 (m;—j+1)),
where v,, v, and v, are positive constants.

Let us remark that, by (L.3), the normal direction at the boundary is not
characteristic for any B;. In fact, if B;_ is so, then B; (0, 7)=0, hence we have
d;,(0, X)=:0, contrary to the condition (L.4).

At first we prove the following

Proposition 4.1. Under the above assumptions, given any f(x', t)E H*(EY)
and (g,(x'),, gm(x))E 1 H pmtsmmimA/D(E*Y) there exists a unique solution

ji=1
u(x’, t; \)E H*™(EY) satisfying
(4.4) (A(Dy, D)—N"u(x’, t; N) == f(x', t), t>
(4.5) BDy, Dyu(x’, 05 ©) =g;i(x"), j=1, 2,

where A=ref®*™.  u(x’, t; \) can be expressed in the form

(4.6) u(x', t; ) = w(x’, t; M)Fo(x’, t; A),
where
A ’ . 1/2 w e“
4.7 W(E, t; \) = (2m)V S = A, T\ FE', ),
(48) B(E" 15 0) = 31 (eE)~ B/, D(E', 05 1)
il Di ( I’ A ’
XE DE;T, x))Ik(t; ‘E ’ 7\') ’
where
o ett'r.rk 1
(+9) It £ 3) = 5§ E A

In the formula (4.7), F'(¢', 7) represents the Fourier transform of F(x', t)€
H*(E™) an extension of f(x’, t) to the whole space E” and in (4.8),
D;(&', \) represents the (j, k)-cofactor of the matrix [d,.(£', ).

Proof. Since the existence and the uniqueness of the solution u(x’, ¢; A)
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is well-known, we restrict ourselves to explain how to deduce the expression of
u. By the well-known method we can define the extension F(x’, t) H°(E") of
flx’, tye H°(E?) (linear operator) such that

(4.10) IFI.<Clfls,

where C is a constant depending only on s. It is evident that the function
w(x’,t; \), inverse transform of @(£’, ¢; 1), belongs to H*”**(E™), and it satisfies

(A(D.7, D)—A"™w(x', t; \) = F(x', 1).

Put wu(x’, t, N\)=1(x’, t; X\)+w(x’, t; A). Taking the Fourier transform in x’,
we see that

(AE', D)—N™dE", t; \) = fg', t;0), >0,
By(E', DYJ(E', 05 \) = 8(£")—B,(&', DYd(E', 05 0.

Namely #(£’, ¢; 1) is a solution of an ordinary differential equation in ¢ con-
taining the parameter (£', ), and satisfying the m boundary conditions at ¢=0.
Then it is also well-known that the solution is expressed by (4.8) (see also
L. Hormander [5] and J. Peetre [7]).

In the second place, we give the a priori estimate for the solutions given in
Proposition 4.1.

Proposition 4.2. Under the above assumptions, there exists a constant
(V1) Y2 V3)>0 such that for ue H*™*°(EY),

(A11)  ul o ot IMPE 2 | <y, ¥ V)| (A= N |34 NP [(A— N |3

"—2 (<Bju>§m+s—m,'—(1/2)+ |7\' I 2(2m+s_m"—O/Z))<Bju>o)] .

Proof. At first let us consider the estimate of w. For this purpose we
introduce the quantity ¢ and (7, 1") as follows:

(4.12) a={|E' ]+ N2 (0, V) = (i', l) .

a o

Let us remark that

(4.13) 7>+ N P=1.

Then, by virtue of (L.2),

(4.14) AE, Ty —N" | S a7 B

Now, using the Plancherel formula in (4.7),
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| Uz, s a) e, 6 )19
+oo A A
<avi* | UDHEE, 0 +a” | BE, 1]

The integration in £’ gives
(4.15)  fw(®’, 5 XN)omest [NV ] §< ey (| F(a', )54 IMZ| FI7),

where the semi-norms are taken in E”, and ¢, depends only on m, s.
In the second step, we estimate |B;(£’, D,)w(¢’, 0; A)| appearing in (4.8).
At first, it is evident that

~+o0 B N ” ~
BE', D’ 03 ) = ) |7 g kP, e

By the Schwarz inequality,
2

J

AN

dr X

|BAE', DY, 0 MI*<2a)™ [ (71 (814 11 1)
farierigr veyipe, 7.

Take 7'=qa7'7 as the new variable in the first integral, then

(4.16) (ITP+1E P+ IN) I BLE, TNAE, 7)—A")"
— a2(mj-—2m—3)(1_|_ |T’ IZ)—SlBj(W, T’)(_A("], T/)__‘T/Zm)—llz .

Taking account of (L.1) and (4.14), we see that there exists a positive constant
(71, 72) such that (4.16) is estimated by ¢,(v,, v.)a*™i "~ 2(14[7"[*)7'.  Thus,

(417) ‘Bi(‘f,) Dt)u/\}(fly 0; )\')lzgcl(')'v Vz)az(mi_zm-s)ﬁ X
S( I T [ 2—i— 'E' l 2_|_ Ix I Z)SI |’F”1(E/’ T) I 2d7<6(71, s)cl(')'n r),Z)aZ(mj—zm—S).H %

S(|Dfﬁ(s', B)*+a® | F(E', 1)|2)dt.

Finally, we estimate z(x’, £; A). Let us remark that D, (&', N)/D(&’, \) is
homogeneous of degree (m—m;—k) in (£, A). Next, the conditions (L.1)—(L.4)
imply that there exist three constants depending only on (7v,, ¥, 7s):

Im75(, M) =>8(vs 72}, 17500, M) <M(vy, 72)
IDjk(nv 7\'1)./1-)(7]) 7\")' <cz('7n Yas ')'3) .

On the other hand,

(4.19) I(t; £, 0) = a¥ "L(at; n, 2y, k=12,
(4.20) DI Lt £ A) = Toams(t; £, ) ©

(4.18)
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Now, by (4.18), we see that there exists a constant ¢,(v,, ., ;) such that
(+21) [Tats 1, )] e v v exp( — 2 at).

