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Abstract

For evaluation of the reliability of digital radiography for
diagnosing subtle interstitial lung abnormalities, the receiver operating
characteristic (ROC) analysis was done for determination of differences
among radiologists in interpreting screen-film radiography (SFR) and
digital radiography (0.2-mm spatial resolution) on patients who had subtle
interstitial lung abnormalities and normal chest findings. It was shown
that both in storage phosphor radiography (SPR) and film-digitized
radiography (FDR), the overall performance with SFR and digital
radiography was identical for diagnosing subtle interstitial lung
abnormalities. However, there was a significant dependence of the
detection performance on the observer's experience. For chest
radiologists, critically important information may be lost in generally
used digital radiography systems. Also, to determine what compression
ratios are acceptable for digital radiography, the effect of data
compression on the detection of subtle interstitial lung abnormalities by
use of digitized chest radiographs was evaluated. Our results suggest that
a 10:1 data compression ratio does not influence the detection of subtle
interstitial lung abnormalities. However, information that is lost with a
20:1 data compression ratio might be essential for interpretation by chest
radiologists.

We have been developing a computer-aided diagnosis (CAD) system
to detect interstitial lung abnormalities in digital radiography. This
system uses the processes of four-directional Laplacian-Gaussian filtering
and binarization (4LG/B), linear opacity judgment (LOJ), and linear
opacity subtraction (LOS). For quantitative analysis, first, the
radiographic index (rI), which is the percentage of opacity areas in an

ROI, was obtained and evaluated in the images. These opacities



represented the extracted lung abnormalities. Next, we defined
normalized radiographic index (RI), and also defined a combined RI
[RI(COM)], which was calculated from two RIs obtained by LOJ and
LOS. Abnormal interstitial lung abnormalities were well differentiated
from normal by the rls obtained from the images filtered by 4LG/B and
from those processed by LOJ. However, honeycomb lesions and other
interstitial abnormalities were differentiated from each other only by the
rIs obtained from the image processed by LOJ. Moreover, the RI(COM)
provided better results in the mild-abnormality group, but it also yielded
good results in the severe-abnormality group. These results indicate that
this system of combining RIs using LOJ and LOS has improved the
detection performance over that using LOJ only. There were no
significant differences between the performance of the CAD system and
the mean performance of all radiologists. The performance of the CAD
system was inferior to the mean performance of chest radiologists.
However, the performance of the CAD system was superior to the mean
performance of the residents.

We analyzed interstitial lung abnormalities by using fractal
geometry. The fractal dimensions (FDs) obtained from the regions of
interest (ROIs) in lungs with interstitial abnormalities were significantly
higher compared with those of normal lungs. This result indicates that
fractal analysis is useful in distinguishing interstitial lung abnormalities
from normal lungs. We also evaluated two physical measures, RI and
FD, for quantifying interstitial lung abnormalities. The values of RI are
considered to reflect the sensitivity in the detection of interstitial lung
abnormalities in chest radiographs. On the other hand, the values of FD
are considered to reflect specifically the linear opacities processed by

LOJ. The values of both RI and FD may be useful for evaluation of



interstitial lung abnormalities on chest radiographs; however, these two
physical measures have different features.

We investigated whether our CAD system can be used for
estimating the redistribution of pulmonary blood flow in patients with and
patients without mitral stenosis (MS). As a measure of pulmonary blood
flow redistribution, the upper/lower radiographic index ratio (U/L) was
calculated. The U/L values were correlated with pulmonary capillary
wedge pressure values. The mean U/L value of the MS group was
significantly higher than that of the non-MS group. This result indicates
that our system can be used for quantitative estimation of the
redistribution of pulmonary blood flow.

In conclusion, our CAD system is useful for the detection and
characterization of diffuse lung abnormalities in digital chest

radiography.
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Nomenclature

ANOVA analysis of variance

Az area under the receiver operating characteristic curve
CAD computer-aided diagnosis

CLABROC computer program for ROC analysis produced by CE Metz
CORROC2 computer program for ROC analysis produced by CE Metz
CRT cathode-ray tube

CT computed tomography

DCT discrete cosine transform

41L.G/B four-directional Laplacian-Gaussian filtering and binarization
FCR Fuji computed radiography

FD fractal dimension

FDR film-digitized radiography

Group H  Group of honeycombing lung abnormalities

Group O  Group of other interstitial lung abnormalities

HRCT thin-section computed tomography

LABROC1 computer program for ROC analysis produced by CE Metz

LOJ linear opacity judgment

LOS linear opacity subtraction

MS mitral stenosis

PACS picture archiving and communication system

PCWP pulmonary capillary wedge pressure

rl radiographic index

RI normalized radiographic index

RI(COM) combined radiographic index

rI(4LG/B) 1l obtained from the ROI processed by 4LG/B
RI(4LG/B) RI obtained from the ROI processed by 4LG/B
rI(LOJ) rl obtained from the ROI processed by LOJ



RI(LOJ)
rI(LOS)
RI(LOS)
ROC
ROCFIT
ROI

SD

SEM
SFR
SPR
U/L

RI obtained from the ROI processed by LOJ

rl obtained from the ROI processed by LOS

RI obtained from the ROI processed by LOS

receiver operating characteristic

computer program for ROC analysis produced by CE Metz
region of interest

standard deviation

standard error of the mean

screen-film radiography

storage phosphor radiography

upper/lower radiographic index ratio
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1 Introduction

A computerized method for assisting radiologists in their
interpretation of radiographs is called as a computer-aided diagnosis
(CAD). The quantitative measures of radiological information provided
by a CAD system can be used by radiologists as a "second opinion" to
increase their diagnostic accuracy and consistency. This scheme is
expanding rapidly in the field of mammography. And also, a number of
automated schemes for CAD are being developed which are designed to
assist radiologists in their interpretation of radiographs, because chest
radiography constitutes a large part of hospital-based diagnostic
examinations. These schemes include the detection and classification of
pulmonary abnormalities on chest radiographs, such as lung cancer,
interstitial lung abnormalities, and pulmonary vascular abnormalities.

Katsuragawa et al (1, 2) developed a classification method for
distinguishing between normal lungs and abnormal lungs with interstitial
lung abnormalities. They used a power spectrum analysis and a "visual
system response” of human observers. They stated that the results were
well corresponded to the visual characteristics that radiologists
recognized. They selected regions of interest (ROIs) of 6.4 mm x 6.4
mm size situated between ribs in order to avoid the noise caused by rib
structures. However, radiologists read chest radiographs not only by
looking at opacities between ribs but also by looking at the opacities
overlapped with ribs.

We think the CAD system should not only provide the numeric data
but also provide the processed images themselves to radiologists to
confirm the results on the radiographs. In our approach, we chose a
moderate-sized ROI (51.8 mm x 51.8 mm), and extracted diffuse lung

abnormalities themselves. So, the processing results were not only given
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as the numeric data of physical measures but also confirmed with
radiologists' observation on a cathode-ray tube (CRT). The approach, by
which the abnormalities themselves are extracted, is good enough. If
radiologists wants to confirm the data provided by our CAD system, he
can check the processed images on a CRT in visual form. The outputs
obtained from our CAD system can be used by radiologists as a "second
opinion" to increase their diagnostic accuracy.

In this dissertation, we first evaluated the image quality of digital
radiography for appropriate CAD input. And next, we designed and
evaluated a CAD scheme for diffuse lung abnormalities. We proposed and
evaluated two types of physical measures, and applied our CAD scheme
for two types of diffuse lung abnormalities such as interstitial lung

abnormalities and pulmonary vascular abnormalities.

1.1 Digital chest radiography

A picture archiving and communication system (PACS) (3) is an
inevitable trend as a means of improving organization and communication
within a radiology department and hospital. Digital radiography has many
advantages, such as flexible image processing, storage, and transmission.
Screen-film radiography (SFR) could ultimately be replaced by digital
radiography systems. Digital radiography has two types of image
acquisition geometry, conventional and scanning (4). Conventional
acquisition geometry systems such as storage phosphor radiography (SPR)
and film-digitized radiography (FDR) have the advantages of rapid image
acquisition and simplicity as compared with scanning systems such as
scanned projection radiography. In conventional acquisition geometry,
SPR and FDR are promising modalities, and SPR is now widely used in
digital radiography. SPR has wide latitude, and the optical density of the

printed hard copy can be optimized automatically (5). SPR systems have a
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marked technical performance advantage over conventional bedside
radiography in the optimization of image density (6). On the other hand,
FDR systems are relatively inexpensive as compared with SPR systems.

An FDR system, which consists of a laser optical film digitizer and a
display system such as a CRT or a laser printer for printing a hard copy, is
suitable for clinical use.

One of the most important factors for digital chest radiography is its
image quality. The quality of the digital image is limited by the spatial
resolution. The digital radiography system which is widely used has a 0.2-
mm spatial resolution. The spatial resolution of generally used digital
radiography is lower than that of SFR. This may be a serious problem in
the diagnosis of subtle lung abnormalities.

There are many reports dealing with the SPR and its spatial
resolution. The pixel size of the generally used SPR is 0.2 mm, and the
spatial resolution in SPR is inferior to that of SFR. In the detection of
mediastinal lesions and pulmonary nodules, the advantages of SPR, such as
a wide dynamic range, automatic density optimization, and flexible image
processing, have been reported to overcome the disadvantages of SPR such
as the lower spatial resolution. Schaefer et al. (7, 8) reported that SPR
was superior to SFR in detecting mediastinal lesions and pulmonary
opacities more than 2 cm in diameter. In the detection of subtle lung
abnormalities such as pneumothoraces and interstitial infiltrates, the
relatively lower spatial resolution causes serious problems. Fajardo et al.
(9) reported that four of the 8 observers detected pneumothoraces best
with SFR, and the other four detected them similarly with SFR and SPR.
On the other hand, Schaefer et al. (7, 10) and Elam et al. (11) reported
that no significant differences were found between SFR and SPR in
detecting interstitial lung abnormalities. Schaefer et al. (10) evaluated the

effect of edge enhancement in diagnosing interstitial lung abnormalities
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except for ground-glass opacities, and they concluded that moderate edge
enhancement at high frequency (enhancement factor = 3, center of
frequencies = 1.4 cycles per millimeter) of SPR could improve the
detectability of interstitial pulmonary disease to be nearly the same as that
with SFR. High-frequency edge-enhanced processing decreases the signal-
to-noise ratio, and the quantum mottle of the images increases with high-
frequency edge-enhancement. This is thought to be the reason why
ground-glass opacities are difficult to recognize even with moderately
high-frequency edge-enhanced images. For spatial resolution
requirements, Lams et al. (12) reported that the requirement for a septal
line was likely to be 0.4 mm. MacMahon et al. (13), reported that 0.2-mm
pixel images could be acceptable in clinical use.

The FDR system, which is widely used also has a 0.2-mm spatial
resolution. The spatial resolution of FDR is also lower than that of SFR.
The image quality of FDR depends on that of the original SFR to be
digitized (14). The latitude of FDR is limited by that of SFR, and the
latitude of FDR is less than that of SPR. This may be a serious problem in
the diagnosis of subtle lung abnormalities. MacMahon et al. reported that
the diagnostic accuracy of mild interstitial infiltrates and subtle
pneumothoraces with the 0.1-mm pixel FDR was inferior to that of SFR,
but that 0.2-mm pixel FDR could be acceptable in clinical use (13). It was
also reported that a system with automated density optimization correction
of digitized radiographs has been developed, and that this system could
compensate for the smaller latitude of FDR (15).

Another important factor for digital radiography is the
management of extremely large amounts of digital image data. Digital
radiography systems generate a large number of images to be stored and
transmitted in PACS systems. In the Osaka University Hospital,
approximately 350,000 radiographs are obtained per year. If the mean
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size of images is 8 megabytes (2000 x 2000 pixels; 10 bits per pixel; 2
bytes are used for storage), approximately 2,800 gigabytes of image data
would be generated each year. Image data compression is one possible
solution to the problem of storing and transmitting such large data sets.
However, the image deterioration that occurs at high compression ratios
might make subtle changes, such as interstitial lung abnormalities, more
difficult to diagnose.

