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1. Introduction and statement of results

Let G be a finite group, X a paracompact (and Hausdorff) G-space and
f:X— X a G-map. Then the fixed point subspaces X of X for all subgroups
H<G are also paracompact, being closed in X, and f induces maps f#: x# - x¥
H<G. To be able to define the Lefschetz number L(f¥)e Z of f¥ with respect
to Alexander-Spanier cohomology with integer coefficients we require

Assumption 1.1. The Alexander-Spanier cohomology H'(XY;Z) is finite for
every H<G.

Here a graded abelian group (or module) (4%),.y is called finite, provided that
each A’ is finitely generated and 4'=0 for all sufficiently large i.
Under the assumption 1.1 we can define

L(f*)= Y (= V)ul(ffy*: H(X";Z2) » H(X";Z)]eZ, H<G,

ieN

as usual. The number L(f™) depends only on the conjugacy class of H, so we
get an element

LN=WLMe ]2z
¥(G)
where Y(G) is the set of conjugacy classes of all subgroups of G.

On the other hand, we have the standard embedding

x=(w):AG) -~ []12Z
¥(G)

of the Burnside ring A(G) of G; the component yy:A(G)— Z is determined by

! The second author passed away on August 24, 1996.
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1a([ST)=ISH| for the class [S]e A(G) of a finite G-set S. We identify A(G) with
the subring Im(x) of [1Z. Then it is well-known that a family d=(dy)eIlZ lies
in A(G) if and only if it satisfies the congruences

(1.2) dy=—Y(K/H)dy mod|WH|, H<G,
K

where ¢ is the Euler function and WH=NH/H; the summation is over K<G
such that H is a proper normal subgroup of K and K/ H is cyclic.

We intend to prove that, under a suitable additional condition on X, the
equivariant Lefschetz class L(f) of f lies in A(G), so that in particular the Lefschetz
numbers dy = L(f") satisfy the congruences 1.2. It is clear that some finiteness
condition on X is needed for this, as the case of the contractible free G-space
X=EG shows.

We formulate the finiteness condition we need in terms of the equivariant
Alexander-Spanier cohomology H¢ of X, cf. [4].

Assumption 1.3. There is an ne N such that H:"'(X;m)=0 for any coefficient
system m:Or(G)°® — Ab.

REMARK 1.4. a) Assumption 1.3 holds if the covering dimension of X (and
X/G) is finite. This is due to the fact that H;(X;m) can be interpreted as the
ordinary cohomology of X /G with coeffecients in a certain non-constant sheaf,
see Section 6 of [4].

b) In 1.3 it would suffice to consider only coefficient systems m such that,
for some K< G, m(G/K) is a finitely generated free abelian group and m(G/H)=0
for G/H%G/K (see Section 3 below).

Theorem 1.5. If G is finite and the paracompact G-space X satisfies 1.1 and
1.3, then L(f)e A(G) for ever G-map f: X - X.

Corollary 1.6. In the situation of 1.5,

L(ff= *;q’(lK /HDL(f¥) mod|WH],  H<G,

where the summation is as in 1.2. O

The proof of 1.5 is carried out in Sections 2 and 3.

Let now G be a compact Lie group. We write H<G to indicate that H is
a closed subgroup of G. Let X be a paracompact G-space which satisfies 1.1,
and f: X — X a G-map. Then we can again define an element
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L(N=(L(f e [ Z

v(G)

here Y(G) is the set of conjugacy classes of all closed subgroups of G. In Section
4 we shall use 1.5 to prove

Theorem 1.7. Suppose G is a compact Lie group and the paracompact G-space
X has finite covering dimension, finite orbit type and satisfies 1.1. Then L(f)e A(G)
for every G-map f: X - X.

We also prove a Lefschetz fixed point formula in Section 4.
Theorem 1.8. In the situation of 1.7, the Lefschetz number

L(g.X)=} (= V'tr(g: H(X";Z) > H(X"; Z))
i=0
of the left translation by g € G is equal to the Euler characteristic y(X°), where C is the
closure or the subgroup generated by g.

