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Introduction

Let M be a connected differentiable manifold with a locally flat linear
connection D (A linear connection is locally flat, if its torsion and curvature
tensors vanish identically). Then, for each point pcM, there exists a local

coordinate system {x', -+, "} in a neighbourhood of p such that D a_ib_'—a—j=0,
' 0X

which we call an affine local coordinate system; A Riemannian metric g on M
is said to be locally Hessian with respect to D, if for, each point pe M, there
exists a real-valued function ¢ of class C~ on a neighbourhood of p such that

g=D,
that is,

g=> O gxidni ,

T £7 oxioxi

where {x',-:-, %"} is an affine local coordinate system around p. If this con-
dition is verified with a function ¢ defined over M, the metric g is called a
Hessian metric on M. A locally flat manifold with a (locally) Hessian metric
is called a (locally) Hessian manifold.

The following proposition is essentially due to S. Murakami and will be
proved in §1.

Proposition. Let M be a connected differentiable manifold with a locally

flat linear connection D and a Riemannian metric g. Let v be the cotangent bun-
dle-valued 1-form on M defined by

(v(XN(Y) = 2(X, Y)

for vector fields X, Y on M. The cotangent bundle being locally flat, we may
consider the exterior differentiation d for cotangent bundle-valued forms on M.
Then the following conditions (1)~(4) are equivalent:

(1) g s locally Hessian with respect to D.
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(2) For each affine local coordinate system {x', ---,x"}, the components g;;
of g satsify the relations
0g; 7 08k

oxk — Ox’

(<i,j, k<n).

(3) (Dze)(X, Y)=(Dyg) (X, Z) for all differentiable vector fields X, Y, Z
on M.

(4) dy=0.

In addition to these equivalent conditions, assume further H'(M, R)= {0} and
that D is flat. Then g is a Hessian metric.

ExampLE 1. Let M be a locally flat Riemannian manifold, that is, the
Riemannian connection V determined by the Riemannian metric g on M is
locally flat. By Vg=0 and by Proposition (3), g is locally Hessian with respect
to V.

ExampLE 2. Let M be a domain in the n-dimensional real affine space
with an affine coordinate system {x', ---, "} and let ¢ be a real valued function
2
on M of class C* such that the Hessian g= [——8 a_g’ j] of ¢ is positive definite on
x40
M. Then g defines a Hessian metric on M with respect to the natural flat
linear connection D on M given by Da i‘=0.
3 0x7
ExampLE 3. Let M be an affine homogeneous convex domain in the
n-dimensional real affine space which does not contain any full straight line and
let ¢ denote the characteristic function on M. Then it is well known the the
Hessian g=[6—a—l%g Eb] of log ¢ is positive definite on M (cf. [3] [7]), and so g
0
is a Hessian metric on M.
Now let M be a homogeneous manifold of a connected Lie group G. As-
sume that J/ admits a locally flat linear connection D and a volume element
which are invariant under G. If » has an expression

o=Kdx'\-Ndx"

in an affine local coordinate system {x', -+, "}, then the forms
a=3 0 log‘de,- :
T Oxf
@logK ; ., .
Do = D) - —5—"dxidx7 ,
« ’2} Oxtox? v

are called the Koszul form and the canonical bilinear form respectively [3].
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Koszul proved the following fundamental theorem concerning the form Dea [3]:
Let M be a homogeneous manifold with an invariant flat linear connection and an
invariant volume element. Then the canonical bilinear form Dc is positive de-
finite if and only if M is an affine homogeneous convex domain not containing any
full straight line.

Several authors have pointed out an intimate connection and an analogy
between affine homogeneous convex domains and homogeneous bounded
domains (cf. [3] [7]). Now recall that a hermitian metric g on a complex mani-
fold is said to be Kihlerian if its local components g; ; with respect to a holomor-
phic local coordinate system {z’, ---, 2"} satisfy one of the following conditions

0? ..
(1) 8= oy (sij=n),
ag.-'- 6g.~" . .
(2) ot = o (1Sij ksm),

where 4 is a real valued function in the coordinate neighbourhood. It seems
to the author that homogeneous locally Hessian manifolds have, in a way,
analogous properties as homogeneous Kihler manifolds. The aim of this paper
is to establish the following theorem analogous to that in [5].

