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Abstract

Using the skein relations for the Links-Gould (LG) invatiadiscovered by the
first author, we give two constructions to provide a pair offedent knots or
links sharing the same LG invariant. Using this, we give eplas of arbitrarily
many 2-bridge knots with the same LG invariant. These knots alsrestthe same
HOMFLY and Kauffman polynomials. Further, fd-bridge links we construct a
similar example, which also share the sa@gariable Alexander polynomial. We
also give a non-amphicheiral hyperbolic knot whose chirals not undetected by
the LG invariant.

1. Introduction

Links and Gould [23] have derived the Links-Gould 2-var&lplolynomial invari-
ant, or the LG invariant for short, of an oriented link frometlone-parameter family
of four dimensional representations of the quantum sugebaa U, g/ (2 1)]. De Wit,
Kauffman, and Links [5] have then given an explicit form oktR-matrix and asso-
ciated with a family of four dimensional representationsey found that the LG in-
variant detects chirality of some links where the HOMFLY dtauffman polynomials
fail and that it does not detect the noninvertibility or ntida of links. Successively,
De Wit [4] has given a method for the automatic evaluation hed t.G invarinat for
links given as a closed braid with string index at most 5. Hewsdd that the LG
invariant can distinguish all prime knots with up to 10 cings and also it can de-
tect the chirality of those that are chiral. Recently, thetfauthor [8] has succeeded
in classifying infinitely many knots sharing the same Joned HOMFLY polynomi-
als which had given by the second author [12, 13]. For the sJoREOMFLY, and
Kauffman polynomials, we refer the reader to [10, 20, 22].

On the analogy of the formula for the LG invariant given in fb,170], the first
author [7] has discovered another formula for the LG invariéProposition 3.1). In
this paper, we make use of these two skein relations togetfiter some properties
given in Proposition 3.2 to evaluate the LG invariant. Givettink that contains two
tangles, we may obtain another link by exchanging these amglés. In [13, 14, 15],

The second author was partially supported by Grant-in-Aat Scientific Research (B)
(No. 14340027), Japan Society for the Promotion of Science.
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calculating the difference of the HOMFLY and Kauffman padymials of the two

links, the second author has constructed exmples of knatsliaks sharing the same
HOMFLY or Kauffman polynomials. We apply such a construetim the LG invari-

ant; we calculate the difference of the LG invariants of stwhb links (Lemma 3.3),

and then give two constructions to provide a pair of knotsiksl sharing the same
LG invariant (Theorems 4.1 and 5.1).

De Wit [4, p. 325] asked whether the LG invariant always diptiishes between
nonmutant prime knots. Applying Theorem 4.1, we construbttrily many 2-bridge
knots with the same LG invariant (Theorem 6.1), which areegias a set of am-
phicheiral, fibered 2-bridge knots that share the same HOM&hd Kauffman poly-
nomials in [15, Theorem 1]. Further, we construct a simiketr &f 2-bridge links (The-
orem 6.2), which also share the same 2-variable Alexandgnpmial;, as before this
is the set given in [15, Theorem 2]. It is well-known that aridbe knot or link is
prime and has no mutant.

Next, applying Theorem 5.1, we construct links whose LG iiargts are the same
as those of mirror images (Proposition 7.1), and give an elarof chiral hyperbolic
knot whose chirality is undetected by the LG invariant (Epén7.2), where we use
the computer program SnapPea to show that the knot is hylpediad chiral.

Lastly, we discuss a certain relation between the LG inwarand the Conway
polynomial. We will show: if the LG invariant of a knot or linis obtained recursively
by using the skein relations in Proposition 3.1 and that tieihvariant of the trivial
knot is one (algebraic links are such ones [7]), then the Ggnpolynomial is recov-
ered from the LG invariant (Propsotion 8.2). The first autf@rhas generalized this
to any link. As an application of this, there exist arbithannany 2-bridge knots with
the same Kauffman polynomial but distinct LG invariants (@lary 8.3).

This paper consisits of eight sections. In Section 2, we givme definitions for
tangles and 3-braids. In Section 3, we give the skein relatemd some properties for
the LG invariant and prove above-mentioned Lemma 3.3, which key in this paper.
In Sections 4 and 5, we prove Theorems 4.1 and 5.1, which ¢beoai pair of knots
or links sharing the same LG invariant. In Section 6, we protieorems 6.1 and 6.2,
which give arbitrarily many 2-bridge knots or links with treame LG invariant. In
Section 7, we give examples of knots and links whose chjraditundetected by the
LG invariant. In Section 8, we discuss a relation between Lifte invariant and the
Conway polynomial.