Image data compression techniques can be divided into two
categories: reversible and irreversible. Reversible compression allows
perfect reconstruction of the original image and provides compression
ratios of between 2:1 and 3:1 (16). Irreversible compression provides
higher compression ratios, but degrades the quality of the image (17).
Several investigations have attempted to determine the highest acceptable
compression ratio for chest radiography. Ishigaki et al. (18) reported
that images compressed at a 25:1 ratio were inferior to images
compressed at a 20:1 ratio for detection of nodules and linear shadows on
chest radiographs. They concluded that the highest acceptable
compression ratio was 20:1. MacMahon et al. (19) suggested that
compression ratios as high as 25:1 might be acceptable for primary
diagnosis in chest radiography. Aberle et al. (20) proposed that
compression ratios of 20:1 might be acceptable. Two discrete cosine
transform (DCT) image compression techniques are commonly used: the
"full-frame" and the "block" technique. In full-frame DCT, the size of
the image must be in powers of 2, and a large amount of memory is
required for processing. However, block artifact will not occur (21). In
block DCT, images of any size can be input, and less memory is required
for processing. However, a block artifact can occur because compression

is performed block by block (22). Recently, an adaptive algorithm that
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reduces block artifact in block DCT (23-25) has been developed. When
this algorithm is used, adaptive DCT is superior to other DCT methods.

1.2 CAD for interstitial lung abnormalities

For diagnosis of interstitial lung abnormalities, chest radiography
remains the most common of imaging procedures, which is used as an
indicator for the necessity of further imaging examinations such as
computed tomography (CT) (26). Interpretation of interstitial lung
abnormalities in chest radiographs is one of the important and difficult
problems in radiologists' daily clinical work. However, evaluation of
interstitial lung disease with chest radiographs is quite difficult. One
reason is that various kinds of radiographic patterns are observed, and
their changes are often subtle (27). The other reason is that the
descriptions of radiographic findings by radiologists often lack objectivity
and quantitativeness. If radiographic patterns of interstitial lung disease
seen on chest radiographs can be quantitatively analyzed by a computerized
system, these objective data may improve the diagnostic accuracy.

Many investigators have reported computer-aided methods for
evaluating interstitial lung diseases in chest radiography. The method of
texture-analysis is often used for quantitative analysis of interstitial lung
abnormalities (1, 2, 28-30). In texture-analysis of the lung zone, a
statistical approach has often been used. The density variation and the
optical Fourier spectrum were used as physical measures for classifying
lungs with interstitial disease. As to an application domain of quantitative
analysis, quantification of the severity of pneumoconiosis is frequently
reported (31-35). Other than in pneumoconiosis, there are many reports in
which the authors have distinguished normal lungs from abnormal lungs
with interstitial diseases by classification of the abnormality by using their

texture analysis methods (1, 2, 28-30).
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1.3 Fractal analysis for interstitial lung abnormalities

Fractal geometry can be used for investigating complicated objects
such as clouds, coastlines, and anatomic structures (36). Fractal
characteristics are evaluated quantitatively in terms of the fractal dimension
(FD) (37). Objects with a higher FD appear more complex compared to
those with a lower FD. Thus, the value of the FD seems to reflect the
complexity of the objects (36). Some reports showed that fractal geometry
was useful in evaluating radiographic patterns. Majumdar et al. (38)
reported that fractal geometry was useful in distinguishing osteoporotic
bone structures from normal bone, and Caligiuri et al. (39) reported that
fractal geometry was helpful for better determination of fracture risk in
osteoporosis. Honda et al. (40, 41) noted that the fractal pattern was useful
as a numeric grading of the complexity of the ductal patterns and the
progression of parotid gland disease. Caldwell et al. (42) characterized
mammographic breast tissue patterns by using FD. Regarding lung
structure analysis, Mandelbrot suggested that the airway in the lung has
fractal structures (36). We consider it reasonable to analyze complexities

of lung anatomical structures by using fractal geometry.

1.4 CAD for pulmonary blood flow

Interpretation of vascular structure abnormalities in chest
radiography is another important problem, because redistribution of
pulmonary blood flow on chest radiographs is a good indicator by which
one can evaluate pulmonary venous hypertension in congestive heart
disease, such as valvular disease (43-45). The earliest recognizable level
of redistribution occurs when there is equal perfusion of the upper and
lower lung zones (32). As redistribution becomes more pronounced, the

size and number of vessels in the upper lung zone may actually exceed
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those seen in the lower lung zones. The physiologic mechanism for
redistribution of pulmonary blood flow is subject to controversy (45-47).
It has been reported that the degree of pulmonary blood flow
redistribution is more sensitive to small elevations in pulmonary capillary
wedge pressure (PCWP) than are other radiographic signs of pulmonary
hypertension, such as pulmonary vascular blurring and alveolar edema
(32). Baumstark et al. (48) reported a positive correlation between the
presence of radiographic signs of congestive heart failure and elevation of
the PCWP values. However, in daily clinical practice, the diagnosis of
redistribution is based on the observer's experience in analyzing the size
and number of vessels normally seen in the upper lung zone. Thus, we
think that the CAD system would improve the diagnostic accuracy in

radiologists' interpretations.
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2 ROC analysis of digital radiography system

2.1 Storage phosphor radiography

To evaluate the reliability of SPR for diagnosing subtle interstitial
lung abnormalities, we evaluated the differences among radiologists in
interpreting SFR and SPR by using subtle interstitial lung abnormalities
(49).

2.1.1 Study group

Our study group consisted of 80 patients who were referred to the
Osaka University Hospital between May 1990 and May 1991. All patients
underwent thin-section CT (HRCT) of the chest due to clinical indications,
and posteroanterior SFR and SPR within one week of the HRCT
examination. Forty of the 80 had subtle interstitial lung abnormalities, and
the other 40 had normal lung parenchyma. The average age of the 40
patients with interstitial lung abnormalities was 48.0 *+ 14.0 years (range
of 23 - 75 years; 16 men and 24 women), and the average age of the 40
patients with normal lung parenchyma was 37.3 + 14.0 years (range of 18
- 70 years; 16 men and 24 women). The HRCT examinations consisted of
multislice (1.5 or 2.0 mm thick) scans at 10- or 20-mm intervals through
the chest. The images were reconstructed with the bone algorithm (a
GE9800 scanner, General Electric Medical Systems, Milwaukee, or a
Quantex scanner, Yokogawa Medical Systems, Tokyo, Japan). The
presence or absence of subtle interstitial abnormalities was evaluated on
HRCT images, and the HRCT findings were used as the standard of
reference. Two radiologists who did not participate as observers selected
these 40 patients from more than 200 patients with interstitial lung
abnormalities. Although all interstitial lung diseases included in this study

group were judged as subtle, the severity and extent of abnormalities
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observed on HRCT were divided into 2 groups: minimal (n = 17) and mild
(n = 23). Minimal interstitial pulmonary abnormalities observed on HRCT
were thought to be very difficult to detect on chest radiographs, and mild
changes seen on HRCT were thought to be relatively easy to detect on chest
radiographs.

The radiographic patterns found on HRCT in the 40 patients
consisted of fine reticular opacities (n = 19), ill-defined, faint, small
nodular opacities up to 3 mm in diameter (n = 13), and ground-glass
opacities (n = 11). Three patients had both fine reticular opacities and
ground-glass opacities. Fine reticular opacities were caused by
peribronchovascular interstitial thickening, interlobular septal thickening,
intralobular linear opacities, subpleural thickening, or small
honeycombing. Faint small nodular opacities were either interstitial
nodules or air-space nodules less than 3 mm in diameter. Cases with
nodules more than 4-5 mm in diameter were discarded. Ground-glass
opacities reflected minimal interstitial thickening (thickening of the
alveolar wall) or subtle air-space disease. The observers were instructed
to ignore the following abnormalities that were present in some patients:
old tuberculous changes such as pleural thickening and calcification (n = 3)
and bullous emphysema (n = 1). In 34 patients, the cause of the interstitial
lung abnormalities was known: collagen vascular disease (n = 16),
hypersensitivity pneumonitis and diffuse panbronchiolitis (n = 10),
metastatic calcification (n = 2), sarcoidosis (n = 2), alveolar proteinosis (n
= 2), and eosinophilic granuloma (n = 2). In the remaining 6 patients,

interstitial lung abnormalities were of unknown cause.
2.1.2 Image acquisition

All SFR and SPR images were obtained with a conventional chest

unit under the conditions of 130 kVp, 1.0-mm nominal focus, 200-cm
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film-focus distance, and 12:1 Bucky. The SFR images were obtained with
Du Pont C-4D (Du Pont Corp., Wilmington, DE) and the BF-III screens
(Kasei Optonix Corp., Tokyo, Japan). The speed of the SFR was 100
(relative speed). The SPR images were obtained with storage phosphor
imaging plates (ST III; Fuji Photo Film, Tokyo, Japan). The size of these
imaging plates was 14 x 14 inches. The imaging plates were read by Fuji
computed radiography (FCR7000; Fuji Photo Film, Tokyo, Japan), and the
digital data (spatial resolution = 0.2 mm, 1760 x 1760 pixels, 10 bits) were
stored on an optical disk cartridge.

In order to study the effect of different film formats, we used two
formats of laser-printed SPR hard copies; one was a full-size SPR image
(same size as the SFR image, 14 x 14 inches) with a default mode, and the
other was a minified SPR image (2/3 size of the SFR image, 9 x 9 inches)
with a default mode. However, a full-size image (14 x 14 inches) could
not be directly printed onto a hard copy by this FCR system, because the
maximum size of the hard copy was 9 x 9 inches. Therefore, we took one
lung from each full-size image and placed it onto two hard copies, so that
different portions of the chest image were printed onto each hard copy and
then the hard copies were manually reconnected. A default mode
approximated the appearance of a conventional radiograph, so that the
density and contrast of the two formats of SPR were closely matched to
those of SFR. In practice, SPR images were processed with a sigmoid,
long-contrast Hurter and Driffield curve and very slight, density-
dependent edge enhancement at high frequencies (enhancement factor =
0.3, with enhanced frequency range greater than about 0.1 cycle per
millimeter. The values of the parameters are as follows; GT = E, GA =
09, GC =1.6,GS =-0.2, RT =R, RE = 0.3, RN = 0 (GT: gradient type,
GA: gradient angle, GC: gradient center, GS: gradient shift, RT:

response type, RE: response enhancement, RN: response rank). A pair of
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SPR images (7 x 7 inches, 1760 x 1760 pixels, 0.2-mm spatial resolution,
10 bits) is usually printed on a hard copy in commercially available FCR
systems; one is the image without image processing or with a default
mode, and the other is the image with an edge-enhanced mode. However,
the purpose of this study was to estimate whether the quality of SPR was
enough for clinical use in the cases of subtle interstitial pulmonary
abnormalities, and not to estimate the mediastinal abnormalities. Of
course, some of the pulmonary abnormalities, such as mediastinal lesions
and pulmonary opacities greater than 2 cm in diameter, were easily
detected with an edge-enhanced mode (7), but the abnormalities we dealt
with in this study were quite different. For theses reasons, we used only
one SPR image (14 x 14 inches or 9 x 9 inches) with a default mode for

the readings.

2.1.3 Reading methods

For two reasons, we used only one lung (either the right or the left
lung) of each patient for the reading sessions. One reason was that the
maximum hard-copy size that we could obtain was 9 x 9 inches. In order
to obtain a full-size SPR image (14 x 14 inches), we had to use four 9 x 9-
inch hard copies, onto which different portions of the chest image were
printed, and these had to be connected skillfully. It was because this was
so complicated that we used either the right lung or the left lung instead of
both lungs for each patient. A hard copy of one lung could be obtained
from two 9 x 9-inch hard copies. The other reason was that a single lung
was thought to minimize the educational effect or the effect of practice
from the reading sessions. Three image sets (SFR set, full-size SPR set,
and minified SPR set) of the right lung (n = 42) and left lung (n = 38)
were divided into two reading subsets (right lung session and left lung

session). When the right lung was evaluated, the left lung was covered
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with black paper. Two reading sessions were carried out with at least a 2-
week interval between sessions. To minimize reading order bias, all
images in each image set were randomly intermingled for each session,
and the order of the three image sets was changed for each session. Three
different images of the same patient were evaluated in each reading
session.

The reading sessions were carried out by 14 observers. Seven of the
14 were experienced practicing chest radiologists (whom we have called
"chest radiologists"), and the other 7 were senior residents (whom we have
called "residents"). All of the chest radiologists had more than 10 years'
experience in reading SFR images in their daily practice, whereas residents
did not have much experience in reading SFR images (average, was 3.6
years). In terms of familiarity with SPR, there was no significant
difference between the two groups, because SPR was confined to portable
images for intensive-care radiology and emergency radiology in our
hospital.

Before each session, three image sets of three educational cases that
were not included in the study were shown. Each observer was instructed
that lung abnormalities in this series were subtle interstitial abnormalities,
and asked to describe separately the presence of abnormalities using a five-
level scale of confidence (1: definitely negative, 2: probably negative, 3:
possibly positive, 4: probably positive, 5: definitely positive). No other
clinical information was supplied, and the observers did not know the

percentage of normal cases. No limit was imposed on the reading time.