In fact, in the definition of (4.9), we can take a fixed closed curve of integration
independent of (», A').
Now

1D, WIDE, W1 |1 £ ) < o 16 Yo 1) X

“ 2 B az(k~m)—1 om.—1
m-—-m.— - Pl
kZ]l ¥y —5 <6(Vy Vo Va) T

0

In view of (4.20),
élD,-k(s', M/D(E, NI Sm | D™ Ty(t5 &' M) @<y, Vo V)T
Thus, from (4.8)
Qe S: 10, 1; x)lzdt+8:ll)%"’”ﬁ(§'» t; \) | dt
<e IIgHE) I+ BAE', DYb(E', 05 0)[7Tes(vy 7oy 1)+ im0,

in view of (4.17), this is again estimated by

(s 1) (e g ) 4 | IDIP(E, o) et o B 1))
Taking account of (4.10), this estimate and (4.15) prove the estimate (4.11)

5. A priori estimates for operators with variable coefficients in
a half space

In this section we use the notations of §4 and consider linear partial differen-
 tial operators with variable coefficients in a half space;

A(x, Dy, D) = A(D,, D)+ > cun(x)DiDi
184

+E2m

Byx', D,s, D,) = B;(D,, D'H_ml k2< bui(x" DDy
+h<m;

where m;<2m, m;==my, j=1,2,--,m, cu,(0)=0 for |p|+k=2m, b;,(0)=0
for |p|+k=m;. A,and B;, are homogeneous differential operators of degree
2m and m; respectively.

We assume that (A4,, Bj,) satisfies the assumptions (L.1)~(L.4) of §4, and
Cup(¥)E B(E™) and bjuu(x')E B "5(E™ ).
Let us introduce the two quantities:
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§= 20 suplag®)|*+ > sup |bum(x)]",
|| +k=2m x€ E”, I/{|<-f—]e<=mj x/€En-1
SIsm

M = E Icﬂ-k(x) |f,_¢B(Ei>+‘j“le | bj#k(x,)|§m+s—mj,$(l€”'l) ’

Ky ke

where each supremum is taken in the whole space. Then we have

Proposition 5.1. Under the above assumptions, there exists a positive con-
stant §, depending only on c(7y,, 7., ;) (introduced in Proposition 4.2) such that, if
¢ <L, the following inequality holds

(5.1) 6 s | M2 |0 | < De(yy Yo ¥o)[ | (A=A |2
F NN AN 34 3 KB it
j=1
+ l A | 2(2m+s—mj-(1/2))<Bju>§)] , uc H™ i‘s(Ef) ,

Sor IX| =7, (A==re’®*™) where r, is determined by c(7,, 7., v,) and M. More
precisely, r, can be considered as an increasing function of M.

Proof. From Proposition 4.2.
(5:2) |ttlomest NP2 0 3<e(ss Vo V) (Ao Nl 34 IV 1 (Ag— 2"l §
3T (B my - NI =B i)
b=

From now on, we assume that |A|>1 and that & be a positive number less

than 1. From (5.2) we have
(5.3) |l gmast NP2 | §—2¢ (71 vy V5) ]<% (right-hand side of (5.1)),
where
J=(A—Ayul?+ N (A—Aul 3+ z ((By—B )i s,
+g | X |2Ems=m=A (B, — B YudE .

The decomposition

(A—A4)u= > c,b,,(x)D‘;/Dfu—lwml Zz cur(x)DlyDiu
I Lr=om

w S5em
gives
(A—A)uli<e(E |ulm ot Mllullpms-1) -
Applying Lemma 4.1,
(54) [(A—A)ul i< c(C+EM) Ul st-cicM | ul§,
IMZI(A—=Aul§<e N2 (Elulm+MIullzp-) -

Applying Lemma 4.1, we have
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(55) 1N | (A— A1 3<AEHEM) ]S N (ct+CLM [N 75 3.
The decomposition
(B=Bu)=, 31 byu@)DEDiut 3 byls)DEDlu
gives, applying (3.7),
ABy= B sy <A | s s Ml s s)
Applying Lemma 4.1,
(5.6) B;=Bo)uomss-m;-aro < (€6 +CEM) |t i s+6.C" M |0l
Finally,

B R N S N R L [P R S PTE
MM (a3 Vg el IV M ]

In fact, consider a term <b;u(x")DsDiu;, where |p|+k=m; Making use of
Lemma 3.1., this term is estimated by

c{IN 7 bjur(x")DrDiu | 34 [N | | bjur(x")D Diu | o)
<INl kMl )+ g uld )
In the case where |u|+k<m;, we have similarly
<bjueDiy Diudo<c'(IN| "M |ulf 4 IN[ Mul}, ).
Therefore, we have

(5.7) || rem e mm (B — Bioups < c(C+M N ™) [ o s
+InFE e (C+M N ) [ulf .

Adding the right-hand sides of (5.4)—(5.7), we have
J<{(etetete)s+eletete)MA-MIN 7} ul .
+ INPEER{(e,CH-¢,C7 )M M| 72 2 (€ )E +(C{ e )M | N | 7% |u]F .
Now we take ¢, and & as follows:
1

2(:(")/1, ’YZ) 73)(61+'52+C3+64)§0 == z ’

(5.8) 1
26(71) Ya» 73)(C1+‘62+'63)M6 = F ,

then we see that, if we take |1 |* in such a way that
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27, Vo V(A +-6,Cot- Cl-0,C e )M <% A
we have

) 1 2 202m+s
ZC('YU Yas ')’3)]<”2‘(|u|2m+s+|7\'| (2 +)|u|§)

Thus we have (5.1). Finally, we remark that € is a decreasing function of M.
Since the constants C,, C/, C;’ are all decreasing functions of &, they are
increasing functions of M. Therefore, the quantity defined by

7o = {126(71, Vor Va)(1H¢,Cot-++-4-c, )M}
is an increasing function of M.