The final Section 5 gives an application to fixed point sets of finite group
actions on contractible spaces.

To end this introduction, we discuss some earlier work on equivariant Lefschetz
classes. The equivariant Euler characteristic of a finite group acting on a locally
compact space of finite covering dimension was treated by Verdier in [14] by
using sheaf cohomology and derived category techniques. Oliver proved Theorem
1.8 for finite groups in his thesis [9], but the result was never published. In [2]
tom Dieck discusses the equivariant Euler characteristic of a compact G-ENR,
where G is a compact Lie group, using multiplicativity of the Euler characteristic
in relative fibrations. He also poses the question of finding the most general
assumptions on the space X for which the Lefschetz numbers of a self-G-map
decompose as in Corollary 1.6.

In [6] it is shown that an equivariant self-map of a finite G-CW-complex X,
where G is a finite group, has an equivariant Lefschetz class in A(G). The
construction of [6] uses cellular homology of the fixed point sets of X. In [8]
it is proved that, for a compact Lie group G, any equvariant self-map of a
finite-dimensional G-CW-complex X of finite orbit type has an equivariant Lefschetz
class in A(G), provided that X satisfies 1.1. The second author has also shown
(unpublished) that the construction of an equivariant Lefschetz class is possible
for more general G-spaces, if one uses singular homology; the needed finiteness
assumption analogous to 1.3 is then formulated in terms of equivariant singular
cohomology of X.
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All these previous constructions are based on being able to calculate the traces
appearing in the definition of the Lefschetz class on the chain level. In this paper,
the lack of a naturally defined homology dual to Alexander-Spanier cohomology
forces us to use the dualization process of Section 3.

This work was completed while the second author was visiting the Mittag-Leffler
Instritute, Djursholm, Sweden. He wishes to thank for the hospitality.

2. Reduction to the case of a single orbit type

In this section, and in section 3 below, G is finite, X is a paracompact G-space
and f: X —> X is a G-map. Let (H,),(H,),---(H,) be the distinct conjugacy classes
of subgroups of G, ordered in such a way that

(H)<(H)=i>j
(in particular, H,=G and H,={e}, the trivial subgroup). For je{1,2,---r} we
p
set
X =GX"={xe X(H)<(G.)},
X;=XHIyxHD ...y XH),
Then
F=Xoc Xy cX,_;cX,=X

are closed G-subsets of X, and xe X;\X;_, if and only if (G,)=(H;). The G-map
S:X > X restricts to G-maps f;: X; > X; (0<j<r).
Assume now that X satisfies 1.1. Denote H'(-)=H'(-;Z).

Lemma 2.1. H'(XY¥) is finite for every H<G and je {12, --r}.

Proof. This is done by induction, the case j=0 being trivial. Let je{1,2,---,r}
and denote A=X;, B=X,_,, K=H; By induction, H*(B¥) is finite for every H <G,
and we must show that H'(4¥) is finite for every H<G.

In Lemma 4.2 of [5] it was shown that the G-map

G/K X WK(AK, BK) - (Ay B)5 [gK’a] —ga,
induces an isomorphism
H'(A4, B> H(G/ K x wx(A¥, BF)F)

for every H<G (here WK=NK/K);, this fact is based on the strong excision
property of Alexander-Spanier cohomology on paracompact spaces. Similarly, for
H <G, the natural map
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(G/KYT x yil(A¥, B¥) > (G/ K x yi(A", BX)"

induces an isomorphism in Alexander-Spainer cohomology (cf. 6.4 of [5]). Taking
6.6 of [5] into account, too, we see that

(2.2) H(A", B[ |H (4%, B%), S=(G/K"/WK, H<G.

