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Abstract
Using the skein relations for the Links-Gould (LG) invariant discovered by the

first author, we give two constructions to provide a pair of different knots or
links sharing the same LG invariant. Using this, we give examples of arbitrarily
many 2-bridge knots with the same LG invariant. These knots also share the same
HOMFLY and Kauffman polynomials. Further, for2-bridge links we construct a
similar example, which also share the same2-variable Alexander polynomial. We
also give a non-amphicheiral hyperbolic knot whose chirality is not undetected by
the LG invariant.

1. Introduction

Links and Gould [23] have derived the Links-Gould 2-variable polynomial invari-
ant, or the LG invariant for short, of an oriented link from the one-parameter family
of four dimensional representations of the quantum superalgebra [ (2 1)]. De Wit,
Kauffman, and Links [5] have then given an explicit form of the -matrix and asso-
ciated with a family of four dimensional representations. They found that the LG in-
variant detects chirality of some links where the HOMFLY andKauffman polynomials
fail and that it does not detect the noninvertibility or mutation of links. Successively,
De Wit [4] has given a method for the automatic evaluation of the LG invarinat for
links given as a closed braid with string index at most 5. He showed that the LG
invariant can distinguish all prime knots with up to 10 crossings and also it can de-
tect the chirality of those that are chiral. Recently, the first author [8] has succeeded
in classifying infinitely many knots sharing the same Jones and HOMFLY polynomi-
als which had given by the second author [12, 13]. For the Jones, HOMFLY, and
Kauffman polynomials, we refer the reader to [10, 20, 22].

On the analogy of the formula for the LG invariant given in [5,p. 170], the first
author [7] has discovered another formula for the LG invariant (Proposition 3.1). In
this paper, we make use of these two skein relations togetherwith some properties
given in Proposition 3.2 to evaluate the LG invariant. Givena link that contains two
tangles, we may obtain another link by exchanging these two tangles. In [13, 14, 15],

The second author was partially supported by Grant-in-Aid for Scientific Research (B)
(No. 14340027), Japan Society for the Promotion of Science.
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calculating the difference of the HOMFLY and Kauffman polynomials of the two
links, the second author has constructed exmples of knots and links sharing the same
HOMFLY or Kauffman polynomials. We apply such a construction to the LG invari-
ant; we calculate the difference of the LG invariants of suchtwo links (Lemma 3.3),
and then give two constructions to provide a pair of knots or links sharing the same
LG invariant (Theorems 4.1 and 5.1).

De Wit [4, p. 325] asked whether the LG invariant always distinguishes between
nonmutant prime knots. Applying Theorem 4.1, we construct arbitrarily many 2-bridge
knots with the same LG invariant (Theorem 6.1), which are given as a set of am-
phicheiral, fibered 2-bridge knots that share the same HOMFLY and Kauffman poly-
nomials in [15, Theorem 1]. Further, we construct a similar set of 2-bridge links (The-
orem 6.2), which also share the same 2-variable Alexander polynomial; as before this
is the set given in [15, Theorem 2]. It is well-known that a 2-bridge knot or link is
prime and has no mutant.

Next, applying Theorem 5.1, we construct links whose LG invariants are the same
as those of mirror images (Proposition 7.1), and give an example of chiral hyperbolic
knot whose chirality is undetected by the LG invariant (Example 7.2), where we use
the computer program SnapPea to show that the knot is hyperbolic and chiral.

Lastly, we discuss a certain relation between the LG invariant and the Conway
polynomial. We will show: if the LG invariant of a knot or linkis obtained recursively
by using the skein relations in Proposition 3.1 and that the LG invariant of the trivial
knot is one (algebraic links are such ones [7]), then the Conway polynomial is recov-
ered from the LG invariant (Propsotion 8.2). The first author[9] has generalized this
to any link. As an application of this, there exist arbitrarily many 2-bridge knots with
the same Kauffman polynomial but distinct LG invariants (Corollary 8.3).

This paper consisits of eight sections. In Section 2, we givesome definitions for
tangles and 3-braids. In Section 3, we give the skein relations and some properties for
the LG invariant and prove above-mentioned Lemma 3.3, whichis a key in this paper.
In Sections 4 and 5, we prove Theorems 4.1 and 5.1, which provide a pair of knots
or links sharing the same LG invariant. In Section 6, we proveTheorems 6.1 and 6.2,
which give arbitrarily many 2-bridge knots or links with thesame LG invariant. In
Section 7, we give examples of knots and links whose chirality is undetected by the
LG invariant. In Section 8, we discuss a relation between theLG invariant and the
Conway polynomial.

ACKNOWLEDGEMENTS. The authors would like to thank David De Wit for helpful
comments.