2.1.4 Data analysis
Observer performance for the three image modalities (sets) was
tested by receiver operating characteristic (ROC) analysis (50-52).

Perceptual accuracy was described by the area under the ROC curve (Az)
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(53). The average Az and the standard error of the mean (SEM) were
obtained by individual fitting of ROC curves to the confidence ratings of
each observer and averaging of the estimated areas for all observers.
Composite ROC curves were calculated by averaging of the slope
parameters and the intercept parameters of the observer curves. However,
for statistical analysis, averaged Az values were obtained from the
individually fitted ROC curves to the confidence ratings of each observer
and averaging of the estimated areas across the observers. We used Az
values to test the significance of the differences by means of the paired t-

test.

2.1.5 Results

For subtle interstitial-infiltrate detection, no significant differences
in observer performance for the 14 observers were observed among SFR,
full-size SPR, and minified SPR (Figure 2.1). Table 2.1a-b shows the
results of ROC analysis for the two groups (7 chest radiologists and 7
residents) for each modality. SFR was significantly superior to the two
formats of SPR in the observer performance of the 7 chest radiologists (P
< 0.01).(Figure 2.2). For the 7 residents, on the other hand, there were
no significant differences in observer performance with SFR and full-size
SPR, but SFR was significantly inferior to the minified SPR (P < 0.05)
(Figure 2.3). The perceptual accuracies of each modality obtained from
the 7 chest radiologists was superior to those obtained from the 7
residents. The perceptual accuracy of the 7 chest radiologists was superior
to that of the 7 residents in conventional SFR (P < 0.001) and in minified
SPR (P < 0.05), but no significant differences were observed in full-size
SPR (Figure 2.4). The best perceptual accuracy was obtained with SFR
as evaluated by the 7 chest radiologists from among the three modalities

evaluated by each group (P < 0.01). As to the difference between full-size
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SPR and minified SPR, no significant differences were observed by both

the 7 chest radiologists and the 7 residents.

2.1.6 Summary

The results obtained for all 14 observers indicated that no
significant differences between SFR and the two formats of SPR were
observed. However, the results obtained for the 7 chest radiologists
indicated that the two formats of SPR showed a loss of diagnostic
accuracy in the detection of subtle interstitial lung abnormalities. For the
7 residents, on the other hand, SFR was significantly inferior to minified
SPR, but there were no significant differences with full-size SPR.

As to the image size, for the 14 observers, no significant differences
were observed in our study among full-size SPR (0.2-mm pixel size),
minified SPR (0.13-mm pixel size), and SFR. However, for the 7 chest
radiologists, significant differences were observed between the two
formats of SPR and SFR. On the other hand, there were no significant
differences between full-size SPR and minified SPR. After the reading
session, eleven of the 14 observers (79%) commented on the impression of
superiority of the full-size images, but our results indicated that size may
not be a critical factor for storage phosphor images.

The important result of this study is that the best perceptual accuracy
was obtained with SFR as evaluated by chest radiologists among the
perceptual accuracies of each modality as evaluated by each group. This
indicates that some critically important information for diagnosing subtle
interstitial lung abnormalities could be lost in the SPR (0.2-mm pixel size,

10 bits) which is generally used today.

2.2 Film-digitized radiography
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To evaluate the reliability of FDR for diagnosing subtle interstitial
lung abnormalities, we evaluated the differences among radiologists in
interpreting SFR and FDR by using subtle interstitial lung abnormalities
(54).

2.2.1 Image acquisition

We used same SFR as in the comparative study of SFR and SPR.
The FDR images were obtained from the SFR images with a laser optical
film digitizer (KFDR-S; Konica Corp, Tokyo, Japan). This device was
capable of reproducing a radiograph in digitized form with density and
contrast accurately matched to those of the original radiograph. The
output data (10 bits) are proportional to the optical density. Optical
density O corresponds to the output data 0, and optical density 3.0
corresponds to the output data 1023. The time required to digitize a 14 x
14-inch (35 x 35 cm) film was about 20 seconds. A hard copy of digital
data (spatial resolution = 0.175 mm, 2000 x 2000 pixels, 10 bits) was
obtained by use of a prototype laser printer. The size of the FDR hard
copies was the same as that for SFR, 14 x 14 inches. In order to obtain the
same size hard-copy FDR image as that for SFR, we employed an
interpolation method to expand the original image matrix. In our FDR
system, the printed matrix size was smaller than the acquired matrix size
(printed matrix size, 0.1 mm; acquired matrix size, 0.175 mm). The
interpolation we used was performed by expanding each pixel as twice in

the x- and y-axes.

2.2.2 Reading methods
We used two image sets (SFR set and FDR set) of the right lung (n =
42) and left lung (n = 38). Two reading sessions were carried out by 10

observers. All observers read the SFR set first and then the FDR set. The
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interval between the two sessions (SFR session and FDR session) was at
least 3 months. Five of the 10 observers were chest radiologists, and the
other five were residents. The images in each image set were divided into
two reading subsets (right-lung subset and left-lung subset). All images in
each image subset were randomly intermingled for each observer. Each
observer read the two subsets separated by at least a 1-week interval.
When the right lung was being evaluated, the left lung was covered with
black paper.

Before each session, three images not included in this study were
shown as educational cases. All observers were told that lung
abnormalities in this series were subtle interstitial abnormalities, and they
were asked to rate the presence of abnormalities by using a five-level scale
of confidence (1: definitely negative, 2: probably negative, 3: possibly
positive, 4: probably positive, 5: definitely positive). No other clinical
information was given, and the observers did not know the percentage of

normal cases. No time limit was imposed on the reading sessions.

2.2.3 Results

There were no significant differences in the overall performance of
all observers in the detection of subtle interstitial lung abnormalities
between SFR and FDR (Figure 2.5). The results of ROC analysis of
chest radiologists and residents for SFR and FDR are shown in Table 2.2.
For the chest radiologists, SFR was superior to FDR (P = 0.003) (Figure
2.6). For the residents, on the other hand, there were no significant
differences between SFR and FDR (Figure 2.7). Both in SFR and FDR,
the observer performance of chest radiologists was superior to that of
residents (SFR, P = 0.001, and FDR, P = 0.021) (Figure 2.8). The best
observer performance was obtained with SFR evaluated by chest

radiologists.
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2.2.4 Summary

The overall performance with SFR and FDR was identical when they
were used for the detection of subtle interstitial lung abnormalities. The
observer performance was, however, significantly dependent on observer
experience. For chest radiologists, SFR was significantly superior to FDR.
For residents, no significant differences were observed between SFR and
FDR. The observer performance was significantly better in both SFR and
FDR for chest radiologists than for residents. The ability of chest
radiologists to diagnose subtle interstitial lung abnormalities was greater
than that of residents. The chest radiologists, who have more diagnostic
ability, can extract more information from SFR than from FDR in the
diagnosis of subtle interstitial lung abnormalities. Thus, that the best
observer performance was obtained with SFR read by chest radiologists in
this study is reasonable. We believe the reason for this is as follows: In
the diagnosis of subtle interstitial lung abnormalities, careful observation
of the peripheral lung parenchyma and sufficient experience with such
subtle abnormalities is mandatory. For residents, their concentration and

experience 1s insufficient.

2.3 Image data compression

To determine what degree of compression is acceptable, we studied
the accuracy with which subtle interstitial lung abnormalities were
detected on digitized chest radiographs, which were uncompressed and

compressed at various ratios (55).
2.3.1 Image acquisition

We selected 78 SFR images from our image data base. Thirty-eight
of the 78 had subtle interstitial lung abnormalities (mean age, 47.7 + 14.0
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years, 16 men and 22 women); the other 40 had normal lung parenchyma
(mean age, 37.3 £ 14.0 years, 16 men and 24 women). Interstitial lung
abnormalities on chest radiographs were caused by collagen vascular
disease (n = 16), hypersensitivity pneumonitis and diffuse panbronchiolitis
(n = 10), metastatic calcifications (n = 2), sarcoidosis (n = 2), eosinophilic
granulomas (n = 2), and unknown causes (n = 6).

The digitized data were compressed at ratios of 10:1, 20:1, and
30:1, after which images were reconstructed from the compressed data.
The compression method used in this study is based on the adaptive DCT
coding technique (17, 56) and is irreversible. First, an original digital
image is divided into 16 x 16 image blocks, each of which is converted to
transform coefficients by the DCT. Next, quantification and frequency
cut-off are performed, the parameters of which determine the
compression ratio and image quality. For obtaining digital radiographs
with minimal image degradation, the combination of these two parameters
should be optimized in each block for the selected compression ratio. The
larger the quantification interval, the higher the compression ratio; the
lower the cutoff frequency, the higher the compression ratio. Finally,
coding is performed, and the image data are compressed at a given ratio.

Because, this compression method is irreversible, the reconstructed
image is inferior in quality to the original image. The image quality
deteriorates further because compression is performed block by block
(22), causing prominent boundaries to be formed between blocks in the
reconstructed image. To reduce this "block artifact," we employed
adaptive processing based on the properties of the blocks (57).

The hardware for data compression and decompression used in this
study was a prototype module designed by the Konica Corporation.
Approximately 4 seconds are required for compression or decompression

of an image (spatial resolution = 0.175 mm, 2000 x 2000 pixels, 10 bits).
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Uncompressed FDR images and images compressed at three compression
ratios were printed with a prototype laser printer (Konica Corporation).
The digital chest images and the original radiographs were of the same
size (14 x 14 inches).

Uncompressed and compressed images of the right (n = 41) and left
(n = 37) lungs were placed in random order and divided into four right-
lung and four left-lung reading subsets. In each subset, images from the

same chest did not appear more than once.

2.3.2 Reading methods

Ten radiologists participated as observers. Five were chest
radiologists and five were residents. Each observer read each of the eight
subsets with at least a 1-week interval between readings. To minimize
reading-order bias, the order in which the subsets were read was different
for each observer and the images in each subset were placed in random
order before each reading session. At the beginning of each reading
session, three images not included in this study were shown as educational
cases. Each observer was asked to examine each image and to indicate
separately, using a five-level scale of confidence (1: definitely negative, 2:
probably negative, 3: possibly positive, 4: probably positive, 5: definitely
positive), whether he believed that a subtle interstitial abnormality was
present. No other clinical information was given, and the observers did
not know the ratio of normal to abnormal cases or the ratio of
uncompressed to compressed images. No time limit was imposed on the
reading sessions.

Observer response data were analyzed by ROC techniques. We
compared uncompressed images with each of the three compressed images
to determine the threshold for acceptable compression when there were

no detectable differences between uncompressed and compressed images.
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For statistical analysis, we used the jackknife method described by
Dorfman et al. (58), which takes into account the sampling of both images
and readers. The pseudo-values obtained from the jackknife method were

tested by the analysis of variance (ANOVA) technique.

2.3.3 Results

For all observers, the detection of subtle interstitial lung
abnormalities with 30:1 compressed images was less accurate than that
with uncompressed images (P < 0.05; Figure 2.9). For chest
radiologists, the detection of subtle interstitial lung abnormalities with
20:1 and 30:1 compressed images was less accurate than that with
uncompressed images (P < 0.05; Table 2.3, Figure 2.10). For the
residents, however, there was no significant difference in the detection of
subtle interstitial lung abnormalities with uncompressed images and that
with images at any of the three compression ratios (P > 0.05; Figure
2.11). The most accurate reading was that by chest radiologists using
uncompressed images. For each set of uncompressed and compressed

images, chest radiologists performed as well as or better than residents.

2.3.4 Summary

For all observers, there was a significant difference between the
detection of subtle interstitial lung abnormalities with uncompressed
images and that on 30:1 compressed images, but no significant difference
was found between interpretations of uncompressed images and those of
20:1 compressed images. However, for chest radiologists, the detection
of abnormalities with 20:1 compressed images was less accurate than that
with uncompressed images. For residents, however, no significant
differences were observed between interpretations of uncompressed

images and those of images compressed at ratios of 30:1 or less.
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Our results suggest that interstitial lung abnormalities would be
diagnosed as accurately with images compressed at a 10:1 ratio as with
uncompressed images, because no significant difference was found between
interpretations of uncompressed images and images compressed at a 10:1
ratio by either chest radiologists or residents (P > 0.05). For all observers
as a group, there was no statistical difference in detection when 20:1
compressed images were used. However, for experienced chest
radiologists, the detection of subtle interstitial lung abnormalities with use
of 20:1 compressed images was significantly less accurate than with
uncompressed images. This result suggests that clinically important
information needed for diagnosis of subtle interstitial lung abnormalities

might be lost in 20:1 compressed images.
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3 CAD for interstitial lung abnormalities

3.1 Laplacian-Gaussian filtering and linear opacity judgment

Various kinds of interstitial radiographic patterns are observed in
chest radiographs of patients with interstitial lung disease. However, it is
difficult to extract all patterns. Four basic roentgenographic patterns of
interstitial diseases are presented: #1 reticular, #2 nodular, #3
reticulonodular, and #4 linear (59). These patterns are correlated with
their CT findings. These four basic patterns were thought to consist of two
patterns. One is "nodular" (mainly from #2 and #3), and the other is
"linear" (mainly from #1, #3, and #4). We roughly divided these
radiographic patterns into two groups, a nodular opacity group and a linear
opacity group. A CAD system that we have developed can selectively
extract the linear opacities processed by Laplacian-Gaussian filtering and
binarization (4L.G/B) and by linear opacity judgment processing (L.OJ)
(60).