The exact cohomology sequence of the pair (4%, BX)=(XX, BX) implies that
H'(AX, B¥) is finite, and so, by 2.2, A(4%, B¥) is finite for H<G. Finally, by the
cohomology sequence of the pair (47, BH), H'(A") is finite. O

Let us denote h;=(f}, fi-1): (X X;—1) = (X X)), L(hj)=(L(h§’))eI1Z and

L(r)= Y (= D)ul(f, - )% H'XF XL ) - H(X, XL )]
ieN
(H<G, 1<j<r). From the cohomology sequences of the pairs (X}, X)), H<G,
we see that

L)=L(f;-)+ L), 1<j<r.

Hence, to prove that L(f)=L(f,)€ A(G), it is enough to show that L(h;)e A(G) for
every je{1,2,---,r}.

Pick je{1,2,---,r} and denote A=X,;, B=X,;_, K=H; as in the proof of 2.1,
and h=h;:(4,B) - (4,B). It follows from 2.2 that, for H<G,

G/ K"

23 L(h")=
23) (h") WK

L),

In Section 3 below we shall prove

Lemma 24. If X satisfies 1.1 and 1.3, then L(h*)eZ is divisible by
|WK]. Moreover, if G is a cyclic group generated by g, then L(g¥)=y(X®) if K=G
and 0 otherwise.

The proof of Theorem 1.5 is now clear. Namely, it follows from 2.3 that

L(h)
|WK|
thus L(h) € A(G) for every je{1,2,---r}, and, by the above remarks, this implies

that (f)e A(G).
Similarly, Theorem 1.8 follows in the case where G is finite.

L(h)= [G/K]e A(G);
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3. Proof of Lemma 2.4

Assume that the paracompact G-space X satisfies 1.1 and 1.3. Let 4, B, K
and h:(A4,B) > (4,B) be as in 24. We now begin the proof of the first assertion
of Lemma 2.4, that is, the divisibility of L(hX)e Z by by |WK|.

We consider the cochain complex C'=C"(4%,BX;Z), the Alexander-Spanier
cochain complex of (4 X,BX) with integer coefficients. Let D.=D(C")=Hom,(C",Z")
be the dual chain complex of C" in the sense of [7, Section 1]; here Z~ is the canonical
injective resolution

3.1 0-0/Z

of Z, regarded as a cochain complex with @ in degree zero. The action of WK on
(A%, BX) makes C" and D. into complexes of ZWK-modules. Since H(C") is finitely
generated over Z for every i (by 1.1), the natural morphism C* — D(D.)=Homy(D.,Z.)
is a quasi-isomorphism by 1.3 of [7]; here Z. is 3.1 regarded as a chain complex
with again Q in degree zero.

Let a:C"— C’ be the cochain map induced by 4X:(4X,BX) - (4% BX), and
pB:D.— D. the dual chain map. Let

L= Y.(—1)tr[H'(®): H(C") > H{(C")],

ieN

L(B)= ZN(— 1'te[H(B): H(D.) - H'(D.)].
We have L(h*)= L(o)=L(p), because H.(D.) and Hom (H (C"),Z) are isomorphic
modulo torsion by 1.2 of [7]. We intend to compute L(f) on the chain level by
choosing a suitable projective resolution of D. .

Because each H(D.) is finitely generated, there is, by standard homological
algebra, a ZWK-projective resolution E. — D. of D. such that each E, is a finitely
generated ZWK-module. In particular, each E, is a finitely generated free abelian
group. We claim that E. can be replaced with a resolution F.— D. with the
additional property that F;=0 whenever i >n; here ne Nisasin 1.3. The obstruction
to finding such a resolution F. lies in Ext%}%(D., B,), where B, c E, is the submodule
of n-boundaries (see Brown [1, VIII(2.1)]). Therefore it is enough to prove the

Assertion 3.2. Under the assumptions 1.1 and 1.3, Exthyp(D., M)=0 for any
finitely generated ZWK-module M, which is free as an abelian group.