Theorem. Let G be a connected solvable Lie group and M an orientable
differentiable manifold on which G acts simply transitively. Suppose that M
admits a locally flat linear connection D and a locally Hessian metric g with re-
spect to D, which are invariant under G. Let o be the volume element defined by
g. If the canonical bilinear form Da determined by o is non-degenerate, then Do
is positive definite.

Combined with the Koszul’s theorem recalled above, we get immediately.

Corollary. Under the same assumptions as in Theorem, assume further
that D is flat. Then, M is an affine homogeneous convex domain not containing
any full straight line.

1. Preliminaries

We shall first prove Proposition in the introduction. It is trivial that (1)
implies (2) and that (2) is equivalent to (3). The form v defined in Proposition
can be locally expressed as y=33(2g;,dx’)dx, where {x',---,x"} an affine

T

local coordinate system and g;; the components of g. We have then

dy = 31 (3 dgi,; Adw?) d
s J
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_ 08i; _ 08ix k j} i
(g (% — 28 gt ndws |

It follows immediately that the conditions (2) and (4) are equivalent. It re-
mains to show that (2) implies (1).

We shall first prove the last part of Proposition. Suppose that D is flat.
Then there exist 1-forms !, -+-, " such that De‘=0 and that, for each point
p in M the values of these forms at p form a basis of the cotangent space at p.
Thus the cotangent bundle T(M)* is a trivial bundle and the T(M)*-valued de
Rham cohomology group of M is isomorphic to the R*-valued de Rham coho-
mology group of M. If H'(M, R)={0} and if the condition (2) is satisfied,
there exists a cross section B of T(M)* such that

v=4dgB.
If the 1-form B on M has a local expression B8=3B;dx’, then it follows
dB,-::Ej}g,-jdxj and

g‘f; =gij‘ Since gij=gji’ we haVe

dB=20.
Again by H'(M, R)= {0}, there exists a function ¢ on M of class C= such that
B=ds.
Thus we have gi,=2Pi—= ¢  and hence g=D*p, which completes th
&i; : £ _ an ence g ¢, which completes the
Ox/  Ox70x*
proof for the last part of Proposition. Now, by a same argument and applying
the Poincaré’s lemma, we see that (2) implies (1). Thus the proof of Propo-
sition is completed.
We retain the notation and assumptions settled in Theorem in the in-
troduction.
Let g be the Lie algebra of the Lie group G. For X &g we denote by
X* the vector field on M induced by the 1-parameter group of transformations
exp (—tX). We put Ay+=Lys—Dx+ where Ly+, D+ are the Lie derivative and
the covariant derivative for D by X* respectively. Then Ay« is a derivation of

the algebra of tensor fields on M, which maps every function into zero. Since
D is locally flat, we have for X, Yeg (cf. [2])

(1.1) A Y* = —DyuX*,
(1.2) A Y*— A X* = [X*, Y*],
(1.3) [Ax*, Ay\i] = Atxt,yi] .

We fix a point oM. Let V be the tangent space of M at o and let f(X), ¢(X)
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denote the values of Ax., X* at o respectively. From (1.2) (1.3), it follows
immediately

Lemma 1.1. For X, Y &g we have
(1) AX, Y]) = [AX), A(Y)],
(2) 9([X, Y]) = (AX)g(Y)—f(Y)e(X) .

Lemma 1.2. Let a, Da, denote the values of a, Da at o respectively.
Then, for X, Y g we have

(1) a(9(X)) = Tr f(X),
(2) (Da,)(9(X), 9(Y)) = a(f(X)e(Y)).
Proof. Let {x', ---,x"} be an affine local coordinate system in a neigh-

borhood of 0. We write X *=2?61x‘ and w=K dx'A --- Adx". Then we see
Lysw = (Lx+K)dx' A+ A dx"—l-zi]K dx* A -+« A Lysdx? A <o+ Adx™
{X*K+(2 0¢/ %Nk }dx‘/\ e Ad"
Since the volume element o is invariant by G, we have

(1.4) X*log K = —31 %€ a’f’ .

By (1.1) we get (D 5f:_‘,(AX.))(%) =D%(AX.( 9 )) AX.(D » i>_ —DsDas.