3.1.1 CAD scheme

The overall scheme of our computer-analyzing system is shown in
Figure 3.1. First, chest radiographs were digitized, and ROIs were
selected in the right upper and lower lung zones. In order to extract linear
opacities selectively, we performed 4L.G/B and L.OJ processing for each
ROL. Finally, the radiographic index (rI), which is a percentage of opacity
areas in an ROI, was defined for evaluating the chest radiographs as a

physical measure.
3.1.2 Digitization of chest radiographs

Conventional posteroanterior chest radiographs were digitized to a

2000 x 2000 matrix with 1024 gray levels by a laser scanner [Konica
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Corp., Tokyo, Japan]. In order to select ROIs for image processing and
analyzing, we displayed the digitized image of the full chest radiograph on
a CRT. Two ROIs with a 296 x 296 matrix size (51.8 mm x 51.8 mm)
were selected manually in a right upper and a right lower lung zone.

One ROI was selected at the level of the upper pulmonary hilum in
the right upper zone, and the other was selected above the diaphragm. In
order to avoid hilar anatomic structures, we selected both ROIs apart
from the hilum (Figure 3.2). When we had selected an ROI in the left
lower lung zone, the ROI overlapped the cardiac opacity, which caused
poor image processing results. Therefore, we excluded this area in this
evaluation. There was no such problem in the left upper lung zone.
However, in order to evaluate our system by as many cases as possible
and to avoid the bias based on the upper or lower lung zone, we selected
one ROI in the right upper lung zone and one ROI in the right lower lung
zone of each case. In our study, no significant differences were found
between the upper and lower ROIs. Therefore, we did not discriminate

between ROIs according their positions.

3.1.3 Four-directional Laplacian-Gaussian filtering

In order to extract linear opacities in the selected ROI, we chose the
Laplacian-Gaussian filter, which reflected the human visual perception
(61). This filter is described

V2G(r) = 20212 ¢ 3 |
2nob

where G(r) is the Gaussian distribution, r is the distance from the center of
the filter, and © is the spatial spread parameter, which corresponds to the
standard deviation. This filter enhances elements of linear opacities in all
directions. For this reason, we employed a new directional one-
dimensional Laplacian-Gaussian filter, which enhances specific directional

elements. This filter is described
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V2G(x) = (x2-62) € 552

where X is the coordinate axis perpendicular to a specific direction o;. We
changed i from 1 to 4 (o, = 0, oy = W/4, 03 = /2, 04 = 31/4) and obtained
four processed images by using these four directional Laplacian-Gaussian
filters. The matrix size of this filter was 15 x 15 pixels (2.625 mm x 2.625
mm), and a width of the line at the center of this filter was set to 5 pixels
(0.875 mm). The width (20; ¢ = standard deviation) of the center line of
the filter corresponds to the range between the 1/e points of both sides of
the maximum of the Gaussian function. In this study, we used the same
Laplacian-Gaussian filter for all images.

In the image after processing, some peripheral part of the ROI
became ineffective. Therefore, the following processing was carried out in
a submatrix of 256 x 256 (44.8 mm x 44. 8mm).

The Laplacian-Gaussian filter has a band-pass characteristic with a
peak at 1/(v2rc). The spatial frequency to be detected can be adjusted by
taking a suitable 6. This enables us to detect interstitial lung abnormalities
well with the reduced noise. Moreover, this filter corresponds to a
physiologic model of human vision (61). Therefore, we could expect the
results to be similar to the interpretations of the radiologists. We set G at
0.438 mm in this system, because there was a relation of w = 26, where w
was the width of the line at the center of the filter. Because a suitable
diameter of peripheral vessel opacities was thought to be about 0.5-1.0
mm, the value of w had to be set below this value. However, the noise will
increase if ¢ is reduced. Therefore, we decided to keep w at the above-
mentioned value.

Another advantage of the Laplacian-Gaussian filter was that the

correction of the background trend caused by normal anatomic structures
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and the exposure condition was not required, because the background trend
frequency was low enough compared with 1/(V21G).

The original Laplacian-Gaussian filter does not have a specific
directionality, but emphasize in all directions equally. However, in order
to extract linear elements of interstitial chest abnormalities, it was
necessary for the filter to have various directions on the image plane.
Therefore, in our system, filters with four directions, horizontal, vertical,
and two diagonal directions (0 = 0, 0p = /4, 03 = /2, 0,4 = 31/4), were
used. This filter is not a pure Laplacian-Gaussian filter, since though
Laplacian means the sum of the 2nd-order derivatives in the horizontal and
vertical axes, our filter is only the 2nd-order derivative in one direction.
However, we called this filter a directional Laplacian-Gaussian filter or
simply a Laplacian-Gaussian filter. The Laplacian-Gaussian filter used in
our system could extract a opacity in a specific direction. However, other
elements as well as the linear opacities were also extracted. Moreover, the
extracted linear opacity elements were not necessarily continuous, and the
output image contained scattered pixel patterns. For extracting the linear
opacities selectively well, further judgment processing of linear opacities
was required. We could understand that the first 4-directional Laplacian-
Gaussian filters extracted very short linear opacities or candidate pixels of
linear opacities, and the second LOJ processing selected long opacities or
true linear opacities from these pixels. Theoretically, similar results can be
obtained if the linear opacities are extracted by use of a large-scale
Laplacian-Gaussian filter with many directions. However, such a method is

actually impossible because of it requires a large amount of calculations.
3.1.4 Binarization

Binarization was done for each image which had been processed with

the 4-directional Laplacian-Gaussian filter. Then the summation image was
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obtained by addition of the four binary images. As to selecting a suitable
threshold of binarization that can extract only interstitial lung opacities, we
have no conclusive method. One reason is that various kinds of
radiographic patterns are included and their changes are often subtle (27),
and the other reason is that the descriptions of radiographic patterns that
radiologists use often lack objectivity and quantitativeness. So, at first, we
selected 5 candidates of the threshold for 20 cases, based on the
observations of radiologists. Next, we decided one threshold for this
system based on the results of the preliminary study. This same threshold

was applied to all images.

3.1.5 Linear opacity judgment

In order to extract linear opacities selectively, we carried out a
method of LOJ for the four binary filtered images (Figure 3.3). In this
method, we choose a search line method (62) which detects linear opacity
elements.

The search line method used in the LOJ is a method of detecting
straight line segments directly on the image plane. This method was
applied separately to each of the binary images obtained by 4LG/B, and
finally the summation image was obtained by addition of the four LOJ
images. This was because, if the judgment processing was done after
summing of the 4LG/B output, specification of the linear opacity direction
became difficult. This might result in errors in LOJ.

First, a search line of 0 and Ls is selected on all pixels within the
ROI, where 0 is a certain direction and Ls is the length of the search line.
Next, the number (N) of pixels (pixels with values greater than zero) on
the search line is counted. If N is greater than a threshold, Ts, these pixels
are determined to be elements of the linear opacity. In addition, if pixels

do not continuously distribute, pixels between the pixels which are
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determined as elements of the linear opacity are interpolated. For each
pixel in the image, this process is repeated for 0 at every /36 interval
within the range from o; - ©/4 to o; + 7/4.

In each case of i (011 =0, 0y = /4, 03 = 1/2, o.g = 37/4), the
processed image of LOJ is obtained. Finally, the summation image is
obtained by addition of the four processed images of LOJ. In this study,
we decided that Ls was 30 pixels (5.25 mm) and Ts was 24 pixels (4.2
mm). These values were determined from the results of a preliminary
study using some cases.

In Figure 3.4, LOJ images obtained from a normal case and an
abnormal case correspond, respectively, to the normal case and the
abnormal case in Figure 3.2. Figures (a) and (b) are the processed
images of the normal case, and (c) and (d) are the processed images of the
abnormal case. Figures (a) and (c) are the summation images of 4L.G/B,

and (b) and (d) are the summation images of LOJ.

3.1.6 Radiographic index

In order to evaluate interstitial lung opacities, we defined a
radiographic index (rl) already introduced as a physical measure. The rl is
the percent area of extracted opacities to the area of the ROI. This physical
measure was thought to be one of the most simple index as in order to
evaluate our method, and it correlated well with the extent of interstitial
lung abnormalities. The rl was obtained from the summation image of the
four images processed with 4LG/B, and from that of the four processed

images of LOJ.
3.1.7 Image data base

The image data base consisted of 50 patients with interstitial lung

abnormalities and 50 patients with normal lung parenchyma. We used the
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right lungs of the chest radiographs. All 100 patients underwent HRCT of
the chest. In this study, all of the 50 patients with interstitial lung
abnormalities had abnormalities both in a right upper and a right lower
lung zone, and all of the 50 patients with normal lung parenchyma had no
abnormalities in a right upper and a right lower lung zone. The average
age and one standard deviation (SD) of the 50 patients with interstitial lung
abnormalities was 57.5 £ 11.8 years (27 men and 23 women), and that of
the 50 patients with normal lungs was 38.6 + 13.2 years (24 men and 26
women). In each case, an HRCT scan of the chest was carried out within
one week of the chest radiographic examination. The interstitial lung
abnormalities were evaluated on the HRCT images, and HRCT findings
were used as the standard of reference for this study.

For evaluating our system, interstitial lung opacities found on HRCT
were classified into the following two patterns: #1. Honeycomb lesions
(group H): honeycomb opacities were found to be dominant on HRCT.
This group often represents typical linear opacities in chest radiographs.
#2. Others (group O): abnormal opacities were found on HRCT, but these
were excluded from #1. This group included pulmonary abnormalities
such as small nodular opacities and ground-glass opacities. Each ROI
selected in the chest radiographs was classified according to its
corresponding HRCT findings in two groups (#1: group H; n=21; #2:
group O; n=79).

3.1.8 Results

The results of the radiographic indices, rI(4LG/B) obtained from the
ROIs processed by 4LG/B, and rI(LLOJ) obtained from the ROIs processed
by LOJ, are shown in Figure 3.5a. Significant differences in each of the

radiographic indices were observed between the normal group and the

abnormal group (P < 0.001) (Table 3.1).
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The results of the radiographic indices, rI(4LG/B) and rI(LOJ),
between group H and group O, are shown in Figure 3.5b. Table 3.2
shows that significant differences were observed in rI(LOJ) between group
H and group O (P = 0.37), whereas no significant differences were

observed in rI(4LG/B) between group H and group O (P = 0.58).

3.1.9 Summary

We defined two types of rls as physical measures. One was obtained
from the images only processed by 4LG/B, and the other was obtained
from the images processed by LOJ. Our CAD system could detect and
classify interstitial lung abnormalities on digitized chest radiographs which
were confirmed with HRCT. The results of evaluating whether this system
was able to detect and to classify interstitial lung abnormalities from the
digitized chest radiographs were as follows: Both rI(4LG/B) and rI(LOJ)
made it possible to distinguish between normal cases and abnormal cases.
Therefore, this system was able to detect interstitial lung abnormalities seen
by digital chest radiography. Only in rI(LOJ), significant differences were
observed between group H and group O. This indicated that more linear
opacities were extracted with LOJ than with the corresponding images of

4L.G/B.

3.2 Linear opacity judgment and linear opacity subtraction
The main feature of LOJ was the extraction of linear opacities,
because extracting various other types of radiographic patterns seen in
chest radiographs was thought to be difficult. This method could
differentiate abnormal lungs from normal lungs, and honeycombing
lesions in the interstitial lung abnormalities from other interstitial lung
abnormalities (interstitial changes other than honeycombing) (60). In this

method, other elements in addition to linear opacities were also extracted
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in the first image processed with 4L.G/B; however, these elements were
ignored in the LOJ processing. Therefore, we made an attempt to use
these extracted elements for the improvement of our CAD system.

In this section, we added, as a third stage, a process that subtracts
the second image, which is processed by LOJ, from the first image, which
is processed by 4LG/B. Moreover, we defined a new physical measure,
which we called the "combined radiographic index," calculated from the
rIs obtained from the images of the LOJ process and its subtraction

process (63).