ReMARK. The proof shows that { can be replaced by

§'= 21 sup feu(®)*+ 21 sup [bu(x")[*,
|l +k=2m xesupp[u] |y|+[e=mj xesuppfu]
1<j<m
where supp [#] means the support of u. It is the same with M. Thus, if we
consider only the functions whose support are contained in Bj, then, in the

definition of ¢ and M, each supremum can be replaced by the one taken over Bj.

6. Proof of Theorem 1

In this section we give the proof of Theorem 1. Our method is to reduce
the proof to the results of §5 by using {N,, ®;, 7;, 8} mentioned in Lemma 2.1.
Let A®(y, D) and B§”(y, D) be the transformed operators of A(x, D) and
Bj(x, D) and denote their principal parts by 4¢"(y, D) and Bjg(y, D). The main
point of the proof is to show that (4s”(y, D), Big(y, D)) satisfies the conditions
(L.1)-(L.4) of §4 with constants v,, v,, v, independent of k and 4.

Denote u(Wx(y)) by vx(y) and 7(¥(y)) by 7.(y). Let us begin with an
elementary lemma.

Lemma 6.1. Let Q be uniformly regular of class C*™***'.  Then
1) For uc H/(Q), j<2m-+-s, and\> 1,
23 {Imive 5+ 0% mive [ > (i) || §.at 2" [u]50)

where ¢,(§) is independent of 5.
2) Suppose that u€ H/(Q), j <2m-+-s, and that the support of u is contained

in Ny. Then forn>1,
(1) (lul3 ot N7 Tul§ o) < [0e] 5417 [0, 1§
<e(f)(lulfotr7|ulfo),
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where ¢,(§) is a positive constant independent of k and 3.

3) For us H7*"(Q), j+ |v| <2m+-s, there exists a constant c(at, 3, §)>0 such
that

1 [ DY )DEm»)Dieuy) 3 <ela, B, &)l

Proof.

2) Since v(y)=u(¥4(y)), in view of the condition |D*¥,(y)| <K (see
Lemma 2.1.), we see easily

lve |5+ lve§<cjllullf o .
Now in view of Lemma 2.3, [[u]|} o<cj(|u|} o+ |#]3 o). Hence
|7)k|3+ Ivk|5<5j05(|u|3,g+ ]“|%,Q) .

Adding to this the evident inequality |v,|§<C|u|3, multiplied by (A\*—1), we
have

loe 507 [0a ] §<cjei(lulf ot ul8 o) +(A—1)Clulf o
= ¢;cs|ul} ot {c; 5+ (M —1)CH ulfa,

setting ¢,(j)=max (c;cj, C),
S ol N ol <e(i)( 1130t uld).

Another inequality is proved in the same way as above by considering u(x)
=0y(Pu()).
1) We apply 2) to the function 7§(x)u(x). Then

(7506 30 [ nive] o= c(7) (| m3u | 5 o+ N7 (50| g)
On the other hand, by the interpolation lemma on Q (see Lemma 2.3), we have
[n3ul ?,a‘f' |7 5,0260”77%““?,0 ’
where ¢, is a small constant independent of 2 and §. So using Lemma 2.2, we
have
S (17l 3 ot N | rdul3.0)> K5l o+ (29— 1) 32 [ tul3 o
Zc(f)(lulf o217 ulfa), A>1.

Thus

23 (Irionls ot 1" [ miv| 8.0)=6() () 1ul5 o2 ulf o) -

3) Since 7x(y) =7(Tu()), ve(y)=u(¥(y)), representing the derivative
Dy (Dye(y) Doy (y) Dive(y)), |v|=j, as a linear combination of
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{Dyu(¥e(¥))}iwi<ivi+ v With coefficients in the polynomials of Din,(W,.(y)),
Dy (y), we see easily the desired inequality.

Lemma 6.2. We suppose (A.1)-(A4.6). Further, suppose that there exists a
partition of unity {®@,, Ny, 1, 8} in Lemma 2.1 such that, for us H***(Q), the
inequalities
(6.1) 1730k Lo st N7 030, [ S CTH(AP =N (00g) | §

N (AP A 03) 34 3 (B (7300 emy i
+ [ N[ FEmE A B () 08)]

hold for k=1, 2 ,---, with some fixed constant C and |\|>r, (independent of k).
Then there exists r, such that the inequality (1.1) holds for |\| >7,.
Proof. In view of Lemma 6.1, 2),

(6.2) [(AP—=A")(niwe) |3+ [N 7 [ (AP —N")(nive) | 3
S (A—N") i) |3+ ][ (A—N")(730) 7] -

Now
(6.3) (A—N") ) = 2 A—N"Yu+P(x) ,
where
Pu(x) = al 4 Iﬂ’ZJ' ¥ <Zmé'a.ﬂa(x)Dm’heDB’haD"u .
Il <2m—1
Since c,g(x)E B°(Q);
(6.4) 2 (1w 8- I | @ 1 8) < Ml Lo -1+ I |t e} -
Next, put
B (nivs) = 1i(Bi ve) V()
where Viu(¥) = 22 Ciewp(¥)D 0 DPryy e lyl<m;—1.
Then

(6.5)  <BSP(M508)Vom s s-m -t N T i ( BPvg)
S2{UBT V) o s-m-cafpt [N T (B og) b}
£ 2 U st 2 NSO
Now, by (3.4),
2<¢jk>§m+s—mj—(1/z)<cl‘l’jk | §m+s»mj<clM, 2 lDwnkDﬂnkDy‘kaZers—mj

lal+ 181 T 171 <m;
lrI<m;-1

and making use of L.emma 3.1,

ZIN[PEmT T G K2 IN T [y [T 2N [ | F
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Adding in k, and making use of Lemma 6.1, 3),
(6.6) 24Vt s-m;—crm 2| M ETTITT Y 08
Sl st P75 ] A NP0 [
In view of Lemma 2.3, this is estimated again by
Elulimrs " CINPE™ P ulg,  for  |N|>r,.
(6.2)~(6.6) and Lemma 5.1, 1) prove (1.1).