0x/ a:' 0x? YO
0

<2 gkaxk)=—g a?;g;j P On the other hand, since D is locally flat and

since X* is an infinitesimal affine transformation with respect to D, we know

D (Ax«)=0 (cf. [2]). Hence we get gt -=0. From this and (1.4) it follows
(P Y

0x*0x’

— — - &’ 0%t i
Lysat=LyeD log K=D Ly log K— D(E W) —31 T av—0. Thus
we have
(1.5) Lysa =0, forall Xeg.

By (1.4) we see a(X*)=(D log K) (X*)=Dx+log K=—3 % By (1.1) we get
ot 9 0!
_ k508" N s

A 8x1>_ Da X 1o 2. Hence we have Tr f(X)=—3125(0)

=a,(X,*)=a,(q(X)), which implies (1). Using (1.5) and the fact that Ay« is
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a derivation of the algebra of tensor fields which maps every function into
zero, we obtain (Da) (X*, Y*)=(Dy+a) (X*)=—(Ay+) (X *)=—Ap+(a(X*))
+a(AyX*)=a(Ay+X*). This means Da,(9(X), ¢(Y))=a,(f(Y)q(X)). Q.E.D.

Lemma 1.3. Let  , > denote the value of g at o. Then, for X,YeEg
we have

© {AX)g(Y), (2)>+<9(Y), (X)a(Z)>
= {f(Y)g(X), (2)>+<q(X), (Y)q(Z) -

Proof. Since A+ is a derivation of the algebra of tensor fields and maps
every function into zero, we see (A x+g) (Y*, Z*)=Ax+(g(Y*,Z%*))—g(Ax« Y *,Z*)
—g(Y*, AxsZ*)=—g(Ax+ Y*, Z*)—g(Y*, Ax+Z*). Since X* is an infinitesimal
isometry, we have Lyx+g=0 and hence (Axs+g) (Y*, Z*)=—(Dx+g) (Y*, Z¥).
Thus we have (Dx+g) (Y*, Z*)=g(Ax«Y*, Z*)+-g(Y*, Ax+Z*). Since g is
locally Hessian it follows (Dx+g) (Y*, Z*¥)=(Dy+g) (X*, Z*). This shows

g(Axs Y*, Z¥) 4 g(Y*, AxsZ*) = g(Ap+X*, Z*)+g(X*, ApsZ¥) ,
which implies (C). Q.E.D.

Since ¢ is a linear isomorphism of g onto V, for each vV there exists
a unique X, &g such that

(1.6) g(X)=o.
We now define an operation of multiplication in ¥ by the formula
(1.7) u-v = f(X,)v for u,vel.

We use the following notation

Lyo=u-v, Rv=v-u,

[u-vew] =u-(v-w)—(u-v)w.

From Lemma 1.1, it follows

(1'8) [Lm Lv] = Lu-u-v'u p)
(1.9) [u-vw] = [v-u-w],
(1'10) [Lw Ru] = Ru'v—'RvRu ’

and these conditions are mutually equivalent. An algebra satisfying one of the
above conditions (1.8)~(1.10) is said to be left symmetric [7].
The condition (C) and the formula in Lemma 1.2 are reduced to

(C,) <u-'v, w>+<7), u'w> == <‘v~u, w>+<u) v-w) ’
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(1.11) a(vy=TrL,,
(1.12) (Dat,) (u, v) = a,(u-v).
Using (1.9) and (1.12), we have

(1.13) (Da,) (u-v, w)+(De,) (v, u-w)
= (Da,) (v-u, w)+(Det,) (u, v-w) .
Lemma 1.4. Let V be a left symmetric algebra endowed with an inner pro-

duct satisfying the condition (C’), and let U be a subalgebra of V. For a fixed
element uc U we put P={pcU; p-u=0}. Suppose L,PCP. Then we have

(1) L(p-9) = (Lup)-q+p-(Lag),
(2) exp tL(p-q) = (exp tL.p)-(exp tL.g),
(3) %(exp tL,p, exp tL.g>

= <ur €xXp tLu(P'q)> ’
for p, g P.