3.2.1 Modified CAD scheme

In our modified scheme, we added three processes to our previous
method: a process that subtracts the image processed by LOJ from the
image processed by 4LG/B, normalization of the radiographic index, and
calculation of the combination of physical measures. The overall scheme

of our new algorithm is shown in Figure 3.6.

3.2.2 Linear opacity subtraction

In LOJ, short linear elements below the threshold of the filtered
image could not be extracted. For evaluation of the degree of severity of
interstitial lung disease, which included various types of radiographic
patterns, another method that used short linear elements was needed. To
use the short linear elements that were not extracted by the search line
method, we employed the linear opacity subtraction (LOS) technique.
The subtraction image C(i,j) is defined by the following expression:

C(@,j) = AG,j) - B@,));

if C(1,)) <0, then C(1,)) =0,

where A(i,j) is the image obtained from 4L.G/B, and B(i,j) is the image

obtained from LOJ. To eliminate the linear opacities of anatomic
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structures, we used a greater length Ls for the search line and a higher
threshold Ts than were used for the previous LOJ method. The value of
Ls was 50 pixels (8.75 mm), and that of Ts was 40 pixels. The LOS
images in Figure 3.7, obtained from a normal case and an abnormal
case, correspond, respectively, to the normal case and the abnormal case

in Figure 3.2.

3.2.3 Normalized radiographic index

To evaluate interstitial lung opacities quantitatively, we have
already defined an rI. With this method, we were able to obtain three
different rIs as physical measures. One was rI(4LG/B), expressing the
percent area of the binary summation image A(i,j) in the ROI obtained by
4L.G/B. The second was rI(LOJ), expressing the percent area of the LOJ
summation image B(i,j) in the ROI, and the last was rI(LOS), expressing
the percent area of the subtraction image C(i,j) in the ROI.

We defined a new index calculated from the rls obtained from the
LOJ outputs and LOS outputs. To define the new index, we normalized
these rls by using the average and standard deviation of the rls obtained
from the normal control group, which was not included in the study
population. We used 25 cases for the normal control group. We defined
the normalized radiographic index (RI) by the following expression:

RI=l-rI'm)/0'm,
where rl'y, is the average value of the rls in the control group and 6'n, is
the standard deviation of those. This normalization was performed for
the right upper lung zone and for the right lower lung zone. The
RI(4LG/B), RI(LOJ), and RI{LOS) were obtained from the ROIs
processed by 4L.G/B, LOJ, and LOS, respectively.

3.2.4 Combined radiographic index
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To detect interstitial lung abnormalities in both mild- and severe-
abnormality cases, we defined a new quantitative physical measure which
we called the "combined radiographic index, RI(COM)," which was
obtained from RI(LOJ) and RI(LOS). This is defined by the following
expressions:

RI(COM) = minimum [RI(LOJ), RI(LOS)]

for RI(LOJ) < 1 and RI(LOS) < 1,
RI(COM) = maximum [RI(LOJ), RI(LOS)]

for RI(LOJ) = 1 and RI(LOS) > 1,
RI(COM) = [RI(LOJ) + RI(LOS)] / 2

otherwise.

3.2.5 ROC analysis

The ability to detect interstitial lung abnormalities on chest
radiographs with these physical measures was evaluated by ROC analysis.
To produce ROC curves, we used a five-level scale of confidence which
described the presence of abnormalities. The classification of severity for

each index was defined as follows:

T=0 for RI<O0.5
T = int (RI) for 05<RI<35
T=4 for RI > 3.5,

where T is the number of categories and represents the degree of severity
(0 is minimum and 4 is maximum). The "int" is the operator which
makes RI into an integer. To compare the performance of Rls, we
compared the Az values by use of the CORROC2 computer program (CE
Metz, Department of Radiology, University of Chicago, Chicago, IL).

3.2.6 Results
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Figure 3.8(a) and Table 3.3 show the results for the normal
group and for the entire interstitial lung abnormality group. The
RI(COM) (Az = 0.96 + 0.16), was significantly better than the RI(4LG/B)
(Az =0.94 £ 0.21; P = 0.027), RI(LOJ) (Az = 0.87 £ 0.35; P = 0.002),
and the RI(LOS) (Az = 0.90 £ 0.04; P = 0.005).

Figure 3.8(b) and Table 3.3 show the results for the normal
group and the mild-abnormality group. The RI(COM) (Az = 0.94 +
0.02) was significantly better than the RI(4LG/B) (Az = 0.89 £ 0.03; P =
0.011) and the RI(LOJ) (Az = 0.81 £ 0.05; P = 0.0004). However, there
were no significant differences between RI(COM) and RI(LOS) (Az =
0.90 £ 0.04; P = 0.26).

Figure 3.8(c) and Table 3.3 show the results for the normal
group and the severe-abnormality group. There were no significant
differences between RI(COM) (Az = 0.98 + 0.01) and RI(4LG/B) (Az =
0.99 £ 0.01; P =0.71), and RI(COM) and RI(LOJ) (Az =0.99 £ 0.01; P
= (.27). However, RI(COM) was significantly better than RI(LOS) (Az =
0.83 £ 0.06; P = 0.0072).

For RI(COM), RI(4LG/B), and RI(LLOJ), the detection of interstitial
lung abnormalities in the severe-abnormality group was better than that in
the mild-abnormality group [RI(COM): P = 0.022, RI(4LG/B): P =
0.0009, RI(LOJ), P = 0.0001]. For RI(LOS), however, there were no
significant differences between the normal group and the severe-

abnormality group (P = 0.30).

3.2.7 Summary

To improve the performance of our CAD system, we attempted to
utilize short extracted linear opacity elements that were ignored in the
LOJ method. For this reason, we added a third-stage process that

subtracted the second image, processed by LOJ, from the first image,

44



processed by 4LG/B. Furthermore, to evaluate interstitial lung opacities
quantitatively, we defined an RI.

In the mild-abnormality group, RI(LOS) performed better than did
RI(LOJ). On the other hand, in the severe-abnormality group, RI(LOJ)
performed better than did RI(LOS). The reason for these results can be
explained as follows:

Fewer extracted opacities were processed by LOJ in the mild-
abnormality group than in the severe-abnormality group. However, in
both groups, similar numbers of extracted opacities were normal
anatomic structures, such as ribs and vessels. Therefore, in cases
involving mild abnormalities, a higher proportion of extracted opacities
were normal anatomic structures than in cases involving severe
abnormalities. These results suggest that RI(LOJ) was less quantitative in
the mild-abnormality group than in the severe-abnormality group,
because the effect of normal anatomic structures was relatively greater in
the former group. On the other hand, RI(LOS) performed better in the
mild-abnormality group. The proportion of elements not judged to be
linear opacities was relatively greater, and, as a result of the LOJ, the
effect of normal anatomic structures could be ignored.

With 4LG/B, extracted elements were more densely distributed in
severe than in mild abnormalities. With the search line method in the
LOJ process, the more densely the extracted elements are distributed, the
more easily they are judged as elements of linear opacities, and the
greater is the number of pixels interpolated as elements of linear opacity.
Therefore, the extracted elements in severe abnormalities tended to be
more easily judged as elements of linear opacities than were the more
sparsely distributed elements in mild abnormalities. After LOS, more
opacities were obtained in the severe-abnormality group than in the mild-

abnormality group; however, fewer opacities were obtained than were
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expected when compared with cases involving mild abnormalities. This
difference degraded the performance of RI(LOS) compared with that of
RI(LOJ) in the severe-abnormality group.

Our results suggest that, in the mild-abnormality group, it would be
better to use RI(LOS), obtained from the LOS; however, in the severe-
abnormality group, it would be better to use RI(LOJ), obtained from the
LOJ. A physical measure that is useful in cases with both mild and severe
abnormalities would be desirable. We thought that we could get better
performance by combining the two indices. The new single index,
RI(COM), provided better results in the mild- than in the severe-
abnormality group, but also showed good results in the severe-
abnormality group. This index was superior to either RI(LOJ) or
RI(LOS) alone.

As a result of adding LOS to our LOJ method, we could employ
RI(COM). The performance of RI(COM) was significantly superior
compared with the performance of RI(4LG/B) and of RI(LOJ) in the
mild-abnormality group. The performance of RI(COM) is equivalent to
the performance of RI(4LG/B) and of RI(LOJ) in the severe-abnormality
group. Thus, we were able to improve the performance of our CAD
system compared with the system using LOJ only, especially in the mild-

abnormality group.

3.3 Performance of CAD versus radiologists

We have proposed a CAD system for detecting and classifying
interstitial lung abnormalities (60, 63). We evaluated the performance of
our CAD system compared with that of radiologists, using normal cases

and abnormal cases that had interstitial lung abnormalities (64).

3.3.1 Study group
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The study group consisted of 40 patients who underwent
conventional radiography and HRCT of the chest within one week.
Twenty of the 40 had interstitial lung abnormalities (average age, 46.5 *
12.6 years, 10 men and 10 women), and the other 20 had a normal lung

parenchyma (average age, 38.5 = 1.3 years, 9 men and 11 women).

3.3.2 Analysis by CAD

Our CAD system consists of 4LG/B, LOJ, and LOS. For
quantitative analysis, we defined RI(COM) as a physical measure. For
each patient, two RI(COM) were obtained from the right upper and right
lower lung zones. We used the larger of these two indices as a measure

of the severity of the interstitial lung abnormality in a patient.

3.3.3 Observations by radiologists

Observations of chest radiographs were carried out by 14
radiologists. Seven of the 14 observers were chest radiologists, and the
other seven were residents. The observers read 40 images of right lungs
on a view box. The left lungs were covered with black paper. All images
in the reading set were randomly intermingled for each observer. Before
each session, three images not included in this study were shown as
educational cases. All observers were told that lung abnormalities in this
series were subtle interstitial abnormalities, and they were asked to rate
separately the presence of abnormalities by using a five-level scale of
confidence (1: definitely negative, 2: probably negative, 3: possibly
positive, 4: probably positive, 5: definitely positive). No other clinical
information was given, and the observers did not know the percentage of

normal cases. No time limit was imposed on the reading sessions.

3.3.4 Data analysis
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Both the performance of our CAD system and that of the
radiologists in detecting interstitial lung abnormalities on chest
radiographs were evaluated by ROC analysis. Az values for the 14
observers were obtained by use of the ROCFIT computer program (CE
Metz, Department of Radiology, University of Chicago, Chicago, IL).
The Az values of RI(COM) were calculated directly on the continuous
data. Az values were obtained by use of the LABROC1 computer
program (CE Metz).

3.3.5 Results

Figure 3.9 shows the results for four kinds of RIs. The
performance of RI(LOS) (Az = 0.89) and RI(COM) (Az = 0.88) was
superior to that of RI(4LG/B) (Az = 0.80) and RI(LOJ) (Az = 0.77). The
performance of RI(COM) was significantly superior to that of RI(4LG/B)
and RI(LOJ) (P = 0.018 and 0.015, respectively). However, the
performance of RI(LOS) was not significantly superior to that of
RI(4LG/B) and RI(LOJ) (P = 0.13 and 0.096, respectively). There were
no significant differences between the performance of RI(COM) and that
of RI(LOS) (P = 0.45).

Table 3.4 and Figures 3.10a-b show the results obtained by the
14 radiologists and RI(LOS) and RI(COM). There were no significant
differences between the performance of RI(LOS) and the mean
performance of the 14 radiologists (Az = 0.89 and 0.89 * 0.06,
respectively; P = 0.89). The performance of RI(LOS) was inferior to the
mean performance of the 7 chest radiologists (Az = 0.89 and 0.94 + 0.03,
respectively; P = 0.0074). However, the performance of the CAD system
was superior to the mean performance of the 7 residents (Az = 0.89 and
0.84 + 0.03, respectively; P = 0.0024) (Figure 3.10a). On the other

hand, there were no significant differences between the performance of
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RI(COM) and the mean performance of the 14 radiologists (Az = 0.88
and 0.89 % 0.06, respectively; P = 0.68). The performance of RI(COM)
was inferior to the mean performance of the 7 chest radiologists (Az =
0.88 and 0.94 + 0.03, respectively; P = 0.035). However, the
performance of RI(COM) was superior to the mean performance of the 7
residents (Az = 0.88 and 0.84 + 0.03, respectively; P = 0.0060) (Figure
3.10b).

3.3.6 Summary

The performance of our CAD system was superior to that of the
residents. However, the performance did not exceed that of the chest
radiologists. Thus, the performance of the CAD system was at an
intermediate level between that of the chest radiologists and that of the
residents.