Proof of Theorem 1. Let (A“(y, D), Bj*(y, D)) be the transformed
operators of (A(x, D), B;(x, D)) by the transformation ®,(x). From Lemma
6.2, it remains to prove that (A%, B{) satisfies the assumptions (L.1)-(1..4) of
§4 with constants vy,, ,, v, independent of %k and §, and that the quantities ¢,
become uniformly small as § is taken small.

67) A%y, D) :mgmnﬂwk(y» A3 22 hnionp,)

68 By D)= 3 bavo) I (33 22 (ro,)

where D;=D, .

Let us introduce the linear transformation:

(6.9) E=T%;, where T - [&] .
0x;

We interpret this as follows: T, more precisely, T3® maps the vectors 7 at the
point ¥ to the vectors £ at x==W,(y). This mapping is isomorphism. We can
say more:

1) T®v,=c(yw. x=T4(y), where v, (v,) represents the normal of unit
length at x€T (at yE S, where S: y,=0).

2) For any tangent vector 7’ at yE S, T®»’ is a tangent vector at x==V(y).

Evidently

(6.10) Tl <|T®n|<clnl,

where ¢ is a positive constant independent of & and 8.
In particular

(6.11) < e(y)<c.

Hereafter we change slightly the notations. We dentoe the tangent vectors
at xT by &, or simply by &', and that of y&.S by 7"

Let A3°(y, D), B55(y, D) be the principal part of 4%(y, D) and B{*(y, D)
respectively. We have
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A'(Jk)(y’ 77) = Ao(\Pk(y)’ T(k)”)’ 333’(}’, 7]) = B/‘o(‘yk(y)’ T(k)"]) .

Then it is easy to see that we can take 7, and v, in (L.1) and (1..2) independently
of k and 8§, in view of (6.7), (6.8), and that the quantities ¢, become uniformly
small (in k) if § is taken small. Consider now (L.3).

Let 2} ®(y,7’, \) be the roots with positive imaginary part of 4§(y, n'+z2v,)
—A*"=0. Now, A‘()k)(y’ 77’+2Vy):Ao(\Pk(y)7 T(k)(n’_*—z”y)):Ao(‘yk(y)’ T%®y'
+cx(y)2v,), where x=¥,(y). Hence

Py 0’y M) = 2 (Wu(9), T, Mey)™ -
Hence (L..3) is satisfied. Consider

Lf By, n'+avy)si T g
7i 11 (22 Py, 7', V)
i=1

L§§)(y’ 7', 7\') =

Since Bt (y, 7' +2v,)=Bi(Yu(y), T®n'4cy(y)2v,), putting c,(y)z==z" in the
integral, we have

Li5(y, 7'y ) = c(3)"Lij(Pe(y), T®n', 7).

Hence, |det L%(y, 7', A)| = ci(»)V'| det L;(Wu(y), T®n’, \)|
= (Y)Y (| T |+ NPV

Now, in view of (6.10) and (6.11), we see that (I..4) is verified with a constant
independe of k£ and §. Finally, by (6.7) and (6.8), we see that the quantities M,
(in ®@,(N,)) introduced just before Proposition 5.1 are bounded sequences (for
each fixed §).

In conclusion, to apply Lemma 6.2, we choose a partition of unity
{®(x), Ny, 8} as follows: Since v,, v, and v, can be considered independent of
k and §, the ¢, in Propositon 5.1 can be considered independent of % and 8.
Thus we choose 8 in such a way that {5 , introduced before Proposition 5.1 (see
the remark at the end of that proposition) be less than &, for all &.

7. A priori estimates for adjoint systems

Let Q be a bounded domain of class C ****** (which is necessarily uniformly
regular of class C*”***') and assume that (A4, B;) satisfies the assumptions of
Theorem 2. Then we know that there exists another boundary system
{Bj}, j==1,2,---,m, which is called an adjoint system, such that, for all
u, vE H*™(Q), the identity
(7.1)  (A—N*"™u, v)—(u, (A*—X")0) = §mj (Bju, C;v)p+ JX:]} (Clu, Bio)r

=1

holds, where C;(x, D) and C/(x, D) are also differential operators. More
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precisely, ({Bj}jz1 ...m {Cic1,m) and ({B3};—i ..o {Ci}jer ... w) form two
Dirichlet systems (in the sense of Aronszajn-Milgram [3]). The form (u, v)r

meansg uvdS.
r

We know that (4*—X*", {B}} ;... .. ) satisfies also the assumptions of
Theorem 1 (see N. Aronszajn [3] or M. Schechter [9]). In this section we shall
show that the above fact remains true in our case and derive an a priori estimate
for such an adjoint system, which is used in proving Theorem 2. Our statement
is as follows:

Proposition 7.1. Under the assumptions of Theorem 2, there exists another
system {B}} (which is called an adjoint system) satisfying (7.1), and that
(A*—X*", BY) satisfies the assumptions of Theorem 1 (the constants appearing there
may be different). B/ are all independent of \.

Before proving this proposition, we begin with some remarks.

Let A(D,) be a differential operator of order 2m such that 4(7)%0 for T€ E'.
We assume that A(7)=0 has m roots 7;(counting the multiplicities) with positive
imaginary part (therefore m roots 7y with negative imaginary part). Given
{BAD,)} j1,2 ... m satisfying the following condition: B,(7) are lineary independent

modulo A4.,(7)= ﬁ (r—77), and assume that the order m; of B,(7) is less than
j=1 :
2m. Then

Lemma 7.1. Suppose that there exists another m differential operators B)(D,)
such that the identity

(7.2) (A(Dy)u, v)—(u, A¥(DyJo) = J_ZZ;BJ-(D:)u(O)C AD)v(0)

+ 33 CY(D,)u(0) BY(D,)o(0)

ji=1

holds for all u(t), v(t)E H*(EY). Then {BY(7)},_, ... are linearliy independent
modulo A_(7)= I1 (1—73).
j=1

Proof. Suppose that B/(r) are linearly dependent modulo A_(r). Then it
is easy to see that there exists a function v,(t)eH>(E}), ,(f)%0 such that
A*(D,)v,(t)=0, Bj(D,)v,(0)=0. Now we know that, under the assumptions,
there exists a (unique) function u(f)€ H*(E}) such that A(D,)u(f)=vt),
B,(D,)u(0)=0. This contradicts with (7.2).