2. Preliminaries

A tangle in a link is a region in the projection plane surrounded by a circle such
that the link crosses the circle exactly four times. We suppose such four points occur
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(a) (b) (c) (d)

Fig. 1. (a) The tangle. (b) The 0 tangle. (c) The tangle. (d) The tangle.

(a) (b)

Fig. 2. (a) The 1 tangle. (b) The 1 tangle.

Fig. 3. The tangle sum 1 + 2.

in the four compass directions NW, NE, SW, and SE; cf. [3, p. 331] and [1, Sect. 2.3].
We define the integral tangle or tangle, Z, and the tangle as in Fig. 1, where

0. Further, we define the 1 tangle, Z 0 , as in Fig. 2, where 0.
Given a tangle , we denote by , , and the tangles obtained by

rotating through 180 about a horizontal axis, a vertical axis, and an axis perpen-
dicular to the projection plane, respectively. In addition, we denote by the mirror
image of .

Given two tangles 1 and 2, we define the sum 1 + 2 as shown in Fig. 3.
Let be an oriented link diagram that contains a tangle . For another tangle ,

we denote by the link obtained from by replacing with . If is the tan-
gle with Z (resp. 1 tangle with Z 0 ), we denote the link
by (resp. 1 ). In the following, we shall use a similar notation. The fourlinks
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(i) (ii)

Fig. 4. An oriented tangle .

1 = 1
1 = 2 = 1

2 =

Fig. 5. Elementary 3-braids.

, , , and are calledmutantsof one another; cf. [22, p. 29]. Note
also that two links + and + , that is, the links containing the tangle sums +
and + , respectively, are mutants. In the following, if we consider an oriented tan-
gle, we will always assume it is oriented as shown in Fig. 4(i)or (ii).

A 3-braid is an element of the 3-braid group generated by the elementary 3-braids

1, 2 as shown in Fig. 5.

3. Skein relations for the LG invariant

We denote the LG invariant of an oriented link by LG( ;0 1), or LG( ) for
short, which is a 2-variable polynomial in variables0 and 1; see [6, 7]. In [4], the
LG invariant is given as a polynomial in variables and , where= 0 1 and

= 0 1.
Let be an oriented link diagram that contains a tangle . Then among the ori-

ented links 1 2, 0, , 2, 2, we have the skein relations [7, Theorem 3.1]:

Proposition 3.1.

LG( 1 2) + (1 0 1) LG( 0) + ( 0 1 0 1) LG( ) + 0 1 LG( 2) = 0;(1)

LG( 1 2) + ( 0 1 0 1+ 2) LG( 0)(2)

( 0 1 0 1+ 2) LG( ) LG( 2) = 0;

LG( 2) + 0 1 LG( 2) = ( 0 1 + 1) LG( 0) 2( 0 1)( 1 1) LG( )(3)

The first relation (1) is equivalent to a relation originallydue to De Wit et al. [5].
By analogy with this, the first author then has discovered thesecond relation (2). Sub-
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tracting (1) from (2), we obtain the third relation (3).
The LG invariant satisfies the following properties [4, 5]; cf. [7, Proposition 3.3].

Proposition 3.2. (i) For the trivial knot , LG( ) = 1.
(ii) If is a split link, then LG( ) = 0.
(iii) Let 1 and 2 be links and 1# 2 be their connected sum. ThenLG( 1# 2) =
LG( 1) LG( 2).
(iv) Let be a link and ! be its mirror image. ThenLG( !; 0 1) = LG( ; 1

0
1

1 ).
(v) Let be a link and be the link obtained from by reversing the orienta-
tion of every component. ThenLG( ; 0 1) = LG( ; 0 1). This further implies the
symmetry:LG( ; 0 1) = LG( ; 1 0).
(vi) LG( ) is unchanged by mutation of .

In this paper, we study the LG invariant through the skein relations (1), (2),
and (3) together with these properties.

Let be an oriented tangle as in Fig. 4(i) or (ii). We say that isLG decom-
posable if the LG invariant of any oriented link that contains is expressed in
terms of those of 0, 2 and ; that is, LG( ) is expressed in the form

(4) LG( ) = LG( 0) + LG( 2) + LG( )

where , , Z[ 1
0

1
1 ]. It is easy to see that the 2 tangle with Z and the

1 (2 ) tangle with Z 0 are such tangles. Further, if oriented tangles and
are LG decomposable, then so are the sum + , the mirror image , and the tangle
obtained by rotating through 90 about an axis perpendicularto the projection plane
by the skein relations in Proposition 3.1. In particular, anoriented algebraic tangle in
the sense of Conway [3] is LG decomposable; cf. [7].

Let 1 2 be an oriented link containing two tangles1 and 2 which are ori-
ented as in Figs. 4(i) or (ii). Suppose that1 and 2 are LG decomposable; that is,
for any link that contains , LG( ) is of the form

(5) LG( ) = LG( 0) + LG( 2) + LG( )

where , , Z[ 1
0

1
1 ] ( = 1, 2). We consider the difference of the LG invari-

ants of the links 1 2 and 2 1, where 2 1 is obtained from 1 2 by exchang-
ing the tangles 1 and 2.