Proof. Take a ZWK-projective resolution P. - Z of Z. By the Kiinneth
formula, P.® ,E. » Z® ;E.~ E. - D. is a resolution of D., and the ZWK-modules
(P-®4E.); are projective. Thus we have
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Extyyi(D., M)= H"* '(Homgyy (P-® ,E., M)
~ H" {(Homy g (P., Hom(E., M)))
=Extyn(Z, Hom,(E., M)).

Because M is a finitely generated abelian group, Hom,(E., M)~ Hom,(E., Z)® M.
By comparing the universal coeffcient sequence of [7, 1.2], for D(D.) and the
ordinary universal coefficient sequence for Homg(E., Z), we see that the natural
map D(D.)— Homg(E.,Z) is a quasi-isomorphism. Thus Hom,E., Z)® M is
quasi-isomorphic to C°®,;M. Because M is finitely generated free abelian, this
complex is in turn isomorphic to C'(4X, BX; M). Therefore

Extyyx(D., M) = Extyp(Z,C'(A%, B*; M))
=H"* Y (WK; C' (A%, BX; M)).

Let m:0r(G)°® > Ab be a coefficient system such that m(G/K)=M and
m(G/H)=0 for G/H¥G/K. By 4.5 and 5.1 of [5] we have

H" (WK; C"(4%, BX; M)~ % (4, B;m).

Next we prove the following

Subassertion 3.3. H;(A, B;m)=~Hy(X;m) for the coefficient system m chosen
above.

Proof. In fact we show that the equivariant Alexander-Spanier cochain
complexes Cg(4, B;m) and Cg(X;m) are isomorphic.

First of all, it is clear that Cg(X;m)=C¢(4;m), because X*=A4" whenever
m(G/H)#0 (i.e. (H)=(K)). To show that C¢(4;m)=Cy(A4, B;m), we must prove
that C;(B;m)=0. By Section 3 of [5], an element of Cy(B;m) can be identified
with a family y=(yg)y<¢ of ordinary cochains y, e C(B¥ ;m(G/H)) such that for
any G-map u:G/H — G/H’, the compatibility condition

(3.4) B(u)X(yn) =m(u) (v € C'(B¥ ;m(G  H))

holds; here B(u): B¥ — BY is the map induced by u. By the choice of m, y5=0
automatically, if (H)#(K). To show that y=0, it is enough to see that yx=0. But
by (3.4), yk restricts to zero in C{(B"* ;m(G/K)) for any H'> K; because

BK= U BH’,

H'>K

the claim y;,=0 follows. This finishes the proof of the Subassertion. O
We have now shown that

Extihi(D., M)~ H2 \(X;m).
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This latter group vanishes by 1.3, so the Assertion is proved. O

Choose now a resolution F.— D. such that each F; is a finitely generated
projective ZWK-module and F;=0 for i>n. The chain map f:D.— D. can be
lifted to a chain map f': F. - F.. Because each F; is a finitely generated abelian
group, we can compute the Lefschetz number L(f) we are interested in as follows:

L(B)=L(B)= Y (= )'tr[H(B): H{F.) > H{(F.)]

ieN

=) (=1)te[B;: F; > F].
ieN
Hence, to prove that L(f) is divisible by |WK], it is enough to show that tr(B;)
has this property for every ie N. Since F; is ZWK-projective, there is a finitely
generated ZWK-module F; such that F,®F] is ZWK-free. It follows that

tr(B) = tr[Bi®0: F®F; » F,®F{]

is divisible by |WK]. This concludes the proof of the first claim in Lemma 2.4,
finishing at the same time the proof of Theorem 1.5.

Let finally G be cyclic generated by g and let B correspond to gf. By
equivariance, f§; and f; act through multiplication by g as an element of the base
ring ZWK of the modules D; and F;. By a theorem of Swan ([13, Theorem 8.1]),
the module Q®F; is free over QWK for each i. Hence B; permutes freely a Q-base
of O®F; and therefore tr(f})=0 if WK=G/K is nontrivial. It follows that
L(B)=L(f)=x(X° if K=G and 0 otherwise. Using (2.3) and adding up gives
Theorem 1.8 in case G is finite.