Now we consider the simplest case in E”. The boundary is x,=0, and
Q=E%={x,>0}. Let A(D), {B{(D)};-, ... n be differential operators of homo-
geneous order 2m, m (< 2m), respectively. More precisely,
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(73)  A(D)= 3} aD* = a,Di"+a,(D)Di" "+ +++ a,, (D)

bl =2:
B/(D) = 3} buD* = by, D3y (DVDR 4+ 4-b; (D),

|=m;

where D'=(D, ,---, D,_,). We assume the same conditions as in Theorem 1:
(7.4) AN E(EPF MY, A= rei

Let 75(£’, \) be the m roots with positive imaginary part of A(¢’, 2)—A\*"=0.
Bj(¢’, 2) are assumed lineary independent modulo 4 (2)= fI(z—-~r;‘(§’, ).
More precisely, we assume that the Lopatinski’s determinant sz:t_ilsﬁes

(7.5) |det Lix(E", N5 A—=N", By) | Z (18 1% NN~

Now we construct {B/} in the following way (see Schechter [9]).
Take u, v H*” (E%). The integration by parts gives

2m 1

(7.6) (A(DYu, v)—(u, A¥(DYo) = i 3 (Dku, N,p_y_ )1,
=0

where

7.7) Nyporu(D) = go Byrs- (D)D)

Now we add the differential operators {D};_, , ... ,, (m/<2m) to the given system
{B,D)}, where {m,,-:,m,}N{mi, -, mn}=¢. By rearrangement, we may
assume that the order of B; is j. We denote the original set by {B, };- .. m
and the added set by {ij} jem+1,. 2m Lhis rearrangement made, let

By = by(D)+by(D)DsA-+e4by (DD, 5,D4 (=000, 2m—1).
Then we have
7.8) D} = d,(D")B+-d,(D')B,+-++d;B;,

where d; (') are uniquely determined. More precisely they are polynomials of
by, b (&) (4, j=0, 1,-++, 2m—1). If we put

(7.9) C (D)= —i :2 @ /(D" )Ny, (D', D,),
we have
(7.10) (Au, v)— (4, A*0)="3" (Bju, C;0)= 33 (Byy tty Cp 0)-+ 53 (B, 1, C,p 0).

If we put B;=C,, ., C;=8B,, ., C;=C,, (j=1,2,.-,m) and using the
original index, we can write (7.10) under the form
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(7.11) (Au, v)—(u, A*) = 3} (Bu, C;0)+ 3 (Chu, Byo) .
Clearly, (B;, C%);_1,.....m and (B}, C,);_,,.... ,, form two Dirichlet systems.
Now we claim

Lemma 7.2. Let us assume (7.4) and (7.5), and that
laul, 1bul, 167 <M.

Then there exists a positive constant v depending only on M, vy, and v, such that,
for all {A, B} satisfying those conditions, the adjoint system {A*—\", B’} thus
constructed satisfies

(7.12) Idet (8", N5 A*—X", Bj)| =v4(1E [+ [y [PV~

Proof. The above construction shows that, if we put A(D,)=A(¢', D,,)
—\*", By(D,)=B,(£', D,), then the identity (7.2) holds for all £, ». 'This means
that the left-hand side of (7.12) does not vanish for all (¢’, X)=0. Since this
is a continuous function of (£’, 1), and homogeneous in (£’, 1), we conclude that,
there exists a positive minimum when |£’|*-+ | A |*=1, for each fixed (4, Bj).

Now we consider the space of the points P={ay, b,.}, in the cartesian
coordinates. 'The set satisfying the conditions mentioned above forms a compact
set F in that space. Next, let us remark that the polynomials Bj(¢’, £,) are all
continuous functions of P. Thus, the mapping defired for |£’|°+ In|?=1, and
PEF,

(&', N, P) = |det Lj(g’, X5 A*—X", BY)|
is continuous. We can see that there exists y3>0 satisfying (7.12).

Proof of Proposition 7.1. Since T is supposed to be unifromly regular, we
consider at first the local construction of adjoint systems by using the mappings
®,(x). We shall construct the adjoint system B}®(x, D) (j=1,2,-:+,m) in
each N,. However, we shall construct them in such a way that their principal
parts Bj{"(x, D) coincide with each other. Namely, if x & N,N N, NT, then we
have B}§*(x, D)=B}{(x, D)(j=1, 2,--,m). For that purpose, we consider an
open set N, and the mappying y==®,(x) (x=,(y)). Hereafter, we omit the
suffix k.

By assumptions, ®(x) satisfies the conditions;

1) x€T'=®,(x)=0 (that is y,=0),
2) To the normal directions at x corresponds the normal direction at

S:y,=0.
Now
() 2 0®P; 9 2 d
7.13 = i =",
(7.13) Ox; ,Z‘l' ox; 9y, = " ay;
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Attached to this, we consider the linear mapping
(7.14) E—= 2,
or more simply

(7.15) E=Ty.

We interpret this in the following way: For the vector % at the point y, T
represents the vector at the point x="(y).
We see easily the following facts;

1) For yES, let v, be the normal of unit length at the point y, then 7Tv,
=c(x, T)v,, where v, is the normal of unit length at the point x=="¥(y) and
c(x, T) is a scalar.

2) Let 7, be a tangent vector at y= S, then T%,=§;, where &; is a tangent

vector at x&1T".

3) Let | T|=det®;;. We may assume it to be positive. Then =Z—;

=|T|™". We see that dS=c(x, T')Jdy’, where c(x, T') is the quantity introduced
in 1), and dS is the surface element of T'.

Now let A(x, D) be a differential operator of order 2m. Let us denote its
principal part by A°(x, D) and its transformed operator by A(y, D). We know
that the principal part A%y, D) is defined by

(7.16) Ay, n) = A%, Tn).
More precisely,
(7.17) Ay, 1) == A(¥(y), Tn).
Moreover, if xT, then
A, T(opy+n")) = A%, 2, Tv,+T7') .