AcknowLEDGEMENTS  The authors would like to thank David De Wit for helpful
comments.

2. Preliminaries

A tanglein a link is a region in the projection plane surrounded by raleisuch
that the link crosses the circle exactly four times. We sgppsuch four points occur
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Fig. 1. (a) Then tangle. (b) The O tangle. (c) The tangle. (d@¢ &b tangle.
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Fig. 2. (a) The Im tangle. (b) The /& tangle.

Fig. 3. The tangle sunR; + R>.

in the four compass directions NW, NE, SW, and SE; cf. [3, d]38d [1, Sect. 2.3].
We define the integral tangle ar tanglee Z, and theco tangle as in Fig. 1, where
n > 0. Further, we define the/&s  tangle, € Z \ {0}, as in Fig. 2, wheren > 0.

Given a tangleR , we denote byxR pyR , angR the tangles obtained by
rotating R through 180 about a horizontal axis, a verticasasnd an axis perpen-
dicular to the projection plane, respectively. In additieve denote byuR the mirror

image of R .

Given two tanglesR; and R, we define the sunR; + R, as shown in Fig. 3.
Let L be an oriented link diagram that contains a tangle . Fother tangleS |,

we denote byLg

the link obtained fromy by replaciRg wgh Sif igth tan-

gle with n € Z U {oo} (resp. ¥m tangle withm € Z \ {0}), we denote the linkLg
by L, (resp.Lyn). In the following, we shall use a similar notation. The fdimks
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0] (ii)

Fig. 4. An oriented tangleR

o1 = o N 02 =
- _/\: - -

Fig. 5. Elementary 3-braids.

Lg, Loyr, Loyr, and L,z are callednutantsof one another; cf. [22, p. 29]. Note
also that two linksLg+s and Ls.g, that is, the links containing the tangle suls S +
and S +R, respectively, are mutants. In the following, if we sider an oriented tan-
gle, we will always assume it is oriented as shown in Fig. a(i)ii).

A 3-braid is an element of the 3-braid group generated by tlementary 3-braids
o1, 02 as shown in Fig. 5.

3. Skein relations for the LG invariant

We denote the LG invariant of an oriented lidk by UG¢o,;t1), or LG(L) for
short, which is a 2-variable polynomial in variablesand r;; see [6, 7]. In [4], the
LG invariant is given as a polynomial in variables apd , whére= \/1p/t; and

q = /lot1.
Let Lz be an oriented link diagram that contains a tangle . Thearg the ori-
ented linksL_1/5, Lo, Lo, L—2, L>, we have the skein relations [7, Theorem 3.1]:

Proposition 3.1.

(1)  LG(L-1/2) + (1 — 1o — 1) LG(Lo) + (tor1 — to— 11) LG(L o) + 2011 LG(L—2) = O;
(2)  LG(L-1/2) + (tot1 — to— t1+ 2) LG(Lo)

— (tot1 —to— 11+ 2)LG(L~) — LG(L2) = 0;
() LG(L2) +10t1LG(L2) = (tot1 + 1) LG(Lo) — 2(to — 1)(r1 — 1) LG(L ).

The first relation (1) is equivalent to a relation originatlye to De Wit et al. [5].
By analogy with this, the first author then has discoveredstsond relation (2). Sub-
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tracting (1) from (2), we obtain the third relation (3).
The LG invariant satisfies the following properties [4, 5; 7, Proposition 3.3].

Proposition 3.2. (i) For the trivial knotU, LG(U) = 1
(i) If L is a split link, thenLG(L) = 0.
(i) Let L, and L, be links andL1#L, be their connected sum. TherG(L#L,) =
LG(L1) LG(L>).
(iv) Let L be a link andL! be its mirror image. Theh G(L!; 1, t1) = LG(L;tal, t{l).
(v) Let L be a link and—L be the link obtained frofa by reversing theerua-
tion of every component. ThatG(—L; to, t1) = LG(L; to, t1). This further implies the
symmetry:LG(L; to, t1) = LG(L; 11, tg).
(vi) LG(L) is unchanged by mutation df

In this paper, we study the LG invariant through the skeiratiehs (1), (2),
and (3) together with these properties.