4. The case of a compact lie grop G

Let G be a compact Lie group. We use the standard embedding

AG)- []Z
¥(G)
(see tom Dieck [3, Section IV.5]) to identify the Burnside ring A(G) of G with a
subring of I1Z. Elements of I1Z are regarded as functions Y(G) — Z, with Y(G)
topologized via the Hausdorff metric ([3, Section IV.3]). It is well-known that a
family d=(dy)e I1Z lies in A(G) if and only if it satisfies the following conditions:

i) d is continuous;
@4.1) i) dy=dy if HIK<G and K/H is a torus;

iii) dy=—Y ¢(K/H|)dx mod |L/H]if HSL<G and L/H is finite;
K
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in iii) the summation is over K<L such that H is a proper normal subgroup of
K and K/H is cyclic.

Assume now that the hypotheses of Theorem 1.7 hold and f: X - X is a
G-map. To prove 1.7, we must verify that L(f)eIlZ satisfies conditions 4.1.i), ii)
and iii).

For i), let H; > H with respect to the Hausdorff metric in y(G). Because X
has finite orbit type, it follows from [3, IV (3.3) and (3.4)], that X¥i=X¥ for all
sufficiently large i. Thus L(f®)=L(f") for all sufficiently large i, proving 4.1.)
for L(f).

To prove 4.1.iii) for L(f), let HL<G such that L/ H is finite. Then L<NH,
so X" can be regarded as an L/H-space. As such X¥ satisfies 1.1, and also 1.3
(because X™ has finite covering dimension). Applying Theorem 1.5 to the L/ H-map
fH: X" - X" we obtain the congruence 4.1.iii).

Finally, to prove 4.l.ii) for L(f), let H<JIK<G and assume that K/H is a
torus. In fact it is enough to consider the case K/H=S'. Let p be a prime
number. We can find a sequence of subgroups K;ey(G) such that H<JK, <K,
<Q---<K, K;/H=Z|p'Z for every i and K; » K in Y(G). As in the proof of 4.1.i)
above, we have L(f*)=L(fX) for sufficiently large i. On the other hand, taking
L=K, in 4.liii), we see that L(f¥)=L(fX*) mod p, and similarly L(f*")=L(f¥?)
mod p, etc. Thus we see that L(f¥)=L(f*) modp. This holds for every prime
p, whence the assertion L(f#)=L(f¥) follows.

We shall conclude by showing how Theorem 1.8 reduces to the finite group
case treated in Section 3. We may assume that G is topologically cyclic generated
by an element g acting on X.  As the extension G, = G — n,(G) is split we can choose
a sequence of elements g; of finite order in the component of g in 7y,(G) such that
the subgroups H; generated by the g; converge to G in the Hausdorff metric. Then
the left translations by g; and g have the same Lefschetz numbers by homotopy
invariance and y(X#)=yx(X®) for sufficiently large i by continuity. Thus the
Lefschetz number of g equals the Euler characteristic y(X€) by the finite group
case. This proves Theorem 1.8.

5. Actions on contractible spaces

In this section we study the fixed point sets of finite group actions on finite
dimensional contractible spaces. We require that all fixed point sets have finite
cohomology in the sense of Assumption 1.1. The result is a variation of Oliver’s
theory [10], which classifies the fixed point sets of actions on finite contractible
complexes.

Let p and ¢ be primes.

Lemma 5.1. Let a finite group G have normal subgroups P<{H<G such that
P is of p-power order, G/H is of q-power order and H/P is cyclic. If G acts
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on an acyclic finite dimensional paracompact space X so that the fixed point sets
XX have finite cohomology for every K<G, then

X" =1 and xX%=1 (modg).

REMARK. Cohomology refers to integral Alexander-Spanier (alias Cech)
cohomology. In the examples below the fixed point sets are either CW-complexes
or manifolds, so that singular cohomology can be used as well.