In view of 1) and 2), we see that, if
(7.18) Ax, 20, +E) = ay(x)2™+ay(x, E')e™ o Fa, ¥, E),
then
(7.19) Ay, 1) = ay(¥)(e(, Tn,)"+a(y, Tn')en,)" '+ +an(y, Tn'), yES.

Conversely, given a homogeneous differential operator a(y, D’) where D’==
(Dy,, -+, Dy, _)), if a(y, 7") can be written as

(7.20) a(y, ') = h(¥(y), Tn’)

with a homogeneous polynomial #(x, £), then the operator a(y, D’) is equal,
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neglecting the lower terms, to the transformed operator A(x, D¢). In this sense,
we shall call the polynomial a(y, 7’) of the form (7.20) quasi-invariant. Let us
remark that the product of two quasi-invariant polynomials is quasi-invariant.
Finally, the transformed operator D, is ¢(®(x), T')D,,.

Now we construct the adjoint system. We proceed just in the same way
as in the simplest case explained as above. Let us write

A, D', D) = 33 Aoy, D)D)
We observe that
o3, 1) = @ o(¥(3), T7'),  YES.
Aom-e(¥s 1) is quasi-invariant.
(Au, v)-—(u, A*v) = (A(y, Dy, v);—(u, A*(y, D)v);,

where ( , ); means the scalar product with the measure Jdy. By integration by
parts,

= igl((("Dn)ku’ sz—l—k'v)s,c]a

where (, ),; means the integration on S with the surface measure ¢Jdy’ and

Nomosr? = 33 MDY A s 43, DY(JO) -

7=0

Let us remark that
2m—-1-k
(7.21) N (3,1, D) = 23 Hopeoros- (3, 7°)(eD,) .
j=0

Next, we add to the system {B;}, the m differential poerators {D}#},;_, , .. .
(m}<<2m), where {m,, ---, m,} N {mj, ---, mi}=¢. By rearrangement, we denote
this by {B;(x, D)};—.... sm-1. We may assume that the order of B, is j. Let
By, D) be the transformed operator of B;. Then

(122)  B,= By, D)+ Byy, DD+ -+ +b,(5)D,) -
Hence
(723) (D) =3 Ay, D)B,y, D', D),

A (3, DY=b;(»), (j=0,1, -, 2m—1),
where AY,(y, ) are also quasi-invariant, for B7,(y, 7") are all so. Put

Co) = —i(e]) ™ 5 A, DYeINuyr-12) -
Then
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(7.24) (Au, v)—(u, A*0) = 3 (Bu, C;0)s,. -
Let us remark that

(7.25) C(y, 7', cD,) = —z:g Ay, 7')N s a(3, 7', D).

Denote by C; the transformed operator of C;. We observe that the principal
part of C; is invariant with respect to ®.
This remarked, write (7.24) in the scalar product in the x-space:

2m—1 m 2m
,Eo (Bju, Cv)p = ]El (iju, v)-+ j?‘_mjﬂ(iju, ij'v) .
Up to now, we omitted the suffix 2. Now we put the suffix & Put

Bg(k) — C

mjtm ) Cj, = Bm C.(’k) = Cmi (]=1> 29 ) m)’

j+m )
then observing B,=B,, (j=1,2, -+, m) in the original notation, we can write
(7.26) (Au, v)—(u, A*v) = 3 (Bju, CPv)+ 3V (Clu, B ®v),

j=1 j=1

for v having its support in N,

From the above construction, we observe the following fact: In order to
know the principal parts of B} (x, D) (j=1, -+, m) at the point x,EN,, it
suffices to construct the adjoint system by the process explained just before
Lemma 7.2, replacing there A(x, D), B,(x, D) by A°(x,, D), Bj(x,, D) and T' by
the tangent plane at x,. For this reason, we dentoe the principal part of Bj*(x,
D) simply by Bis(x, D). This is the same with C{*.

Now

(Au, v)—(u, A*v) = ; (Au, n3v)— }; (u, A*(n%0))
= SY (B 3 CP )+ B (Ch 3 B0 ().

Put Bjo=3] Bi®(7}v), C,o=2>] C®(n}v). Then we see that (7.1) holds. We
k k

see also that the principal part of B} is nothing but Bjo(x, D). Then, by virtue
of Lemma 7.2, we see that the condition (A.4) is satisfied for (4*—A*", BY).
Since it is easy to check the other conditions, we omit it.

From Proposition 7.1, we have the following

Theorem 1*.  Under the assumptions (A*, 1)-(A%*, 6), there exist constants
c*>0 and r¥ >0 such that for us H*”"(Q),

[t [ [ (A=K 2 X (A=Kl
2 B3yt IO Bl
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if IN| =¥, where N=re’®*™ and m), is the order of B).

8. Existence theorem (Proof of Theorem 2)

In this section we give the proof of Theorem 2. We use the method of the
proof employed by M. Schechter [9]. But we need one lemma on the global
regularity of solutions of our boundary value problems.

Lemma 8.1. Suppose that (A—\"", {B,}T..) satisfies the assumptions of
Theorem 1.  Then, if (A—\"u=fc H*Q), uc L*(Q)N H****(QN N,) for each
Ny and Bju=0 (j=1, 2, .-+, m), it follows that u€ H*"+*(Q).

This lemma is an extension of Theorem 3 in Browder [4], in the case of Dirichlet

boundary value problem. The proof of Lemma 8.1 will be given at the end of
this section.

Proof of Theorem 2. Consider the quadratic form in H*™(Q);

[u, 0] = ((A* =N, (A*—N")o)+ ]Z:‘ (CBfjtty Bi0Dsn-y-cii>

A | N[ PO Blu, Biw,) .
From Theorem 1* for s=0, we have

(8.1) CHul o <[wr, u] <Cllull;

and it follows from (8.1) that [u, #]/* defines a norm equivalent to the usual one
of H*™(Q). We denote by $ the space H*™(Q) equipped with the positive
Hermitian form [, ©]. 9 is a Hilbert space and its elements and topology
coincide with those of H**(Q). On the other hand, for f€ H*(Q), v—(f, v) is
a bounded anti-linear functional on . Hence, by the Theorem of Riesz, there
exists a unique we H(=H?**(Q)) such that

(8.2) [w, v] = (f, v) for all v H*™(Q).