Let R be an oriented tangle as in Fig. 4(i) or (ii). We say ti®at LG decom-
posableif the LG invariant of any oriented linkLz that contair® is expsed in
terms of those oflg, L, and L, ; that is, LGLg ) is expressed in the form

4) LG(Lr) = f LG(Lo) + g LG(L2) + h LG(L).
where f ,g ,h € Z[131, £]. It is easy to see that then2 tangle withe Z and the
1/(2n) tangle withm € Z \ {0} are such tangles. Further, if oriented tangkes  &nd
are LG decomposable, then so are the smS + , the mirror image nd the tangle
obtained by rotating? through 90 about an axis perpendidoldahe projection plane
by the skein relations in Proposition 3.1. In particular, @rented algebraic tangle in
the sense of Conway [3] is LG decomposable; cf. [7].

Let Lg, r, be an oriented link containing two tanglés and R, which are ori-
ented as in Figs. 4(i) or (ii). Suppose thR{ and R, are LG decomposable; that is,
for any link Mg, that containsR; , LG{k, ) is of the form

(5) LG(Mg,) = fi LG(Mo) + gi LG(M2) + h; LG(M),

where f; ,g ,hi € Z[tE, '] (i = 1, 2). We consider the difference of the LG invari-
ants of the linksLg, g, and Lg, g,, Where L, g, is obtained fromLg, g, by exchang-
ing the tanglesk; and Ry.

Lemma 3.3.

(6) LG(Lry.r;) — LG(LR,.x,) = (f182 — 81/2 (LG(Lo,2) — LG(L2,0))
+ (fiha — h1f2) (LG(Lo.c0) — LG(Loc,0))
+(g1h2 — h1g2) (LG(L2,00) — LG(Los.2)) -
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Flg 6. K [ﬂ iR1, Ro, ..., R,_1, Rn].
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Fig. 7. K[8]

Proof. Using (5), we have

@) LG(Lgy.r,) = f1LG(Lor,) + 81LG(L2.r,) + h1 LG(Loo,r,)
= f1f2LG(Lo,0) + f182LG(Lo,2) + f1h2 LG(Lo,c0)
+ g1f2LG(L2.0) + g182LG(L22) + g1h2LG(L2,0)
+h1 foLG(Leoo) + h1g2LG(Loo,2) + h1ho LG(L oo o0)-

Similarly, we have

®) LG(Lr,.ry) = f1.f2LG(Lo,0) + 81./2LG(Lo.2) + h1f2LG(Lo )
+ f182LG(L2.0) + g182LG(L2,2) + h1g2LG(L2.0)
+ fth LG(Loo,O) + gth LG(Loo,Z) + hth LG(Loo,oo)-

Then we obtain (6). [l

4. The LG invariant of the link K[8; R1, Ro, ..., Ri]

For a 3-braidg and tangleRi, Ry, ..., R,_1, R,, we define a class of oriented
links K[B;R1, R, ..., R._1, R,] as shown in Fig. 6; ifa= = 0, we interpret it as the
2-bridge link K [8] as shown in Fig. 7. In particular, if eadt in ategral tangle,
thenK [B;R1, Ry, ..., R,] is a 2-bridge link.
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Fig. 8. The linkD R).
We say that a 3-braid istrongly amphicheiralf it is of the form
(9) (03 0 )0y P ),
the closure of such a 3-braid is strongly amphicheiral in dkase of [26]. Note that
if a strongly amphicheiral 3-brai@ can be oriented as in Bigr 7, then it is easy
to see thatg is a pure braid, that is, each strangdof joins thzdmal two end

points. Also the knotk § ] is strongly amphicheiral.
In this section, we will prove the following theorem.

Theorem 4.1. If g is a strongly amphicheiral pure-braid and each of tangles
Ri, Ry, ..., R, 1, R, is LG decomposable, then

(10) LG(K [B;R1, R2, ..., Ry_1, R,]) = LG(K[B; Ry, Ru_1, ..., R2, R1)).
In order to prove this, we need some lemmas. The followingasydo see.

Lemma 4.2. Suppose thag is a purg-braid. If R, is theO tangle 1<k <n,
then K[B; Ry, ..., R,] is isotopic to

the trivial 2-component link ifn =k =1,
D(R2)#K[B; R3, ..., R,] if n>2 k=1;
K[BiR1, ..., Rk—2, Rk 1+ R+1, Rvz, ..., R,)] If2<k<n-—1,
K[B, Ry, ..., Ry, _2J#D(R,_1) if n>2k=n,

where D(R) is a link as shown irFig. 8, and bothK|[g; Rs, ..., R,] and K[B; Rq, ...,
R,—2] with n =2 meanK|[f].