Proof. (1) follows immediately from (1.9), and (2) is a consequence of
(1). By the condition (C’) and (2), we have

%(exp tL,p, exp tL.g>
= (L, exp tL,p, exp tL,g>+<exp tL,p, L, exp tL.g>
= {(exp tL,p)-u, exp tL,g>+<u, (exp tL,p)-(exp tL.g)>
= {u, exp tL(p-q)>  for p,qEP. Q.E.D.

A left symmetric algebra V' is called elementary, if V satisfies the following
conditions:

(E.1) V= {u}+P  (direct sum of vector spaces),
(E.2) wu=u, ukx0,

(E.3) u-PcP, P-u= {0},

(E4) p-q=9(p,gu  for p,qEP,

where @ is a symmetric bilinear form on P.

Proposition 1.5. Let Q be a homogeneous domain in V containing 0, on which
an affine Lie group G acts simply transitively. Suppose that the left symmetric
algebra V of Q at 0 is elementary, i.e. V=/{u} -+ P satisfies the above conditions
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(E.1)~(E.4). Then we have
Q= {au+p; a—%d)(p, p)>—1 for aER,pEP} .

In particular, if © is a positive definite symmetric bilinear form on P, then Q is
the interior of a paraboloid.

Proof. From X, x=L,x-+v for x,vEV, it follows exp X,,x=x+f] L
i=o(k+1)!

(L,x+v). Using this formula, for teR, g=P we get
exp tX, (au+p) = (ae'+€—1)u-texp tL,p,
exp Xe(au-tp) = (a+@(p 9+ (0, 9) Ju+p+a,

where a=R, peP. We show first that exp tX, and exp X, leave Q'= {au+
p; a—4i®(p, p)> —1 for acR, p P} invariant. Let au+pQ’. Then we have
(ae'+e —1)— 3D (exp tL,p, exp tL,p) = (ae'+e' —1)—3D(p,p)e' =e'(a—D(p, p)
+1)—1>—1, by Lemma 1.4. Therefore (exp tX,) (au+p)=Q’. On the other
hand, exp X (au+p)=Q’, since a+D(p, 9)+iP(q, 9)—3P(p+¢, p+9)=a—+D
(p,p)>—1. For any au+pesQ’ we have exp £,X, exp X- y(au+p)=0, where
t,=—log (a—4P(p, p)+1). These show that G acts transitively on Q’. Since
G acts transitively on Q and Q' and since QN Q'=0, we conclude Q=Q'.
Q.E.D.

Now assume that ¥ is decomposed into a direct sum of vector spaces
(A.0) V= g ({ua +Pu)+ V"™
with the following properties:

(A1) Vi={w}+P, is an elementary left symmetric algebra such that the
real parts of the eigenvalues of L, on P, are equal to § and that the symmetric
bilinear form ®,(p, q) is positive definite on P, where p-q=P (P, q)u,, for p, g Py,

(A.2) If we set V**‘:l:ijl V,+V™, then V¥ is a left symmetric subalgebra of
V such that

up VEIC VR, Ve ey, = {0},

P,.-V¥icP,, V*'.P,CP,,
and the real parts of the eigenvalues of L,, on V*'' are equal to 0.
(A.3) The factors of the decomposition V="‘Z_l({u,,} +Py)+ V"™ are mutually
orthogonal with respect to Do, and Da, is posi;;'zl;e definite on ':2_:( {u} +P,) and

non-degenerate on V™.
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2. Proof of Theorem: Existence of u, in V”

The main purpose of this section is to prove the following.

Proposition 2.1. Let V='§( {up} +Pr)+ V™ be the decomposition given in
k=1

(A.1)~(A.3). Then there exists a non-zero element u,, in V™ such that
(1) Uy Uy = Uy, o
(2) V™ 1 C Uy} -

We set g”={X,eq; vV™. Since V™ is a left symmetric sub-
algebra of V, g™ is a Lie subalgebra of g. Since g™ is solvable, by Lie’s
theorem there exist elements u=0, v& V™ such that

fX) (u+iv) = (MX)—18(X)) (u+iv)  for Xeg™,
where 2=—1, and X\, 2 are real linear functions on g”. Hence we have

21 xeu = Mx)u+p(x)v

1) xev = —p(x)ut-Mx)

for x& V™, where A=MAog™!, p=fiog~'. We shall now prove that ¥ and v
are linearly dependent and so V™. {u} C {u}.