On the other hand, if we consider the problem in each N,, it is known
that we H*™*(Q N N,) (see, M. Schechter [9]. Theorem 6.1). Then, put

u = (A*—N")we L(Q)NH™*(QNN,).
Take a function v& C§™(N,) which satisfies Bjv|r=0. Then (8.2) becomes
(u, (A*—=N")) = (f, ©) -

Since ue H*”"*(Q1N N;), we can apply the identity (7.1). Then taking account
of Bjv| =0 (j=1, 2, :-+, m), the left-hand side is equal to

(A=), v)— 33 (Bju, o) -

Supposing in particular that v&€ C;”(Q N N,), we conclude at first that
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(A—\"wu=f, x€Q NN, (hence x€Q).
Therefore,
SV (Bju, Co)r =0  forall veC(N,)
=1
satisfying Bjv|r=0.
Since {Bj}, C ,.}3';1 forms a Dirichlet system, we see that Bu|r=0 (j=1, 2,

.-+, m) for all x&T'N N, and hence for all x&T'. Finally, applying Lemma 8.1,
we see that ue H*"*°(Q).

We conclude this section with the

Proof of Lemma 8.1. From the assumptions of the lemma, it follows that
ucs H*™(K) for any compact set KCQ. From Lemma 2.1, |JN;DQ, where
k

Ni=Wy(By). Let Ny={y; |y:| <1, i=1,2, -, n}, Ni={p; lps| <1, i=1, 2,
coeyn—1, 1>9,>0} and B,={y; | y|<n*+1}.
Then, there exists a homeomorphism ¥, of class C*™"* of B, on B; carrying B,
onto B,; with an inverse @, of class C*”**, Furthermore, if we define
fl (1-5%) YEN,
()= |
0 YEN,
and if we set
{ C(Py(Du(x))  XEN,
X)) =
0 xEN,,

it follows that {3""“uc H*"**(QN N,). Then the following estimate holds (see,
Browder [4]).

(8.3) IMZZjIICiD’BuI]§<8]ﬂI§n+SHL’?DBullﬁ—i-KeHullizuvkn o

where € is an arbitrary positive number, and K, is independent of k. From

Theorem 1, we have

(84) G ullpst IN2E Y EE™ Ul < CI(A— AR u)lIF
I AN ) [ 3D (CBAE U)oyt
s B Em)g)

Since  D*({3"*u) = ;‘,":"‘”D"’u—}—l HZ‘I leB(x)é"ﬁ'D”u ,  |al<2m-ts,

we have B<’

S Iz 3 IGDE-K, S DR,

|@1<2m +5

where K| is a constant independent of &,
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Similarly,
2 DY A=A E - u)8<2 2 IEF™ "D (A—N*"ullf+K, > [IZ¥'DPull3 .
|al<s |I<s 1BI<2m+s-1
On the other hand,

Bj(Czkm+su) — Cim+sBju+ Z djﬂ(x)éa%m»-s—ijmDBu .

1BI<m -1

Since Bj;u| =0, and taking account of (3.10), we have

CBACE W somy-ro<C 3D |l MDAy,

-

<K, > |IE8DPu|[§ .
1gl<2m+s—1

Since <{B({3™"°u))} is estimated in the same way taking account of Lemma 3.1,
we have finally

|laj<2m +s

5 EEDuE<C, 3 g DU AN C 3 IEPDA .

<zm+

Since 0<<&,(x)<1, by using (8.3), we obtain

(8-4) Z SHC‘,,“‘D"'M |§< C(”(A-‘" sz)u| |§15(Qn Nk)‘|‘ | |u||%.2<an Nk)) .

||<<2m +

Since &g(x)=>#>0 for x& N}, where « is a constant independent of &, adding in
k) we have “u“2m+s<+ 0.

Appendix

To justify Definition 3.1, more precisely to define the space H7~%/*(T"), we
want to prove a theorem which is known when T is compact.

Given any two partitions of untiy {N,, ®@,, 7,} and {N}, @}, {4} satisfying
the following conditions:
1) There exists an integer R, (resp. R,) such that at most R, (resp. R,) distinct
numbers of N, (resp. of N}) have a non-empty intersection.
2) @j satisfies the same conditions as (2) of Lemma 2.1 with § and K. @}
satisfies also the same conditions with &', K'.
3) There exists §,<<1 (resp. ,<<1) such that 7,(¥(y)) (resp. &x(¥i(y)) has its
support in By ; (resp in By,y) (k=1, 2, -++).
) SUDx)1* Do) P<K,, SDu(x)|*| D) *<K,,

‘ ' for |a|+|B|<2m+l.
5) 0<m(x), L<1, SrE=1, Dei=1, for xeq,
Then we can define two different semi-norms <u)>;_(,s,; following Definition 3.1.
Let us denote them by <u>;_q/», and <u);_qs» , respectively. Now we claim

Proposition. Two norms <u)j_cmat 23 M ls and <udi-apm -t 25 1Ll
) F= =
are equivalent to each other,
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To prove this, we prepare several lemmas.

Lemma A.l. Let u(x) be a function defined on T such that supp [u]&N ;N
NiNT, then

c|u(TAN| < (PP <e Nu( T »
where 0<s<1 and ¢, ¢’ are two positive constants independent of i, k.
Proof. We change slightly the notations. Let v(y)=u(¥:(y)), x=oi(x),

and y;,(2)=®;o D, '=®; (P}(2)) and let us denote ¥(2)=uv(y;x(2)). Now we
know that in E”~* the s-norm (0<<s<C1) has the relation

[ini=16eyan =, [ 120020 4y,
Er-1J)Er-1 Iyl“'yzl

which can be seen by taking the Fourier transform of (y,) after changing y, by
y=3,—¥,. Denote v;,(2,)=y,, Vir(2:)=Y., dy=]:x(2)dz. Then the right-hand
side can be written

|9(2)—0(2,)|° . () dedz.
Sglyik(zl)_yik(zz)l"_”[]lk(zl)j'k(%)l e

Now Cu-llzl"zz’ < ’yl_yzl < 60’2‘1—~2’2| ’ Cx_l< ',zlz(z), < ¢y
where ¢, ¢, are constants independent of 7, k. Thus the lemma is proved.