Lemma 4.3. Suppose thag is a strongly amphicheiral p@braid. If R, is the
oo tangle 1<k <n, then

(11) LG(K[B;R1, Rz, ..., Ru])
=LG(K[B; R1, Ry, ..., Ri_1]) LG(K[B; Ri+1, Ri+2, - - -, Ry]),
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N D)
@ﬂ_l p [T il :.:,ﬂ‘lb
n is odd.
Cls=D= = =)

Flg 9. K’ [,B_l; Rk+1’ Rk+2, D) Rn—l’ Rn]

where bothK[B; R1, Ry, ..., Ri_1] with k =1 and K[B; Ry+1, Rx+2, ..., R,] withk =n
meanK|[f].

Proof. LetK; denote the linkk 4 Ri, Ro, ..., R,] with R, the co tangle. Ifk
is even, thenk; is the connected sum

(12) K[B;R1,..., Ri—1J#K[B; Ri+1, - - ., Ry,

and so we obtain (11) by Proposition 3.2 (iii). Af is odd, th&np is the connected
sum

(13) K[B;Ry, ..., R 1#K'[B~% Risa, - . ., Ry,

where K’ B~1; Ris1, ..., R,] is the link as shown in Fig. 9. Rotating it through angle
180 about a horizontal axis, we obtain

(14) K [B; px Ri+1, px Ricv2, . . ., px Ry
In fact, applying such a rotatio  =of'0/?---)(---0, "?0; ) becomesp=! =

(of*0f?--)(- 0,0, ") and B~! becomesp . Then the link (14) is a mutant of
K[B; Ri+1, Ri+2, ..., R,], and so, by Proposition 3.2 (vi), we obtain

(15) LG(K'[B ™Y Ris1, Risos - - ., Ry]) = LG(K[B; Ri+1, Ris2 - - -, R,]),
completing the proof. [l
Proof of Theorem 4.1. We prove by induction en . The case = Tiviak

Let m be a fixed integer withn > 2. Assuming that (10) holds fo< m , will w
prove (10) withn =m .
Let Mg, be a link that contains the tangl, . SinRg is LG decompgesabe
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LG invariant of Mg, is of the form
(16) LG(Mg,) = fi LG(Mp) + g LG(M2) + hy LG(M),

where fi ,gi i € Z[t3, 571,
First, consider the casB; is the O tangleklf =1, then

(17) LG(K[B;0, Ry..., Ru])

LG(D(R2)#K[B;R3, ..., Ru]) (by Lemma 4.2)
LG(D(R2))LG(K[B; R3, - .., Ry]) (by Proposition 3.2 (iii))
LG(D(R2)) LG(K[B; Ry, ..., R3]) (by inductive hypothesis)
LG(K[B; R, - - -, R2, Q). (by Lemma 4.2)

The casek = is similar. If Z k <m — 1, then

(18) LG(K[B; R, ..., Rie1, 0, Risa, - .., Ri])

LG(K[B; Ry, ..., Rk—1+ Ris1, ..., Ry])  (by Lemma 4.2)

LG(K[B; R1,..., Rgs1+ Rk—1, ..., Ry])  (by Proposition 3.2 (vi))
LG(K[B; Rm, .-, Res1+ Ri—1, ..., R1])  (by inductive hypothesis)
LG(K[B; R, -- -, Re+1,0, Re_1, ..., R1]). (by Lemma 4.2)

Thus (10) withn =m holds.

Also if R, is the oo tangle, then by Lemma 4.3 and inductive hypsi$e(10)
with » = m holds. Therefore by (16), we may consider the case d¢anble R; is
the 2 tangle. However such links are bathg [,;2, ], @d thus we have (10) with

n

n =m, completing the proof. U

Remark 4.4. Similarly, we can prove: iB is a pure 3-braid, then the MLY
polynomials of two links

(19) K [ﬂ;Rl’ RZ’ ey Rn,—l’ Rll]v K[,B: Rn,’ Rn—l’ ey R27 Rl]

are equal, which is a generalization of [15, PropositionAl$o, we can prove: if8 is
a strongly amphicheiral pure 3-braid, then the Kauffmarypomials of two links (19)
coincide, which is a generalization of [15, Proposition 3].