Lemma 3.3.

LG( 1 2) LG( 2 1) = ( 1 2 1 2) LG( 0 2) LG( 2 0)(6)

+ ( 1 2 1 2) LG( 0 ) LG( 0)

+ ( 1 2 1 2) LG( 2 ) LG( 2)
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is odd.

is even.

Fig. 6. [ ; 1 2 1 ].

1 1

1 1

Fig. 7. [ ].

Proof. Using (5), we have

LG( 1 2) = 1 LG( 0 2) + 1 LG( 2 2) + 1 LG( 2)(7)

= 1 2 LG( 0 0) + 1 2 LG( 0 2) + 1 2 LG( 0 )

+ 1 2 LG( 2 0) + 1 2 LG( 2 2) + 1 2 LG( 2 )

+ 1 2 LG( 0) + 1 2 LG( 2) + 1 2 LG( )

Similarly, we have

LG( 2 1) = 1 2 LG( 0 0) + 1 2 LG( 0 2) + 1 2 LG( 0 )(8)

+ 1 2 LG( 2 0) + 1 2 LG( 2 2) + 1 2 LG( 2 )

+ 1 2 LG( 0) + 1 2 LG( 2) + 1 2 LG( )

Then we obtain (6).

4. The LG invariant of the link K [ ; R1 R2 Rn]

For a 3-braid and tangles1, 2 1, , we define a class of oriented
links [ ; 1 2 1 ] as shown in Fig. 6; if = 0, we interpret it as the
2-bridge link [ ] as shown in Fig. 7. In particular, if each is an integral tangle,
then [ ; 1 2 ] is a 2-bridge link.
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Fig. 8. The link ( ).

We say that a 3-braid isstrongly amphicheiralif it is of the form

(9) ( 1
2

2
1 )( 2

2
1

1 );

the closure of such a 3-braid is strongly amphicheiral in thesense of [26]. Note that
if a strongly amphicheiral 3-braid can be oriented as in Fig.6 or 7, then it is easy
to see that is a pure braid, that is, each strand of joins the horizontal two end
points. Also the knot [ ] is strongly amphicheiral.

In this section, we will prove the following theorem.

Theorem 4.1. If is a strongly amphicheiral pure3-braid and each of tangles

1, 2 1, is LG decomposable, then

(10) LG( [ ; 1 2 1 ]) = LG( [ ; 1 2 1])

In order to prove this, we need some lemmas. The following is easy to see.

Lemma 4.2. Suppose that is a pure3-braid. If is the 0 tangle, 1 ,
then [ ; 1 ] is isotopic to:

the trivial 2-component link if = = 1;

( 2)# [ ; 3 ] if 2, = 1;

[ ; 1 2 1 + +1 +2 ] if 2 1;

[ ; 1 2]# ( 1) if 2, = ,

where ( ) is a link as shown inFig. 8, and both [ ; 3 ] and [ ; 1

2] with = 2 mean [ ] .

Lemma 4.3. Suppose that is a strongly amphicheiral pure3-braid. If is the
tangle, 1 , then

(11) LG( [ ; 1 2 ])

= LG( [ ; 1 2 1]) LG( [ ; +1 +2 ])
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is odd.

is even.

Fig. 9. [ 1; +1 +2 1 ].

1 1 1

1 1 1

where both [ ; 1 2 1] with = 1 and [ ; +1 +2 ] with =
mean [ ] .

Proof. Let denote the link [ ; 1 2 ] with the tangle. If
is even, then is the connected sum

(12) [ ; 1 1]# [ ; +1 ]

and so we obtain (11) by Proposition 3.2 (iii). If is odd, then is the connected
sum

(13) [ ; 1 1]# [ 1; +1 ]

where [ 1; +1 ] is the link as shown in Fig. 9. Rotating it through angle
180 about a horizontal axis, we obtain

(14) [ ; +1 +2 ]

In fact, applying such a rotation = ( 1
2

2
1 )( 2

2
1

1 ) becomes 1 =
( 1

1
2

2 )( 2

1
1

2 ) and 1 becomes . Then the link (14) is a mutant of
[ ; +1 +2 ], and so, by Proposition 3.2 (vi), we obtain

(15) LG( [ 1; +1 +2 ]) = LG( [ ; +1 +2 ])

completing the proof.

Proof of Theorem 4.1. We prove by induction on . The case = 1 is trivial.
Let be a fixed integer with 2. Assuming that (10) holds for , we will
prove (10) with = .

Let be a link that contains the tangle . Since is LG decomposable, the
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LG invariant of is of the form

LG( ) = LG( 0) + LG( 2) + LG( )(16)

where , , Z[ 1
0

1
1 ].