Suppose that # and v be linearly independent. Let W be the subspace of
V™ spanned by the elements {u, }. Then we have

Lemma 2.2. Let x&V™. If (Da,)(x, w)=0 for all we W, then x-w=0
for all weW.

Proof. We first remark o,0 on W. Indeed, if a,=0 on W, we have
(Da,) (y, )=a,(y-u)=0 for all ye V™. Since Da, is non-degenerate on V™
(cf. (A.3)), we have u=0, which is a contradiction. From the assumption
(D) (3, w)=(Dat,) (3, 0)=0, we get M, (u)+a(®)ase)=0, —p(x)ar,(u)+
Mx)a(v)=0. Since a,(u)+0 or a,(v)+0 as remarked above, we get A(x)
=u(x)=0 and hence x-u=x-.v=0. Thus x.w=0 for all weW. Q.E.D.

Consider now the subspace W,= {w, W; (Da,) (w,, w)=0 for all we W}
of W. We shall first show that W = {0}. Suppose that W,={0}. Then Da,
is non-degenerate on W and hence there exists a non-zero element 2, & W such
that (Da,) (2,, w)=a,(w) for all weW. When z,=au+bov (a, beR), put =z,
=—bu+av. Then {z,2,} is a basis of W such that

2.1 23, = N(x)z+p/(%)z,
2.1 X2y = —p/(%)2,+ 0N (%)2, ,

for x& V™, where A’ and p’ are linear functions on V™. By (1.13) we have
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(Daa)(w: zl'zl) = (Dao)(w'zn 2,)+(Ddo)(2’1, w.zl)_(Dao)(zl -, 21)
= ao(w .zl)_l_ao(w 'zl)_aa(zl 'w)
= (Da,) (w, 2,)

= a,(w)

for all weW. This implies 2,-2,=2, and by (2.1") 2,-2,=2,. Put 2,.-z,=
Ao+ o2, and 2,-2,= — p2,+N.2,. Then we have

(zl 'zz) *3—3 .(zZ.zl) = (zz'zl) *R— R '(zl .zl)
by (1.9) and so
0= 7\'o,”'ozl'i'(,“'g—l"o)zz .

Therefore p,=0, or p,=1 and A,=0. In the case p,=0, we put x=aq,(,)2,—
a,(2,)2;. Then

(Dat,) (21, %) = (3, %) = (%) = ato(Z)ato(21)—ao(3:)a(z) =0,
(Da,) (25 %) = aty(2+%) = Noato(%) =0,
which imply x=0 and «,(2,)=a,(2,)=0. This contradicts «,+=0 on W. If
u,=1 and A,=0, then it follows from (C’)
Ry Ry, B )< %2 210850 = {22y, 20 +<3y, %202

and hence <{z,, 2,>+<2,, 2,0=0, which is a contradiction. Thus we have
shown that W= {0}.

Now, we show dim W,>1. Suppose dim W,=1. Then W, is spanned
by a non-zero element z,=au-+tbv (a, bR). If we set z,=—bu+tav, then
{2,, 2,} is a basis of W such that

xe2, = (%), (@)%,

2.17
( ) X2, = —p"(%)2,+0\"(x)2,,

for x& V™, where A" and p” are linear functions on V™. Since (Da,)(2,, w)
=0 for all we W, it follows from Lemma 2 that z,-2,=%2,-2,=0. Using this
and (1.13) we get

(Daa)(zZ‘zv zl) =0 ’
(Daa) (zz'zn .2’2) = (Dao) (21'2'2’ 2’2)—|—(Da,,) (22’ 2y 'zz)—(Dao) (2’1, 22'22) =0 )

and hence we can write 2,+2,=2\,2,, 2,*2,=N\,2,. We have from (C’)
{=y0 2y, B30 H<3y, 2030 = 3,2, 2<%, 3,03

and so
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27\'o<zv z1> =0.

Therefore, we obtain A,=0 and (Da,)(2,, 2,)=(Dat,)(2z, 2;)=0. This means
z,€W, and dim W,=2, which is a contradiction. Thus dim W,=1 does not
occur.