5. The LG invariants of the link X[ 8 Ri, Rz, ..., Ron; J, ]

For a 3-braidg and tangle®;, Rz, ..., Ry_1, R2,, We define a class of ori-
ented linksL B jR1, Ro, ..., Ra,—1, R3] as shown in Fig. 10. We denote this link by
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g o )

5 ﬂ_l g el T g o

3
>

Flg 10. L [ﬂ ‘R1, Ry, ..., Roi_1, Rzl].

L for short. LetV be a solid torus® — Int N(Z), where Z is an axis perpendicu-
lar to the projection plane of the diagram and Mtz ( ) is theeiior of the regular
neighborhoodN % ) ofZ . We suppose that is oriented so that tiiénlj number
of Z and L is +1 and that the preferred meridianof is orientedilperto Z. Let
J be an oriented knot ang V — N J( ) a homeomorphism sending (lothejjttio
(longitude)+4p (meridian) oV [ ). Denote the satellite lipkL (wjth companion/ and
pattern L B ;R1, Ry, ..., Ra,—1, Ra] by X[B; R1, Ry, ..., R, J, p]; cf. [24, p. 111].
In particular, if J is a trivial knot, theny I{ ) is obtained frorh yHwisting V p
times.

Let L andL’ be oriented links. If they are isotopic, then we wiitez L', and if
they are mutants one another, then we wiiteS L. If B is a strongly amphicheiral
pure 3-braid, then for any integér it is easy to see:

m
(20) L[B;Ru+i, Rosiy ..., Ray5] ® L[B; R1, Ra, ..., Ral,
and so
m
(21) 2[BiRa+i, Rovi, ..., Ry J, pl = X[B, R1, Ro, ..., Rays J, pl,

where the subscripts ak;,  are understood to be reduced modulo 2

Theorem 5.1. If B is a strongly amphicheiral pure3-braid and Ry, R», ...,
Ry, 1, Ry, are LG decomposable tanglethen for any integelp and a knot it holds
that

(22) LG(¥[B;R1,R2 ..., R2_1,R2;J, pl)
=LG(X[B; Ran, Row-1, ..., R2, R3 J, p]).
In particular, it holds that

(23) LG(L[ﬂ;Rl, Ro, ..., Ry_1, Rzl]) = LG(L[ﬂ, Ry, Roy_1,..., Ro, R]])

Proof. We prove by induction on . The case =1 follows from (24th n =
i =1. Letm be a fixed integer witlhh > 2 and assume that (22) holds:ferm
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First we consider the casg; is the O tangle. Then

(24) X[BiR1, ..., Ri—1,0, Rpsa, ..., Ry J, pl

~ X[B Ry, ..., Ri1+ Rpea, ..., Rows J, pl;
(25) X[B8: Roms «« -y Rks1,0, Rg—1, ..., R1; J, pl

~ X[B; Ramy .., Res1+ Re—1, ..., R1; J, pl.

By the inductive hypothesis, the link (25) and
(26) 2Z[B;R1, ..., Ri—2, Rg+1+ Rk—1, Ri+2, ..., Ran J, pl

share the same LG invariant. On the other hand, the link (24) (6) are mutants
one another, and so have the same LG invariant by Propostian(vi). Therefore,
the links (24) and (25) share the same LG invariant.

Next we consider the casg;, is the tangle. It is easy to see:

(27) 2[B; Ry, ..., Ry—1,00, Ri+1, ..., Ran; J, p]
~ K[ﬂl Rk+17 ey R2m, Rla ey Rk*]]#Jv
(28) 2[B; Rom, .. ., Rkw1, 00, Ry—1, ..., Ry J, p]

~ K[ﬂl Rk*la cees R17 RZn’ e Rk+]]#‘]‘

Thus by Proposition 3.2 (iii) and Theorem 4.1 these two liskare the same LG in-
variant.

Therefore, sincer, is LG decomposable, we may consider the eash tangle
Ry is the 2 tangle. However, such links are b&&hg [, .2, ;J2p], and thus we ob-

2m
tain (22) withn =m , completing the proof. U

Remark 5.2. Similarly, we can prove: if§ is a pure strongly amphichki
3-braid, then the HOMFLY and Kauffman polynomials of the tliriks

X[BiR1, R2, ..., R 1, Ra;J, pl, X[B Raw,Rou1,...,R2, R3 J, p]
coincide, respectively; see [15, Propositions 4 and 5].

6. 2-bridge knots and links
In this section, we show the following theorems using Theoeel.
Theorem 6.1. For any positive integetV, there exist2", mutually distinct am-

phicheiral fibered 2-bridge knots which are skein equivalent and have the same
Kauffman polynomial and LG invariant.