Lemma A.2. Letv(y)e H(E" "), 0<s<1, and a(y)€ B'(E"""). Letv/y)
be the temperate distribution whose transform of Fourier is |m|°. Then there exists
a constant ¢(s, n) such that denoting

Cov = [vs*, alv = yx(a(y)o(y))—a(y)(vs+v(y))
we have

ICol| L2<e(s, m)|a(¥) |1, gem-vllol] 22 -

Proof. Let a(n)€Cy be a function which takes the value 1 in a neighbor-
hood of the origin and 0<a(7)<1. By the decomposition |7|°=a(7)|7]|°
+(1—a(n))|7|°, and taking the inverse transform of Fourier, we have the
corresponding decomposition y,=v,+v,, where $,=a(7)|7|°. Then

[vs*, a]v = [y, a]o-[v.*, a]v.

Since [|[vo*, alv||<c|a],||c]], it suffices to consider the second term. At first, let
us show that y,y,€ L'(E"™").

|91, = ¢ [ ar{(1—atm) 7] Vdn
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shows that, if we take 2p<<m+1+s, |y|*?y,(y) is continuous and bounded.
Next, y,7,=y:7,—Y:7, shows, since ¥,7, is a function of homogeneous of degree
—(n—14-s—1), that y,y, is locally summable. Hence y,y.€L' (=1, 2, -+,
n—1).
Now
[ree, alo = [ (x—9)la)—a@e(r)dy
using a(y)—a(x)=2]a(x, y)(y;—x;), the Hausdorff-Young inequality gives
v*, alollz<clal, 23 [lysvll ol 2 -
Lemma A.3. Let a(y)e B(E"), v(y)EH(E*"), 0<s<1. Then

la(y)o(y) | s<supla(y)| |v]+c(s, n)a(y)ll2ll, -
Proot.
vek(av) = a(y+v)+[y*, alv .

Taking the L?-norm of the both sides and in view of the previous Lemma, we
get the above inequality.

Lemma A.4. Under the same assumption as in Lemma 4.1, for 0< j<<2m--1,
0<s<1,

Ciudl lu(TiUN st (TP B (i) T oo [ u(L L)) 3
SOl u(UIN 516t [u(TU))IF] -
Proof. For |a|=j,

D*3(x)=D o(y(®) = 3, cad®)Do(ya(2), where |cus(s)| <K (indepen-

dent of 7, k). Thus, for |a|=j,

| D*0(2) |, < lg;," can(2)DPo(yi(2)) |+ wg_lf capDP(yia(2)) s -

By virtue of Lemma A.1 and A.3, this is estimated by

(1o s 1ol i) -

This is estimated again by ¢"[|v(y)|;s+|o(»)l[.2]. The converse inequality is
obtained changing the role of y and z.

Now we prove Proposition in the following form.

Theorem. Two norms <u)j..,+ > |niuld and <w)j..,+ > |7iu|s are
k k

equivalent, where 0< j<2m-1—1, 0<s<1.
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REMARK. | 7ju|§ means |[n{(We(y))u(¥ ()l F2cen-1>-
Proof. Put
I(u) =23 |niulf o+ 20 [niuld
L) = 5 [Gulfut 3 153
I,y(u) = ; IC%‘U%“'?H"{_ Z_k] |Ein2u|d
I(u) = Zk [7i¢iu s+ Zk] [93C%uls,
where in I,(u) the semi-norm |{?ul3,, is céilculated by the transform dy(x),
whereas in I,,(u) |72¢3u|3., is calculated by ®j(x).
At first we remark that I,,(«) and I,,(u) are equivalent by virtue of Lemma
A.4. Our purpose is then to prove that I,(u) and I,,(«) are equivalent, because

the equivalency of I,(x) and I,(u) is proved by the same reasoning.
Let v,(y)=u(¥.(y)). For |a|=j,

(*) D(Gini) = GD*(iwi) + 33 | aD*AE)D(riv:)

<ai-1
shows, taking account of Lemma A.3,
| D*(Eimiv:) | < 1ERD%(n,v:) | s+ Kol [nioil |
<3y D7)l L2+ Kol il a5

where K{ is independent of z, k.

From the assumption, we see that there exists an integer R’ such that each
supp [7;] has at most R’ numbers of supp[{,] having common points (R’ is
independent of Z7). Hence

S D(Erto) <2 3 (k74D (rto) [+ 2KER |
implies that, since >)¢4(x)<1, the right-hand side is estimated by
2)|y xD*(n}v;)l| 72+ 2R Kg?| il i -

Therefore

2| Eirio 5o <2t § oot Cliniol i < C'(Iwios ] 5ot Imioillz)
where C' is a constant independent of . Thus we have proved

I,(u)<const. I (u).
Conversely, (x) gives the decomposition

vk D*(Eintv;) = Loy xD*(niv;)+ [vo*, 31D (niv;)
+ 23 CaD* ¥R v xDP(miv,)+ X Calvs*, D*BEHDP(n?v;) .
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Taking account of L.emma A.3,

| D*(Eimiv:) | =1L v+ D*(miv) || — K |[n¥osl s -

Then, since >1¢3(x)>8 for all xET,

> ID‘”(Z’?N)I§> | n%0;1 51— 2R K?|Imiv4 s

k@5 |@]=j

)
TM iV; |]+s Clln?v,l|32.

Summing up in 7, we have

IMIsvack l;+s/ 2t |50 —C 2| mieillZe .

Thus we have proved I,(u)>const. I,(u).
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