In this study, we did not determine the threshold of the CAD
system, because many more cases were required for determining an
appropriate threshold for distinguishing between normal and abnormal
lungs. However, if we had set the threshold of the CAD system at 3.0,
this system may have discerned 17 of the 20 normal cases correctly (N1 -
N17) and 18 of the 20 abnormal cases (A3 - A20) (Table 2a, b). The
sensitivity of the system may be 0.90, and its specificity may be 0.85. On
the other hand, if the threshold of the radiologists were set at 3.0, in the
normal lungs, the chest radiologists may have discerned 15 normal cases
correctly, and the residents may have discerned 17 normal cases correctly
(Table 3.5a). Also, in the abnormal lungs, the chest radiologists may
have discerned 19 abnormal cases correctly, and the residents may have
discerned 15 abnormal cases correctly (Table 3.5b).

The mean sensitivity of the chest radiologists may be 0.92 + 0.02,
and that of the residents may be 0.84 + 0.06. Also, the mean specificity

49



of the chest radiologists may be 0.80 + 0.16, and that of the residents may
be 0.79 = 0.17 (Table 3.6). Both this system and the radiologists may
have misdiagnosed three cases (N19, N20, A2). However, the CAD
system may have discerned three cases correctly that the chest radiologists
misdiagnosed (N8, N13, N15), and five cases that the residents
misdiagnosed (N8, A3, A4, A5, A14). In these cases, the CAD system
would aid both chest radiologists and residents. Similarly, the
computerized analysis system may have misdiagnosed one case that both
chest radiologists and residents diagnosed correctly (A1). In this case, the
reliance of radiologists on the CAD system would have reduced their
accuracy. Considering the performance of the CAD system combined
with radiologists' judgment, we think that the use of computerized outputs
as a "second opinion" can improve the detectability by both chest
radiologists and residents. Thus, we believe that we should determine an
appropriate threshold for the diagnosis by using more cases in future

studies.
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4 Fractal analysis for interstitial lung abnormalities

4.1 Quantification by fractal dimension
We attempted to quantify interstitial lung abnormalities which were

confirmed on HRCT by using fractal geometry (65).

4.1.1 Fractal geometry

The fractal dimension (FD) can be obtained in several different
ways. We used a box-counting method for determining the FDs (37, 66,
67). If the box size d which covers an object changes, then the number of
boxes N(d) required to cover the object will change. For example, Figure
4.1 shows that a closed curve is covered with boxes of size d. In the case
illustrated, N(d) is 16. Likewise, for each ROI, we counted N(d) for
different sizes of d.

For a fractal object, it is assumed that the number of boxes N(d) is
proportional to d-FD. The relationship between d and N(d) is defined as,

N(d) = pd-FD,
where | is a constant. From this relationship, the FD is determined as
follows,

InN(d=-FDInd+Inpu.

We applied this box-counting method to the output of 4LG/B and
LOJ. In this output, linear opacities of interstitial lung abnormalities on
chest radiographs were selectively extracted. These extracted linear
opacities were intended to be interstitial lung abnormalities themselves.

First, for a given size d, a grid of boxes that covered the whole ROI
was generated by computer. It counts the number of boxes N(d) required
to cover the extracted linear opacities in the ROI. This process was
repeated by variation of d. In this study, the number of boxes d in a side

of an ROI was selected as 3m+15, where m ranged from 0 to 9. Thus, for
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each ROI, we obtained ten sets of d and N(d). Next, by plotting In d and In
N(d) on a log-log scale, we calculated the FD as the slope of the regression

line by the least-squares method.

4.1.2 Results

Examples of the double logarithmic curves of box d versus the
number of boxes N(d) are shown in Figure 4.2. The upper line was
obtained from the ROI in a lung with interstitial abnormalities, and the
lower line was obtained from the ROI in a normal lung. The value of the
FD was calculated from the slope of the curve. In this case, the value FD
for the case involving interstitial lung abnormalities was calculated as 1.75,
and that for the normal lung was calculated as 1.26.

The results for the FDs obtained from our image data base (100
ROIs in lungs with interstitial abnormalities and 100 ROIs in normal
lungs) are shown in Table 4.1. The mean value of the FDs obtained
from the ROIs in the lungs with interstitial abnormalities was 1.67 £ 0.10,
and that in the normal lungs was 1.44 + 0.12. The FDs obtained from the
ROIs in the lungs with interstitial abnormalities were zsigniﬁcantly higher
than those of the normal lungs (P < 0.001). The mean value of the FDs
obtained from the ROIs in the upper lobes of the lungs with interstitial
abnormalities was 1.68 + (.08, and that in the lower lobes was 1.65 +
0.11. However, the mean value of the FDs obtained from the ROIs in the
upper lobes of the normal lungs was 1.46 *+ 0.12, and that in the lower
lobes was 1.42 £ 0.12. In both the upper and lower lungs, there were
significant differences in the FDs between the ROIs of lungs with

interstitial abnormalities and those of normal lungs (P < 0.001).

4.1.3 Summary
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Many anatomic and physiologic processes of the human body,
including the lung structure, may be explained by means of fractal
concepts. In particular, the tracheobronchial tree structure is an example
of anatomic fractals (68, 69). In this study, two-dimensional fractal
analysis was able to distinguish interstitial lung abnormalities from
normal lungs on digitized chest radiographs. However, lung structure is
three-dimensional, and thus three-dimensional fractal geometry may be
required. However, two-dimensional fractal analysis is correlated with
the complexity of radiographic patterns of interstitial lung abnormalities

on chest radiographs.

4.2 Comparison of radiographic index and fractal dimension

To evaluate quantitatively the outputs obtained with our CAD
system, we defined two physical measures. One was a normalized
radiographic index (RI) (60, 63), and the other was a fractal dimension
(FD) (65). In section 3.2, the combination of values of RI obtained from
LOJ and LOS was shown to have high sensitivity in distinguishing a group
of interstitial lung abnormalities from a normal group, especially in the
case of mild interstitial lung abnormalities (63). FDs also proved to be
useful in distinguishing an interstitial lung abnormality group from a
normal lung group (65).

In this study, we evaluated the performance of these two physical

measures obtained from our CAD system (70).

4.2.1 Calculation of physical measures

We selected 50 ROIs with mild interstitial lung abnormalities, 50
ROIs with severe interstitial lung abnormalities, and 50 ROIs with normal
lung parenchyma from our data base of digitized chest radiographs. In

each group, the number of ROIs selected from the upper lung zones and
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that of ROIs selected from the lower lung zones were the same. The
average age and gender of the individuals were closely matched among
the three groups.

The values of RI were obtained as the normalized percent area of
extracted opacities in selected ROIs. The values of FD were calculated
with a box-counting algorithm.

The performance of these physical measures was evaluated by ROC
analysis. To describe the observer performance, we calculated the Az
directly on the continuous data of values of RI and FD. The significance
of the differences between Az values was evaluated by use of the

CLABROC computer program (CE Metz).

4.2.2 Results

In the normal and mild-abnormality groups, the values of RI
performed less well in the LOJ images (Az = 0.812 + 0.042) than in the
LOS images (Az = 0.912 + 0.028; P < 0.05), and the values of FD
performed better in the LOJ images (Az = 0.867 = 0.037) than in the
LOS images (Az = 0.750 £ 0.048; P < 0.05). The values of FD (Az =
0.864 £ 0.036) performed better than those of RI (Az = 0.814 £ 0.042; P
< 0.05) in the LOJ images. On the other hand, the values of RI (Az =
0.912 £ 0.028) performed better than those of FD (Az = 0.752 £+ 0.048; P
< 0.0001) in the LOS images (Table 4.2). In the normal and severe-
abnormality groups, both values of RI and FD performed better in the
LOJ images (RI: Az =0.992 £ 0.007; FD: Az = 0.968 + 0.016) than in the
LOS images (RI: Az = 0.883 £0.034; P < 0.001, FD: Az =(.767
0.047; P < 0.0001), and the values of RI performed better than those of
FD in LOJ images (RI: Az =0.992 £ 0.006; FD: Az = 0.964 + 0.018; P <
0.05) and LOS images (RI: Az =0.883 + 0.034; FD: Az = 0.767 £ 0.047;
P < 0.01) (Table 4.3).
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4.2.3 Summary

The values of FD performed better in LOJ images than in LOS
images in both the mild- and severe-abnormality groups. In the normal
and severe-abnormality groups, the values of RI performed better than
those of FD in both LOJ and LOS images. On the other hand, in the
normal and mild-abnormality groups, the values of RI performed better
than did those of FD in LOS images. However, the values of FD
performed better than those of RI in LOJ images. This indicates that the
values of FD may correlate better with the amounts of extracted linear

opacities than do the values of RI, especially in the mild-abnormality

group.
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5 CAD for pulmonary vasculature

We investigated whether our CAD system can be used for
estimating the redistribution of pulmonary blood flow on chest
radiographs. We carried out an evaluation of the redistribution of
pulmonary blood flow in patients with mitral stenosis (MS) and in patients

without MS (71).

5.1 Study group

The study group consisted of 15 male patients with MS and 15 male
patients without MS. MS is the most common cause of chronic pulmonary
vascular hypertension. Of the 15 male patients without MS, six had normal
hearts, and the remaining 9 patients had coronary artery disease. All of the
non-MS patients in this study underwent cardiac catheterization because of
a suspicion of coronary artery disease. As a result of the cardiac
catheterization studies, some were diagnosed as having coronary artery
disease, and the others were diagnosed as normal. Erect posteroanterior
chest radiographs were taken of each patient immediately before cardiac
catheterization. Pulmonary capillary wedge pressure (PCWP) was
measured in the supine position. We used the right lungs of the chest
radiographs for this analysis. The average age of the 15 patients with MS
was 57.0 = 6.3 years, and that of the 15 patients without MS was 56.4 + 7.7
years. The mean PCWP values of the 15 patients with MS was 26.1 + 8.4
mmHg, and that of the 15 patients without MS was 13.1 + 4.0 mmHg
(Figure 5.1).

5.2 CAD scheme
The overall scheme of our CAD system is shown in Figure 5.2.
First, chest radiographs were digitized, and ROIs were selected in the right

upper and lower lung zones. In order to enhance linear opacities
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selectively, we performed 4L.G/B for each ROI. As a measure of the
pulmonary blood flow redistribution, the upper/lower radiographic ratio

(U/L) was calculated.

5.3 Upper/lower radiographic index ratio

To measure the pulmonary blood flow redistribution, we defined the
U/L as the ratio of the percent area of extracted opacities to the area of the
ROI. Cephalization of pulmonary vascular flow is visible toward the upper
lung zones. In non-MS patients, the vessels in the lower lung zones carry a
greater blood flow than do those in the upper lung zones, due to the effect
of gravity, and they are therefore visibly larger than the upper lung zone
vessels on chest radiographs. On the other hand, in MS patients, the blood
flow in the upper lung zones increases because of raised intravascular
pressure and the blood flow in the lower lung zones is diminished because
of vasoconstriction or interstitial edema. Thus, a blood flow pattern that is
inverted compared to the normal one is seen in erect chest radiographs.
Based on these results, the U/L values for MS patients are expected to be

greater than those of non-MS patients.

5.4 Results

The output images shown in Figure 5.1, obtained from a normal
case and an abnormal case, correspond, respectively, to the non-MS case
and the MS case in Figure 5.3. Figures (a) and (b) are the processed
images of the non-MS case, and Figures (c) and (d) are the processed
images of the MS case.

The overall correlation between the U/L values and the PCWP
values for the 30 male patients is shown in Figure 5.4. In all patients,
the U/L values were correlated with the PCWP values (mean PCWP
value, 20.3 £ 9.5; mean U/L value, 1.10 £ 0.13; r = 0.405; P = 0.025).
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In the 12 patients whose PCWPs were below or equal to 15 mmHg (non-
MS, 11; MS, 1), the U/L values were well correlated with PCWP values
(mean PCWP value, 11.5 £ 2.5; mean U/L value, 1.06 + 0.13; r = 0.689;
P =0.011). In the 18 patients whose PCWPs were above 15 mmHg (non-
MS, 4; MS, 14), the U/L values were not correlated with PCWP values
(mean PCWP value, 25.7 £ 8.8; mean U/L value, 1.14 £ 0.12; r = 0.313;
P = 0.210) (Table 5.1).

The mean U/L value for the 15 male patients without MS was 1.05
+ 0.09, and the mean U/L value for the 15 male patients with MS was
1.16 £ 0.14. The mean value for the MS group was significantly higher
than that of the non-MS group (P = 0.016) (Table 5.2).