284 A. IsHI AND T. KANENOBU

Theorem 6.2. For any positive intege®v, there exist2", mutually distinct am-
phicheiral fibered 2-bridge links which are skein equivalent and have the same
Kauffman and2-variable Alexander polynomials and LG invariant.

In order to prove these theorems, we prepare some notatorBraids and their
properties, which are given in [15]. Let be a 3-braid and ay, ..., a, 1, a, inte-
gers. We define a 3-braid a4, ao, ..., a,_1, a,) as follows:

aosta to?a e to taoy et if nis odd;
(29) alag, az, ... ap-1,a) =y L 110 TR
oyt o ke ooy e oy if nis even.

Thus if 8 is a pure 3-braid and is even, then
(30) K[B;a1,az, ..., a,] = K[B(ar, az, ..., an_1,an)];

see Figs. 6 and 7.
Furthermore, for a 3-braid and integeps, po, ..., p._1, pn, We define 3-braids
as follows:

31 a(p1) = a(p1, —p1) = acla o Ma;

( D p1, —p 2 1

(32) a(p1, P2,y Pn—1, Pn) =(P1, P2, -+, Pn—1){Pn)-
Then it is easy to see:

(33) a(p1, P2, -+ Pn—1, Pn) =P, P2, -+, PDi—1)(Dis -+ Pu)

where 2< i < n [15, Lemma 1]. Ley1, g2,...,9m, m = 3' — 1, be the integers
obtained byp; =;q; , wherg = 0 (mod3), j %0 (mod 3), and

1 if é =1 (mod 3);
(34) € = i

—1if % =2 (mod 3).
Thena(pi, p2, ..., pa) = (g1, 92, ..., qu-_1,qm). Furthermore, we have
(35) Ol<—171, —D25 .. _pn> = O((va dm-1s.--,492, 611)

Lemma 6.3. Suppose that3 is a strongly amphicheiral puBebraid and by,
by, ..., b, are integers. Then

(36) LG(K [8(2b1, 2bs, ..., 2b,)]) = LG(K [B(—2b1, —2bs, ..., —2b,)]).



LINKS WITH THE SAME LINKS-GOULD INVARIANT 285

Proof. Choose integers, ca,...,cn, m =3'— 1, so thatB( By, 2b,, ..., 2b,) =
B(2c1, 2¢a, . .., 2c,y1, 2¢,,) @S above. Then we have

(37) K[,B(Zbl, 2b2, ey Zb,l)] = K[,B(ch, 26‘2, ey 26,7,_1, 26‘,,,)]
= K|[B;2c1, 2c2, ..., 201, 2¢p].

By using (35), we have

(38) K[B(—2b1, —2bs, ..., —2b,)] = K[B(2¢1, Cm—1, . . ., 2¢2, 2¢1)]
= K[ﬁ, 2C,,,, 26/)1—17 ey 26'2, 2C]_].

Thus by using Theorem 4.1, we obtain (36). U

Proof of Theorem 6.1. LeB =of 0{...)(-- -0, *0; ") be a nontrivial
pure amphicheiral 3-braid; = 1. We show that tHé 2 knots instte

(39) Kpn ={K[B(2€1, 2¢2, ..., 2nN)] | € = £1}

are the desired ones. In the proof of Theorem 1 of [15] it isvpdothat these knots
are mutually distinct, amphicheiral, fibered 2-bridge lepoand are skein equivalent
and have the same Kauffman polynomial. So we have to provettisy share the
same LG invariant. In fact, we have

(40) LG(K[B(2€1, 2¢2, ..., 2¢;_1, 2€;, 2641, . . ., 2en)])
= LG(K[B(2€1, 2¢2, ..., 26i_1)(2¢€;, 2641, ..., 2¢N)])
= LG(K[B(2€1, 2¢2, ..., 2¢;_1)(—2¢;, —2€j41, ..., —2epn)])
= LG(K[B(2€1, 2¢2, ..., 26i_1, —2€;, — 2641, ..., —2€n)])
= LG(K[B(2¢1, 2¢2, ..., 2€i_1, —2€;)(— 2641, . . ., —2€N)])
= LG(K[B(2€1, 2¢2, ..., 2¢; 1, —2¢;)(2€i41, . . ., 2en)])
= LG(K[B(2¢1, 2¢2, ..., 2¢i_1, —2¢;, 26141, . . ., 26n)])s

where we use (33) and Lemma 6.3. This completes the proof. O

Proof of Theorem 6.2. LeB be as in the proof of Theorem 6.1.nTihe links
in the set