Finally suppose dim W,=2. Since Da,=0 on W, we have by Lemma
2.2,

(2.2) W.-w= {0}.
In this case we first prove:

(2.3) Let P={psV™; p-u=0}. Then L, V™CP and the real parts of the
etgenvalues of L, on V™ are equal to 0.

Proof of (2.3). By (1.9), (2.1) and (2.2), we have (u-x).-u=u-(x-u)+
(x+u)-u—x-(u-u)=0 for all x& V™. Hence it follows L, V”CP. Let (V™)
be the complexification of V™ and let P° be the complex subspace of (V™)°
spanned by P. Then the inner product { , > on V™ can be extended to a
complex symmetric bilinear form on (V™)°, which is denoted also by < , >.
Let A+ip (A, nER) be an eigenvalue of L, on P° and let p+ig(p, 9= P)
be an eigenvector corresponding to A-+-iu, i.e. L.(p+ig)=(N+ip) (p+ig).
Then we have {exp tL,(p-1q), exp tL(p—iq)>=<Le*"**(p+ig), e*-**(p—iq)>
=e™({p, p>+<q, ¢0). On the other hand, it follows from Lemma 1.4, (C’) and
(2.2) that

j; {exp tL.,(p+1q), exp tL,(p—iq)>
= L G exp tL(p-+ia)-(p—ig)>
= u,u-p">

= <Pl'u, u>+<“)1’/’u>—<u‘u’ Pl> =0,

where p’=L, exp tL((p+1q)-(p—ig))=P°. Therefore we get (21)(<{p, p>+
{q, )e*=0. Since {p, p>+<g, ¢>>0, we have A=0. According to this and
L,V™C P, we see that the real parts of the eigenvalues of L, on V™ are equal to
0. Thus the proof of (2.3) is completed.

We shall next show:

(2.4) TrpLu=0.

Proof of (2.4). We have L,P,CP, by (A.2). Let p,q=P,. Then it
follows from (A.1), (A.3) and (1.13) that

(Dato) (Lup, 9)+(Dat,) (p5 Lug) = (Dat,) (Rup, 9)+(Dat) (u, p+9)
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= (Dato) (Rup, )+(Dato) (4, u(P 9)us)
= (Dat,) (Rup; 9) -

Since Da, is positive definite on P, by (A.3), denoting by ‘L, the transpose of
L, on P, with respect to Da,, we have

R,=L,+'L, on P,

From (1.10) and (2.2), we have [L,, R,]J=R,.,—Ri=—R% and hence Trp R/R,
=Trp Ri=—Trp,[L,, R,]=0. This means R,=0and ‘L,=—L, on P,. There-
fore we obtain Trp, L,=0.

Using (A.2), (2.3) and (2.4), we get
() =8 Triu Lt 3 Trp, Lt TrynL, = 0.
Taking v for u, we have similarly
a,(v)=0.

Hence a,=0 on W. As remarked in the proof of Lemma 2, this contradicts
the assumption (A.3).

Thus we conclude that dimW=1, and this proves that # and v are linearly
dependent which contradicts the assumption that # and v are linearly inde-

pendent and that V™-ucC {u}.
Suppose now #u-u=0. Then, by the same argument as above, we get
a,=0 on W and this contradicts (A.3). Therefore we have u.u=xu, where

A,+0&R. Putting u,,,=%u we get

0

(2.5) Uy * Uy = Uy,

This completes the proof of Proposition 2.1.

3. Proof of Theorem (continued): Decomposition of V"™

Proposition 3.1 Let u,, be the element in Proposition 2.1. We set
P={pcV™; p-u,=0}. Then L, PCP and the real parts of the eigenvalues
of L, on P are equal to 0 or ;. Let P, and V™" denote the largest subspaces
of P on which the real parts of the eigenvalues of L, areequalto § and 0, respec-
tively. Then we get the decomposition

V=3 ({w} +P)+V™

of V and each factor of the decomposition has the properties stated in (A.1)~(A.3).

Proof. For simplicity, we write u for the element u,. First we have
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(3.1) L,PcCP,
(3.2) V™= {u}+P  (direct sum).

In fact, for each pcP we have (u-p)-u=(p-u)-u—p-(u-u)+u-(p-u)=0 by
(1.9), which shows (3.1). The relation (3.2) follows from x—\(x)u< P for all
xs V™, where \ is a linear function on V™ such that x.u=n(x)u.