5.5 Summary

We used computer-aided analysis based on 4LG/B to evaluate the
redistribution of pulmonary blood flow in digital chest radiographs. In
our study, the U/L values were correlated with the PCWP values,
especially in the cases whose PCWP values were below or equal to 15
mmHg. The U/L values are thus thought to reflect the distribution of the
pulmonary vasculature.

As determined in this section, MS and non-MS groups had
statistically different mean values of the U/L index; however, there was
much overlap of individual values. Thus, this analysis can be useful in a
CAD scheme where high values of U/L are used to raise the suspicion

level of the radiologist as to the presence of MS.
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6 Conclusion

The possibility of automated diagnosis has been discussed in the field
of medical image processing, and many trials have been done. However,
the image diagnosis by radiologists is based on a highly sophisticated
ability of pattern recognition that requires experience and knowledge. It is
reported that, although completely automated computer interpretation of
complex images such as chest radiographs is unlikely to be achieved in the
foreseeable feature, CAD is a realistic goal. A computerized diagnostic
program could assist the radiologist by identifying probable areas of
abnormality (4).

With our CAD system, the processing results are not only obtained
as numerical data, but a radiologist can check the processed images on a
CRT screen in visual form. The outputs obtained from the CAD system
can be used by radiologists as a "second opinion" to increase their
diagnostic accuracy. Also, our CAD system could be especially useful for
obtaining quantitative data for follow-up of known diffuse lung
abnormalities.

Concerning the spatial resolution requirement, despite the fact that
the overall performance with SFR and with 0.2-mm spatial-resolution
digital radiography is identical, our results suggest that spatial resolution is
a very important factor, and that 0.2-mm spatial-resolution digital images
may be inadequate when used in the detection of subtle interstitial lung
abnormalities. We currently use high-resolution SPR images and high-
resolution FDR i1mages. These images have a 0.1-mm or lower spatial
resolution. Ikezoe et al. (72) reported that there were no significant
differences between SFR and 0.1-mm spatial-resolution SPR in the
detection of simulated subtle interstitial lung abnormalities. However,

with the status of today's computer technology, extremely large amounts
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of data cannot be managed in a short time. For this reason, data from
digital radiography systems are somewhat difficult to manage without
lower spatial resolution or without data compression. As to what data
compression ratios are acceptable, our results suggest that a 10:1
compression ratio does not influence the detection of subtle interstitial lung
abnormalities. However, in situations in which early detection of subtle
abnormalities is important, our results indicate that 20:1 compression may
be inappropriate.

From the viewpoint of designing a CAD system, it is difficult to use
images of extremely large size and with data compression for processing
directly. We used uncompressed digital images in our CAD system. The
pixel size of the digitized chest radiographs which we used was 0.175
mm. This spatial resolution is generally used in digital radiography.
Concerning the spatial-resolution requirement, Katsuragawa et al. (73)
reported that 0.2-mm pixel images were acceptable in lung texture
analysis. For experienced radiologists and for subtle abnormal cases, 0.2-
mm spatial-resolution digital radiography may be insufficient; however,
the overall performance with SFR and 0.2-mm spatial-resolution digital
radiography is identical. Therefore, we think that this spatial resolution
is reasonable for the design of a CAD system.

Also, for designing a CAD system, it is important to choose suitable
physical measures which represent, both quantitatively and objectively,
the results obtained with that system. We have proposed two physical
measures. One is a radiographic index and the other is a fractal
dimension. We evaluated these two physical measures by using the same
outputs obtained from our CAD system. Both physical measures are
useful for evaluation of diffuse lung abnormalities on chest radiographs;

however, these two physical measures have different features. So, we can
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use these physical measures for the classification of diffuse lung
abnormalities on chest radiographs.

In general, for radiologists who do not have much experience in
reading chest radiographs, the CAD system is useful for improving their
diagnosis. On the other hand, for chest radiologists who have
considerable experience in reading chest radiographs, CAD may not
improve their diagnosis. However, the results of our study indicate that
the CAD system would aid chest radiologists, also, in making a diagnosis.

The new points of our dissertation are the diagnostic physical
measures for detection of diffuse lung abnormalities whose performances
are superior to the detectabilities of residents, and the new method for the
displaying the CAD results.

Our CAD system may become the basis for the construction of a

CAD system of diffuse lung abnormalities in digital chest radiography.
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Table 2.1a
Az Values for 7 Chest Radiologists According to Image
Modality

Observer SFR SPR x 1 SPRx2/3
1 0.933 0.918 0.891
2 0.926 0.913 0.921
3 0.911 0.879 0.882
4 0.953 0.902 0.929
5 0.859 0.831 0.847
6 0.912 0.887 0.886
7 0.927 0.925 0.874

Mean £ SEM 0.917 £ 0.004 0.893 + 0.005 0.890 + 0.004

SFR: Screen-film radiography, SPR x 1: full-size storage phosphor
radiography, SPR x 2/3: minified storage phosphor radiography, SEM:

standard error of mean.
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Table 2.1b
Az Values for 7 Residents According to Image Modality

Observer SFR SPR x 1 SPR x 2/3
1 0.875 0.920 0.893
2 0.814 0.798 0.860
3 0.821 0.815 0.870
4 0.791 0.805 0.868
5 0.854 0.870 0.829
6 0.803 0.925 0.852
7 0.798 0.836 0.835

Mean + SEM 0.822 + 0.004 0.853 + 0.008 0.858 + 0.003

SFR: Screen-film radiography, SPR x 1: full-size storage phosphor
radiography, SPR x 2/3: minified storage phosphor radiography, SEM:

standard error of mean.
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Table 2.2
Az Values for Chest Radiologists and Residents According to
Image Modality

Observer SFR FDR

Chest Radiologists

1 0.93 0.92

2 0.93 0.91

3 0.87 0.86

4 091 0.89

5 0.95 0.93

Mean + SEM 0.92 +£0.01 0.90 + 0.01
Residents

1 0.93 0.92

2 0.93 0.92

3 0.93 0.92

4 0.93 0.92

5 0.93 0.92

Mean + SEM 0.84 +0.01 0.85 £ 0.01

SFR: Screen-film radiography, SPR: storage phosphor radiography,

SEM: standard error of the mean.
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Table 2.3
Az Values for Chest Radiologists and Residents for

Uncompressed and Compressed Images

Compressed
Observer  Uncompressed 10:1 20:1 30:1
Radiologists
1 0.93 0.93 0.89 0.86
2 0.92 0.88 0.89 0.86
3 0.91 0.91 0.87 0.87
4 0.88 0.92 0.88 0.85
5 0.85 0.83 0.81 0.83
Mean+ SEM 0901+£0.01 0.89+0.02 0.87+0.02 0.86 +0.01
Residents
1 0.88 0.88 0.87 0.85
2 0.86 0.88 0.84 0.78
3 0.86 0.87 0.90 0.87
4 0.85 0.87 0.90 0.87
5 0.80 0.79 0.73 0.60

Mean+ SEM _0.85+0.01 086+0.02 0.85+0.03 0.79+ 0.05

SEM: Standard error of mean
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Table 3.1

Radiographic Indices of Normal and Abnormal Lungs

Normal Abnormal P-value
rI(4LG/B) 25.6 £ 6.1 30.3+4.8 P < 0.001
rI(LOJ) 16.6 £ 6.4 304 +6.3 P < 0.001

Each value is mean * one standard deviation.
rI(4LG/B): 1l processed by 4LG/B
rI(LOJ): I processed by LOJ
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Table 3.2
Comparison of Radiographic Indices and Image Features of HRCT

Honeycombing _ Others P-value
rI(4LG/B) 41.1 £ 2.7 38.8t£5.2 P =0.058
rI(LOJ) 33.0£34 29.8 £ 6.8 P = 0.037

Each value 1s mean * one standard deviation.
rI(4LG/B): 1l processed by 4LG/B
rI(LOJ): 1l processed by LOJ
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Table 3.3

Az Values for Interstitial Lung Abnormalities

Total Mild Severe
RI(4LG/B) 0.94 £ 0.21 0.89 £ 0.03 0.99 +0.01
RI(LOJ) 0.87 £ 0.35 0.81 £ 0.05 0.99 £ 0.01
RI(LOS) 0.90 = 0.04 0.90 £ 0.04 0.83 £ 0.06
RI(COM) 0.96 £ 0.16 0.94 + 0.02 0.98 + 0.01

Each value is the mean * one standard deviation.

RI: Normalized radiographic index

41L.G/B: Four-directional Laplacian-Gaussian filtering and binarization
LO1J: Linear opacity judgment

LOS: Linear opacity subtraction

COM: Combined radiographic index
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Table 3.4

Az Values for Radiologists for Detection of Interstitial Lung

Abnormalities

Chest radiologists Az

1 0.94

2 0.96

3 0.92

4 0.94

5 0.88

6 0.95

1 0.97

Mean + SD 0.94 +0.03
Residents Az

1 0.87

2 0.85

3 0.85

4 0.84

5 0.86

6 0.83

7 0.79

Mean =+ SD 0.84 £ 0.03
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Table 3.5a
Five-Level Scale of Scores for Normal Lungs Obtained from

CAD System and by Radiologists

Mean £ SD

Case #1 #2 #3

N1 -0.71 1.431+0.49 1.14 £ 0.35
N2 0.81 2.00 + 1.07 2.71 £ 1.58
N3 1.05 1.29 £ 0.45 1.57 £ 1.05
N4 1.16 1.14 £ 0.35 1.57 £ 1.05
N5 1.21 2.29 + 0.88 2.00 £ 0.76
N6 1.36 2.57 £ 1.40 1.71 £ 0.70
N7 1.37 243 £ 0.90 229 +1.48
N8 1.55 3.57 £ 0.90* 3.29 + 1.48*
N9 1.78 1.29 £ 0.45 1.43 £ 0.49
N10 1.78 3.00 £ 1.31 2.57 £ 1.05
N11 1.94 2.14 £ 0.99 257+ 1.18
N12 2.09 2.14 +0.83 2.29+1.48
N13 2.23 343 +1.18% 3.00 £ 1.51
N14 2.31 1.29 + 0.45 1.00 = 0.00
N15 2.37 3.29 £ (0.70* 2.86 £ 0.83
Ni6 2.44 1.86 + 0.83 2.00 £1.07
N17 2.46 1.71 £ 0.70 2.00 £ 1.07
N18 3.14% 3.00 £ 0.76 2.86 +0.83
N19 3.87* 3.57 £ 1.18% 4.00 £ 0.76*
N20 3.96* 3.14 £+ 0.99* 3.71 £ 0.45%*

SD: Standard deviation,; #1: CAD system, #2: chest radiologists (n = 7);
#3: residents (n = 7); * : incorrectly identified normal cases (scores >
3.0).
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Table 3.5b

Five-Level Scale of Scores for Abnormal Lungs Obtained from

CAD System and by Radiologists

Mean + SD

Case #1 #2 #3

Al 1.39%* 4.29 + 0.88 3.86 £ 0.64
A2 1.59%* 2.14 + 0.99* 1.57 £ 0.49%*
A3 3.05 4.00 £ 1.07 2.86 £ 1.25%*
A4 3.07 3.86 £1.12 2.57 £ 1.50%*
AS 3.11 343 +1.05 2.86 £ 1.25%*
A6 3.21 471 £0.45 4.57 £ 0.49
A7 3.36 471 £ 0.45 471 £0.45
A8 3.53 5.00 £ 0.00 4.43 + 0.49
A9 4.01 4.00 £ 0.53 3.71 £ 0.70
A10 4.36 5.00 £ 0.00 5.00 £ 0.00
All 4.43 4.14 + 0.83 4.00 £ 0.53
Al2 4.51 5.00 = 0.00 5.00 = 0.00
Al3 4.62 5.00 £ 0.00 471 £0.45
Al4 4.65 3.29 + 1.28 1.14 £ 0.35%*
AlS5 4.75 4.86 + 0.35 4.14 £ 0.83
Al6 5.31 5.00 £ 0.00 5.00 £ 0.00
Al7 5.38 4.86 + 0.35 471 £ 045
Al8 5.64 5.00 £ 0.00 5.00 £ 0.00
Al9 5.67 4.86 £ 0.35 4.57 £ 049
A20 5.83 5.00 +0.00 5.00 + 0.00

SD: Standard deviation; #1: CAD system; #2: chest radiologists (n = 7);
#3: residents (n =7 ); * : incorrectly identified abnormal cases (scores <

3.0).
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Table 3.6
Sensitivity and Specificity Results for CAD System and

Observers
Chest radiologists Sensitivity Specificity
1 0.90 0.95
2 0.90 0.95
3 0.90 0.70
4 0.95 0.55
5 0.90 0.70
6 0.95 1.00
7 0.95 0.75
Mean + SD 0.92 +£0.02 0.80 £ 0.16
Residents Sensitivity Specificity
1 0.90 0.85
2 0.75 0.90
3 0.75 0.80
4 0.85 1.00
5 0.90 0.85
6 0.85 0.75
7 0.90 0.40
Mean + SD 0.84 + 0.06 0.79 £ 0.17

Sensitivity: number of correctly identified abnormal cases (scores > 3.0)
+ total number of abnormal cases. Specificity: number of correctly
identified normal cases (scores < 3.0) + total number of normal cases.