(41) Lsn ={K[B(2e1,2¢2,...,2en)(2)] | & =£1}

are the desired ones. Note that the likkB( [e1,2¢2, ..., 2¢y)(2)] is also expressed as
K[B(2¢1, 2¢2, ..., 2¢n); 2]. In the proof of Theorem 2 in [15], it is proved that these
links are mutually distinct, amphicheiral, fibered 2-bedtinks, and are skein equiva-
lent and have the same Kauffman and 2-variable Alexandgmpatials. Also we may
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prove that they share the same LG invariant in a similar wayhto proof of Theo-
rem 6.1, and so we omit it. O

In [15, Sect. 4], all the pairs of 2-bridge knots and linksotigh 20 cross-
ings sharing the same Kauffman polynomial are given; cf., [18]. Using the for-
mula [7, Proposition 5.1], the first author has given a compuirogram calculat-
ing the LG invariant of 2-bridge knots and links. Making usk tbis, he has seen
that the following 11 pairs of 2-bridge knots and a singler i 2-bridge links also
share the same LG invariants: for 2-bridge knﬁ‘ts%zo[l’z; p,q] and K [azzafz;q, pl,
where (p.q) = (2—2), (4 2), (4 2), (6 2), (@ 2), (4 4)..82.6 2.064
(6, —4); K[azalazz 1%2,-2] and K p2o20, 20, % —2,2]; and for 2-bridge links
K[oZo, 2:2,2 —2] andk {:2201’2, —2, 2 2]. They also share the same HOMFLY poly-
nomials.

Furthermore, the knots and links with the same LG invariat tare constructed
in this paper also share the same HOMFLY and Kauffman polyalsn see Re-
marks 4.4 and 5.2. Compare Theorem 8.1. So we may ask:

ProBLEM 6.4. Does there exist a pair of knots or links with the same h@urii-
ant that have distinct HOMFLY or Kauffman polynomials?

7. Chiral knots

In this section, we show certain knots of the folmg Ri; R», ..., Ry,] have the
same LG invariants as their mirror images. Making use of, this construct a chiral
knot, whose chirality is undetected by the LG invariant.

Proposition 7.1. If g is a strongly amphicheiral pur&-braid, then the link
(42) L[‘B;Rl,RZ,...,RH,MR]_,//LRZ,-..,IU,R”]
and its mirror image have the same LG invariant.

Proof. Let us consider a link A[ R1, R, ..., R2,] as shown in Fig. 10 with8 =
(03'0y%++)(---0, "o, ™). Flip it over about a vertlcal axis in the prolectlon plane.
Then we obtam the link as shown in Fig. 11, where o5 {'o; - )(---05%0]")
and R, = pyR;. Then it may be presented ad o RS, 4,..., R/z, R/l, R’,]. Since
a is a strongly amphicheiral pure 3-braid, this and. o R,, R}, ,...., R’ R'] are
mutants by (20), whose mirror image 4sL 8 [uR%,, RS, ,,..., uR’ uwR']. There-
fore, in particular, the mirror image of the link (42) and
—L[B;R,,.... R}, uR), ..., nuRY], are mutants, whose LG invariant is equal to that
of L[B; R, ..., R1, uR,, ..., uR1] by using Proposition 3.2 (v) and (vi). By (20)
and (23) in Theorem 5.1, it is equal to the LG invariant of thwk (42). This com-
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L _ J

@ o @ —> at o a !
Fig. 11. The link obtained by flippind. A R1, R2, ..., R2,—1, Ra].

&
<

pletes the proof. [l

ExampLE 7.2. Let us consider the knot

L, ,11 1 1
(43) Loztotip g3l
By Proposition 7.1, this knot and its mirror image share tlane LG invariant.
Thus we cannot detect the chirality of this knot using the Ib@ariant. Furthermore,
they also share the same HOMFLY and Kauffman polynomial®micg to the Re-
mark 5.2.