Let P° denote the complexification of P and let P¢;,; denote the larget
subspace of P° on which the real parts of the eigenvalues of L, on P° are equal
to A, i.e. Popy={peP’; (L,—(\+ip))p=0 for some p=R and sufficiently
large 7}.

Lemma 3.2. The real parts of the eigenvalues of L, on P are equal to 0
or %, i.e. PC=PCHJ+P=[‘,J.

Proof. For peP°, we have
%(ext tL,p, exp tL > = {u, exp tL(p-u)> =0.
by Lemma 1.4. Since exp tL u=e¢'u, it follows
(3.3) {ext tL,p, u) = ae™*

where a is a constant determined by p, not depending on ¢. Therefore, for
each x=cu+pe(V™)° (ceC, pcP) we have

(3.4) <u, exp tLx> = {u, ce'u+exp tL,p)
= clu, wye'+<u, exp tL,p>

= ae '+ bée*

where a, b are constants determined by x, not depending on t. Let A+ip
(X, »€R) be an eigenvalue of L, on P° and let p-+ig (p, g=P) be an eigen-
vector corresponding to A+Zu. Then we have

-2 Cexp tL(p+ig), exp tL(p—ia)>
ja— %<e(k+ﬂ‘-)f(-p+l‘q), e()\"ill-)t(P_iq)>

— LM, p+<g. )

= 2M(<p, P> +<g, )™
On the other hand, we get from Lemma 1.4. and (3.4)

%_(exp tL(p-+ig), exp tL(p—ig)>
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= <u’ €Xp tLu((P+zq)°(P_iq))>
= ae~*4-be’ .

Thus we have

(3.5) 2M(Lp, p+<g, @)™ = ae~*+be’ .
This implies A=0, § or —%. Let p,&P°,; be such that (L,—(A+ip)) pr=0
for some 4 and . Then
exp tLupy = €+ S (L—Otin) i,
=0 ]!
and
exp tL,p», u> = eith(e)

where h(t) is a polynomial of degree r—1 at most. From this and (3.3), we
obtain

ae- Ot = pf)eit

Assume now a=0. Since 1+A>0 and since A(f) is a polynomial of degree
<r—1, we have

ae—(1+h)t N

= oo and lim
ty—o°

Iim
ty—o0

h(t)eit
t"

which is a contradiction. Hence we have a=0. Thus it follows

(3.3) {exp tL,p,u> =10 for all pe P,

(3.4) {exp tLx, u) = be* for x(V™)°

and

(3.5) 2M(Lp, <, )™ = be' .

This implies A=0 or %, which proves Lemma 3. Q.E.D.

Lemma 3.3. Let P;,; denote the largest subspace of P on which the real
parts of the eigenvalues of L, are equal to . Then the factors of the decom-
position V™= {u} + Py;+ Py, are mutually orthogonal with respect to Da, and
satisfy the following relations

P+ Py C Py, Pryy-PryyC Py,
Py« PiyC Py, Pryge Py C {u} .

Proof. For AR we put (V*)',y={x=(V"™); (L,—(+ip))x=0 for
some yER and sufficiently large 7}. Then V™ ;= {u}, (V") y=P°y and



CeRTAIN LocaLLy FLaT HoMOGENEOUS MANIFOLDS 227

(Vm)c[o]=Pc[o]- Let pAEP‘m and p,‘/EP"D\/] such that (Lu""():-'-l.p‘))’ =0,
(Lu—(W+ip’))” py=0 respectively. For s=r-+r" we have by Lemma 1
(Lu_ (7\'+7\',+i(#+[l’,)))s(p,\ ‘P}J)
S —_—-SI 3 I s NS -
= R g Lo O P (L= V) P
=0.

This implies P°,y+ P C (V™) mgay. From (Da,)(p, w)=a,(p-u)=0 for pP,
it follows that {u} and P are orthogonal with respect to Da,. Let pe Py, and
gEPy;. Since p-g& Py, and since L, is non-degenerate on Py, there exists an
element p’e Py; such that u-p’=p.q. Hence we have (Da,)(p, Q)=a,(p-9)=
a,(u-p’)=(Da,)(u, p)=0. This shows that Py, and P, are orthogonal with
respect to Da,,. Q.E.D.