Proof. Since P is a p-group and X is acyclic, finite dimensional and
paracompact, X* is Z,acyclic by Smith theory. As the integral cohomology of
X7T is finitely generated, it consists of torsion. The Lefschetz fixed point formula
1.8 for the cyclic group H/P acting on X7 gives y(X¥)=1. Finally, either by
Smith theory again, or by the congruences 1.6 applied to the G/ H-space XH, we
have x(X¢)=1 (mod g). 0

Let 4 be the class of finite groups G having normal subgroups PSH<G
as in Lemma 5.1. Let 4} and %% be the classes of such G where H=G and
P={e}, respectively, and denote ¥*=|),.,%9% ¥=|),>,9% For a group G not
of prime power order, we define an integer m(G) as follows:

DEFINITION 5.2. If Ge%!, then m(G)=0. If G¢%!, then m(G) is a product
of distinct primes, and q|m(G) if and only if Ge%? In particular, m(G)=1 if
and only if G¢%.

This coincides with Oliver’s number m(G) by Theorem 5 of [10]. Notice
that the assertion of Lemma 5.1 can now be reformulated as yX%=1
(mod m(G)). The following theorem gives a converse :

Theorem 5.3. Let G be a finite group not of prime power order and let F be
a finite demensional complex with finite cohomology. Then F is the fixed point set
XC of an action of G on some finite demensional contractible complex X with
H'(X¥®; Z) finite for every H<G if and only if y(F)=1 (mod m(G)).

Proof. The necessity of the condition follows from Lemma 5.1. Conversely,
if y(F)=1 (modm(G)), then Oliver shows that F can be embedded equivariantly
into a G-resolution X of F by attaching finitely many G-cells to F (Theorem 2 of
[10]). This means that X¢=F, X is n-dimensional, (n— 1)-connected (for some
n>2), and H,(X) is a projective ZG-module. Adding countably many free n-cells,
H,(X) can be made into a free ZG-module, and then free (n+ 1)-cells may be added
to produce a contractible complex with fixed point set F. By construction, all
fixed point sets have finite cohomology. O
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In the case where F is finite, Oliver shows further that there is a projective
obstruction to realizing X as a finite complex. This leads to an integer ng, defined
for each group G not of prime power order, such that a finite complex F is the
fixed point set of an action of G on some finite contractible complex if and only
if (F)=1 (modng) ([10, Cor. p. 167]). The integer m(G) divides n; and they
agree for certain 2-hyperelementary metacyclic groups G having m(G)=2 and
ng=4 ([10, Cor. p. 1711,[11, Th. 7]).

Given a smooth action of a finite group G on a euclidean space V, it is
natural to ask for a geometric condition on the G-space V to guarantee the
finiteness of the cohomology of the fixed point sets V¥, One possibility is to
require that ¥ admits a smooth compactification V* ie. a compact smooth
G-manifold containing ¥ as an open invariant dense set such that V*\V is a
smooth G-submanifold. Such a V* could be e.g. a disk, a projective space or a
sphere. If V" has a smooth compactification V'* then V is actually equivariantly
homotopy equivalent to a finite G-complex : the complement of an open regular
neighbourhood of V*\V in V* with respect to some G-triangulation is a
G-deformation retract of V. Thus the non-finite homotopy types of Theorem 5.3
cannot occur in this case. Quinn has realized them as locally linear actions on
a disk. The following example is taken from [12, pp. 363-365].

ExXAMPLE 54. Let G be the finite group of order 60 generated by a and b
with the relations a'®>=b*=1 and bab™'=a? By Oliver [11, p.263], ng=4 but
m(G)=2. Hence every finite contractible G-complex X has y(X¢) (mod4). Quinn
constructs a locally linear action of G on a disk D, smooth outside a fixed boundary
point xe(dD)®, such that y(D%) =3 (mod4). Notice that the fixed point sets DY
are locally flat submanifolds of D, in particular compact topological manifolds,
and hence have finite cohomology. However, D is not equivariantly homotopy
equivalent to a finite G-complex.
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