We then consider the 3-manifolds obtained by performing rd a1 surgeries on
this knot. If the knot (43) were amphicheiral, then they mibbsthomeomorphic. How-
ever, applying the computer program SnapPea of Jeffrey Rek8yave obtain the hy-
perbolic volumes of these manifolds: they are 32 52083188 352148150, respec-
tively, which are given without rounding, out to eight deainplaces. Thus we may
conclude that the knot (43) is chiral; cf. [24, Exercise 9HBY using the result of
Ruberman [25], this also shows that the knot (43) and itsaninmage are not mu-
tants one another. Furthermore, the knot (43) is hyperbatid so in particular prime,
since its volume is 33 62982454,

Remark 7.3. In general, we can easily construct a pair of amphiehaind chi-
ral knots with the same LG invariant, when they are (i) namgrior (i) mutants one
another: (i) Let/ andk be distinct prime knots that share tlmeesaG invariant such
that LG(/ ;to, 1) # LG(J;15%, 1Y) = LG(J ) 10,71). ThenJ # ! andJ & ! are such a
pair. In fact, LGy &K !) = LG( )LG(¢ !) = LG¢ # '), andJ & ! is chiral.fl J#K!
were amphicheiral, themd ank  should equivalent by the unfqatorization theo-
rem and considering the LG invariants, which is false; ci,[$ect. 2].

(i) The knot given in [11, Fig. 7] is chiral, which has a mutdmot that is am-
phicheiral; see [17], [21, p.428].
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N %
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Ly L_ Lo

Fig. 12. Skein triple.

8. The LG invariant and the Conway polynomial

The Conway polynomialV(L;z) € Z[z] [3] is an invariant of an oriented linl.
which is defined by the following formulas:

(44) V(U;z) =1,
(45) V(L+;z) = V(L-;2) =zV(Lo;2),
whereU is a trivial knot and.., L_, Lo are three links that are identical except near

one point where they are as in Fig. 12.
The first author has proved the following [9].

Theorem 8.1. The Conway polynomiaV(L;z) is obtained from the LG invari-
ant LG(L; t, t1) by puttingzo and #; as follows

(46) fott =z, fotg = —1.
This result had been led by the following proposition:

Proposition 8.2. Let L be an oriented link. Suppose that the LG invariant
LG(L; 1, t1) of L is calculated recursively by using the relatiof), (2) in Proposi-
tion 3.1 and Proposition 3.2 (i) Then the Conway polynomi&l(L; z) is obtained from
it by putting 7o and r; as (46).

Proof. LetLo, Lo, Lim, L, be oriented links as in Section 2. Then it follows
from (45) that

47 V(L_1/2) =zV(Lo) + V(L);

(48) V(L_2) =V(Lo) — z2V(Lwo);

(49) V(L2) = V(Lo) + 2V (L),

which imply

(50) V(L 1/2) = V(L 2) = (=1+2)V(Lo) + (1 +2)V(Lo);

(51) V(L_1/2) = V(L2) = (=1+2z)V(Lo) + (1 — z)V (L)
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On the other hand, leg L(z; ) be the polynomial obtained from Itk invariant
LG(L; to, 1) by putting 1o and r; as (46). If the LG invariant L&( 1, t;) of a link
L is calculated by using (1), (2) and Proposition 3.2 (i), thiee polynomialy L ) is
also calculated by using:

(52) Y(L-12) —y(L-2)=(-1+z)y(Lo) + (L +2)y (Lo);
(53) Y(L-1/2) —y(L2) = (=1 +z)y (Lo) + (1 - 2)y (Leo);
(54) y(U) =1,

where (52) and (53) are obtained from (1) and (2), respdgtit@mparing these for-
mulas with (50) and (51), the two polynomiajsL ( ) aRdL ( ) shoatdncide. This
completes the proof. [l

Since the first author [7, Theorem 4.1] proved that the LG riavet of an alge-
braic link (see [3]) may be calculated recursively by usihg telations (1), (2) and
Proposition 3.2 (i). In particular, he gave a formula forctédting the LG invariant of
a 2-bridge link [7, Proposition 5.1]. Thus Proposition 8m2plies: The Conway poly-
nomial of an algebraic link may be recovered from the LG irasatr by puttingzg and
t1 as (46). Also, for prime knots with up to 10 crossings, he khdcthat the Conway
polynomials are recovered from the LG invariant by puttingand ¢, as (46), and also
he showed that a closed 3-braid has such a property. Fifedlygucceeded in general-
izing as in Theorem 8.1.

Corollary 8.3. There exist arbitrarily many2-bridge knots with the same
Kauffman polynomial but distinct LG invariants.

Proof. The second author has proved [16] that there exisitramly many
2-bridge knots with the same Kauffman polynomial but dti€onway polynomials.
Since the Conway polynomial of a 2-bridge knot is recovenmesnfthe LG invariant,
we obtain the result. ]
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