Lemma 34. o,(u)>0.

Proof. We have [L,, R,]=R,.,—R2=R,—R2 by (1.10), and R,=L,+'L,
on P, as in the proof of (2.4). Hence it follows

Ttp,Lu = %TrP,R,,

1

= ETrPk(Ri_l— [Lu: Ru])

- %TerR,,’R,,gO :
According to (A.2) and Lemma 3.2, we have Tr,,L,=0, TrynL,=1+% dim
Py;>0. Thus we obtain
au)="TrL,
= 5 TrugLut B Tep, Lt TryaL,>0.
Q.E.D.
Lemma 3.5. Da, is positive definite on Ppy,.

Proof. For p=0 we put P°4.im,={p=P’; (L,—(3xipn)) p=0 for suffici-
ently large 7} and Pgiwy=1{p+P; pEP 4+iw}. We shall then prove that the
decomposition Py;=>"Pg4.iu, is orthogonal with respect to Det,. For p, p’=0,

®20
let p€ P41, and p’'E P° 44w, such that (L,—(3+4ip)) p=0, (Ly—+in))'
=0. Then we have exp tL,p=e4*i*"p(¢) and exp tL,p’=e%#*p/(f), where

o1 /-1 41 .
p(t)=§;—:(L“——(%+iy,))’p and p’(t)=§%(Lu—(%+iu'))'P', respectively.
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Therefore we get
(3.6) %@xp tL,p, exp tL,‘p-’> = d;‘it@(iﬂmp(t)’ e‘**""')’j7(_t)>

— _d_ i -r/ 0t » (1)
e <o), P>

— e(1+i(l-'-—lb’))tg(t) ,
where g(t):%(p(t), PO+ (1+i(u—u))<p(t), ()>. On the other hand, it

follows from Lemma 1.4 and 3.3

3.7 %(exp tL,p, exp tL,E’) = {u, exp tL,(p- jT’)}

= {u, Ne'u)
= X<u: u>et ’

where we put p-p’=xu (A&C). Thus we get g(f)=r<u, upef®-**.  Assume

p=*+p’. Since g(t) is a polynomial and since p’—pu+0, we get A=0 and 4
=0. Hence we have

(3.8) P Griny Pl = {0}, if pkp.

Similarly, using
%(exp tL,p, exp tL,p"> = <u, exp tL(p-p'),

we obtain A(f)=v<u, upei™’+#*, where h(t)=—jt—< H(E), ' (O>+(1+i(n'+ m))p(0),
@) and p-p'=vu (v<C). If u+pu’>0, then we see v=0 and p-p'=0. Thus

we have
(3.9) PCqyiny Peaiiws = {0} when p+4p>0.

If p=+p’, then it follows from (3.8) (3.9) that Py, u-Pg.iw,=1{0} and hence
P4 1inyy Pgraw, are orthogonal with respect to Da,. Now, let peP 4., be a
non-zero element such that (L,—(4-+ip))"p=0. Then we have by (3.6) (3.7)

B0 4 kt) = nw, >,

where  K()=p(t), b p()=3 —Z—(L,‘—(é—l-ip,))’p, and p-F=nru (A eC).

The solution of this equation is k(¢f)=ce~*+A<u, u> where ¢ is an arbitrary
constant. Since k(Z) is a polynomial, we get c=0 and k(#)=A<u, u>. Thus we
have
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kKO) _ <p.P>
3.10 A= - >0
(310 s Cuu

In the case x>0, by (3.8) (3.9) we obtain (p+5)-(p+P)=p-P+5-p=2ru.
Therefore it follows from Lemma 3.4 and (3.10)

(Det,)(p+B, p+P) = a((p+P)-(p+P)) = 2ra,(4)>0,
for p0€ P41 In the case u=0 we have

(Dao)(p, p) = ao(p+p) = ra,(¥)>0,

for p£=0Py,. Since Py, and Py, (u=+p’) are orthogonal with respect to
Da,, it follows that Da, is positive definite on Py;=> P in- Q.E.D.
#20

This completes the proof of Proposition 3.1.
Applying Proposition 2.1 and 3.1 successively, our theorem follows by
induction on m.
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