SD: Standard deviation.
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Table 4.1

Fractal Dimension Obtained from Normal and Abnormal Lungs

Lung FD
Abnormal Upper 1.68 £ 0.08
Lower 1.65+0.11
Mean 1.67 £0.10
Normal Upper 1.46 £ 0.12
Lower 1.42 £0.12
Mean 1.44 £ 0.12

Each value is mean * one standard deviation

74



Table 4.2

Az Values of RlIs and FDs in Normal and Mild-Abnormality

Groups
LOJ LOS P-value
RI 0.812+0.042 < 0.912 £ 0.028 P < 0.05
FD 0.867 £ 0.037 > 0.750 £ 0.048 P < 0.05
RI FD P-value
LOJ 0.814 £0.042 < 0.864 + 0.036 P < 0.05
LOS 0912+ 0.028 > 0.752 £ 0.048 P < 0.0001

Each value is the mean * one standard deviation.
RI: Normalized radiographic index

FD: Fractal dimension

LOJ: Linear opacity judgment

LOS: Linear opacity subtraction
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Table 4.3

Az Values of RIs and FDs in Normal and Severe-Abnormality

Groups
LOJ LOS P-value
RI 0.992 £0.007 > 0.883 £ 0.034 P < 0.001
FD 0.968 £ 0.016 > 0.767 £ 0.047 P < 0.0001
RI FD P-value
LOJ 0.992 £ 0.006 > 0.964 £ 0.018 P < 0.05
LOS 0.883+0.034 > 0.767 £ 0.047 P < 0.01

Each value is the mean * one standard deviation.
RI: Normalized radiographic index

FD: Fractal dimension

LOJ: Linear opacity judgment

LOS: Linear opacity subtraction
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Table 5.1
Correlation between PCWP Values and U/L Values

Mean PCWP Mean U/L r P

(mmHg) value

<15mmHg 11.5%£25 1.06 £ 0.1 0.689 0.011
>15mmHg 257+ 838 1.14+0.12 0313 0.210

Total 203 £9.5 1.10+0.13 0405 _0.025

Each value is mean * one standard deviation.
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Table 5.2
Mean PCWP Value and Mean U/L Value in Patients without

and Patients with MS

Mean PCWP Mean U/L value
(mmHg)
Without MS 13.1+£4.0 1.05 £ 0.09
With MS 26.1 £ 84 1.16 £ 0.14

Each value is mean * one standard deviation.
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Figure 2.1

Composite ROC curves for the 14 observers. No significant differences in observer

performance for the 14 observers were noted among SFR, fuli-size SPR, and minified

SPR.
SFR = Screen-film radiography, SPR x 1 = full-size storage phosphor radiography, SPR

x 2/3 = minified storage phosphor radiography, SEM = standard error of mean, NS = not

significant.
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Figure 2.2

Composite ROC curves for the 7 chest radiologists. Significant differences in observer
performance for the 7 chest radiologists were observed between SFR and the two formats
of SPR (P < 0.01).

SFR = Screen-film radiography, SPR x I = full-size storage phosphor radiography, SPR
x 2/3 = minified storage phosphor radiography, SEM = standard error of mean.
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Figure 2.3

Composite ROC curves for the 7 residents. Significant differences were observed
between SFR and minified SPR (P < 0.05); however, no significant differences in
observer performance with SFR and full-size SPR were observed.

SFR = Screen-film radiography, SPR x 1 = full-size storage phosphor radiography, SPR
x 2/3 = minified storage phosphor radiography, SEM = standard error of mean, NS = not

significant.
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SFR SPR x 1 SPR x 2/3

Modality

B 7 chest radiologists
A4 7 residents

Figure 2.4

Areas under the ROC curves for the 7 chest radiologists and the 7 residents for each image
modality. Significant differences in the perceptual accuracy of each modality between the
7 chest radiologists and the 7 residents were observed in SFR (P < 0.001) and minified
SPR (P < 0.05), but no significant differences were observed in full-size SPR.

SFR = Screen-film radiography, SPR x 1 = full-size storage phosphor radiography, SPR
X 2/3 = minified storage phosphor radiography, NS = not significant.
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Figure 2.5

Composite ROC curves for the 10 observers. No significant differences in observer
performance were found between SFR and FDR (P = 0.137).

SFR = Screen-film radiography, FDR = film-digitized radiography.
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Figure 2.6

Composite ROC curves for the five chest radiologists. Significant differences in observer
performance were found between SFR and FDR (P = 0.003).

SFR = Screen-film radiography, FDR = film-digitized radiography.
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Figure 2.7

Composite ROC curves for the five residents. No significant differences in observer
performance were found between SFR and FDR (P = 0.895).
SFR = Screen-film radiography, FDR = film-digitized radiography.
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Figure 2.8

Az values for the five chest radiologists and the five residents according to each image
modality. Significant differences in the perceptual accuracy between the five chest
radiologists and the five residents were found in SFR (P = 0.001), but no significant

differences were found in FDR (P = 0.021).
SFR = Screen-film radiography, FDR = film-digitized radiography.
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Figure 2.9
Composite ROC curves for the 10 observers. Significant differences in performance were

found between uncompressed images and 30:1 compressed images (P < 0.05).
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Figure 2.10
Composite ROC curves for the five chest radiologists. Significant differences in
performance were found between uncompressed images and 20:1 compressed images (P <

0.05) and between uncompressed images and 30:1 compressed images (P < 0.05).
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Figure 2.11

Composite ROC curves for the five residents. No significant differences in performance

were found between uncompressed images and three formats of compressed images (P >

0.05).
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Digitization of chest radiographs

Y

Selection of two ROIs in the right lung zone

'

4-directional Laplacian-Gausstan filtering

Y

Binarization

N Y Y Y
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[ Linear opacity judgment (ILOJ) )

Y
( Calculation of the radiographic index (r) )
rI(4LG/B) rIi(LOJ)

Figure 3.1

Overall scheme of a CAD system for interstitial lung diseases in chest radiography. The
radiographic index rI(4L.G/B) was obtained from the ROIs processed by 4LG/B. The
radiographic index rI(LOJ) was obtained from the ROIs processed by LOIJ.
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Figure 3.2
Chest radiographs of the right upper lung zones with ROIs. ROIs with 296 x 296 matrix
size were selected manually for filtering by 4-directional Laplacian-Gaussian filters. (a)

Normal lung (top), (b) abnormal lung (bottom).
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Selection of a search line

Y

Count of dots on a search line

Y

N>Ts

Y

Linear opacity judgment

Y

Interpolation of pixels on a search line

Figure 3.3
Scheme for LOJ processing. The starting point of a search line is selected on all pixels
within an ROI, and 0 is selected from o - /4 to oj + /4 for each pixel. N is the total

number of pixels on a search line, and Ts is the threshold. If N > Ts, the pixels on a

search line are judged to be those of a linear opacity.
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Figure 3.4

Outputs of the selected ROIs (256 x 256 matrix size). (a) Image of the ROI for a normal
lung obtained from 4LG/B. Gray regions indicate the 4LG/B outputs. (b) Image of the
ROI for a normal lung obtained from LOJ. White and gray regions indicate 4LG/B outputs

(including interpolated pixels). White regions are judged to be linear opacities by LOJ. (c)
Image of the ROI for an abnormal lung obtained from 4LG/B. (d) Image of the ROI for an
abnormal lung obtained from LOJ.
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Figure 3.5(a)
Distribution of the two radiographic indices, rI(4LG/B) obtained from the ROIs processed
by 4L.G/B, and rI(LOJ) obtained from the ROIs processed by LOJ. (a) Comparison of

normal and abnormal lungs.
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Figure 3.5(b)
Distribution of the two radiographic indices, rI(4LG/B) obtained from the ROIs processed
by 4LG/B, and rI(LLOJ) obtained from the ROIs processed by LOJ. (b) Comparison of

honeycombing and others.
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( Digitization of chest radiographs
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C Selection of two ROIs in the right lung zone
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( 4-directional Laplacian-Gaussian filtering

C Binarization )

C Linear opacity judgment (LOJ) )
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Y
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Figure 3.6

Overall scheme for modified CAD system for detection of interstitial lung disease on chest
radiographs. Normalized radiographic indices: RI(4L.G/B) was obtained from ROIs
processed by 4LG/B, RI(LOJ) was obtained from ROIs processed by LOJ, and RI(LOS)
was obtained from the ROIs processed by LOS. The combined radiographic index,
RI(COM), was obtained from RI(LOJ) and RI(LOS).
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Figure 3.7
Outputs of LOJ and LOS in selected ROIs (256 x 256 matrix size). (a) Image of an ROI
for a normal lung, obtained by LOJ. White regions are judged as linear opacities by LOJ

(upper left). (b) Image of an ROI for a normal lung, obtained by LOS. Gray regions
indicate subtracted regions obtained by LOS, and white regions indicate opacities obtained
by LOS (upper right). (c) Image of an ROI for an abnormal lung, obtained by LOJ
(lower left ). (d) Image of an ROI for an abnormal lung, obtained by LOS (lower
right).
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Figure 3.8(a)
Results of evaluation by the CAD system. (a) ROC curves for distinction between ROIs of
normal lungs and ROIs with entire interstitial lung abnormalities. RI{COM) is better than the

other indices.
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Figure 3.8(b)

1.0

Results of evaluation by the CAD system. (b) ROC curves for distinction between ROIs of

normal lungs and ROIs with mild interstitial lung abnormalities. RI(COM) is better than

RI(4LG/B) and RI(LLOJ). ROC curve for RI{COM) is above that for RI(LOS). However,

there are no significant differences between RI(COM) and RI(LOS).
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Figure 3.8(c)
Results of evaluation by the CAD system. (c) ROC curves for distinction between ROIs of
normal lungs and ROIs with severe interstitial lung abnormalities. There are no significant

differences among RI(COM), RI(4LG/B), and RI(LOJ). However, these indices are better
than RI(LOS).
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Figure 3.9

ROC curves for the CAD system. RI(4LG/B), RI(LOJ), and RI{(LOS) are RIs obtained
from the ROIs of 4LG/B, LOJ processing, and LOS processing. RI(COM) is the
combined radiographic index obtained from RI(LLOJ) and RI(LOS).
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Figure 3.10(a)

ROC curve for the CAD system, and composite ROC curves for 7 chest radiologists and 7
residents. (a) The performance of RI(LOS) is inferior to the mean performance of the chest
radiologists (P = 0.0074); however, the performance of RI(LOS) is superior to the mean
performance of the residents (P = 0.0024).
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Figure 3.10(b)
ROC curve for the CAD system, and composite ROC curves for 7 chest radiologists and 7

mean performance of the residents (P = 0.0060).
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Figure 4.2

Examples of double logarithmic curves of box, d versus the number of boxes, N(d). The
FD was calculated from the slope of each curve. The slope of the line for the abnormal
case was -1.75, and that for the normal case was -1.26. Therefore, the FD of the

abnormal case was 1.75, whereas that of the normal case was 1.26.
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Figure 5.1

Examples of original images for image processing of the selected ROIs (296 x 296 matrix
size). (a) Image of the ROI for a patient without MS in the upper lung zone (upper
left). (b) Image of the ROI for a patient without MS in the lower lung zone (upper
right). (c) Image of the ROI for a patient with MS in the upper lung zone (lower left).
(d) Image of the ROI for a patient with MS in the lower lung zone (lower right).
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Figure 5.2

Overall scheme of a CAD system for estimating the redistribution of pulmonary blood

flow in chest radiographs.
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Figure 5.3

Output images of 4LG/B in selected ROIs (256 x 256 matrix size). (a) Image of the ROI
for a patient without MS in the upper lung zone, obtained from the summation of 4LG/B.
White regions indicate binarization of 4LG/B outputs (upper left). (b) Image of the ROI
for a patient without MS in the lower lung zone, obtained from summation of 4LG/B
(upper right). (c) Image of the ROI for a patient with MS in the upper lung zone,
obtained from summation of 4LG/B (lower left). (d) Image of the ROI for a patient

with MS in the lower lung zone, obtained from summation of 4LG/B (lower right).
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Correlation graph of PCWP values and U/L values obtained from the CAD system
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