First, consider the case is the 0 tangle. If = 1, then

LG( [ ; 0 2 ])(17)

= LG( ( 2)# [ ; 3 ]) (by Lemma 4.2)

= LG( ( 2)) LG( [ ; 3 ]) (by Proposition 3.2 (iii))

= LG( ( 2)) LG( [ ; 3]) (by inductive hypothesis)

= LG( [ ; 2 0]) (by Lemma 4.2)

The case = is similar. If 2 1, then

LG( [ ; 1 1 0 +1 ])(18)

= LG( [ ; 1 1 + +1 ]) (by Lemma 4.2)

= LG( [ ; 1 +1 + 1 ]) (by Proposition 3.2 (vi))

= LG( [ ; +1 + 1 1]) (by inductive hypothesis)

= LG( [ ; +1 0 1 1]) (by Lemma 4.2)

Thus (10) with = holds.
Also if is the tangle, then by Lemma 4.3 and inductive hypothesis, (10)

with = holds. Therefore by (16), we may consider the case eachtangle is
the 2 tangle. However such links are both [ ; 2 2], and thus we have (10) with

= , completing the proof.

REMARK 4.4. Similarly, we can prove: if is a pure 3-braid, then the HOMFLY
polynomials of two links

(19) [ ; 1 2 1 ] [ ; 1 2 1]

are equal, which is a generalization of [15, Proposition 1].Also, we can prove: if is
a strongly amphicheiral pure 3-braid, then the Kauffman polynomials of two links (19)
coincide, which is a generalization of [15, Proposition 3].

5. The LG invariants of the link [ ; R1 R2 R2n; J p]

For a 3-braid and tangles 1, 2 2 1, 2 , we define a class of ori-
ented links [ ; 1 2 2 1 2 ] as shown in Fig. 10. We denote this link by
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Fig. 10. [ ; 1 2 2 1 2 ].

1 1

for short. Let be a solid torus 3 Int ( ), where is an axis perpendicu-
lar to the projection plane of the diagram and Int ( ) is the interior of the regular
neighborhood ( ) of . We suppose that is oriented so that the linking number
of and is +1 and that the preferred meridian of is oriented parallel to . Let

be an oriented knot and : ( ) a homeomorphism sending (longitude) to
(longitude)+ (meridian) of ( ). Denote the satellite link ( )with companion and
pattern [ ; 1 2 2 1 2 ] by [ ; 1 2 2 ; ]; cf. [24, p. 111].
In particular, if is a trivial knot, then ( ) is obtained from by twisting
times.

Let and be oriented links. If they are isotopic, then we write , and if

they are mutants one another, then we write
m

. If is a strongly amphicheiral
pure 3-braid, then for any integer it is easy to see:

(20) [ ; 1+ 2+ 2 + ]
m

[ ; 1 2 2 ]

and so

(21) [ ; 1+ 2+ 2 + ; ]
m

[ ; 1 2 2 ; ]

where the subscripts of are understood to be reduced modulo 2.

Theorem 5.1. If is a strongly amphicheiral pure3-braid and 1 2

2 1 2 are LG decomposable tangles, then for any integer and a knot it holds
that

(22) LG( [ ; 1 2 2 1 2 ; ])

= LG( [ ; 2 2 1 2 1; ])

In particular, it holds that

(23) LG( [ ; 1 2 2 1 2 ]) = LG( [ ; 2 2 1 2 1])

Proof. We prove by induction on . The case = 1 follows from (21)with =
= 1. Let be a fixed integer with 2 and assume that (22) holds for .
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First we consider the case is the 0 tangle. Then

[ ; 1 1 0 +1 2 ; ](24)

[ ; 1 1 + +1 2 ; ];

[ ; 2 +1 0 1 1; ](25)

[ ; 2 +1 + 1 1; ]

By the inductive hypothesis, the link (25) and

(26) [ ; 1 2 +1 + 1 +2 2 ; ]

share the same LG invariant. On the other hand, the link (24) and (26) are mutants
one another, and so have the same LG invariant by Proposition3.2 (vi). Therefore,
the links (24) and (25) share the same LG invariant.

Next we consider the case is the tangle. It is easy to see:

[ ; 1 1 +1 2 ; ](27)

[ ; +1 2 1 1]# ;

[ ; 2 +1 1 1; ](28)

[ ; 1 1 2 +1]#

Thus by Proposition 3.2 (iii) and Theorem 4.1 these two linksshare the same LG in-
variant.

Therefore, since is LG decomposable, we may consider the case each tangle
is the 2 tangle. However, such links are both [ ; 2 2

2

; ], and thus we ob-

tain (22) with = , completing the proof.

REMARK 5.2. Similarly, we can prove: if is a pure strongly amphicheiral
3-braid, then the HOMFLY and Kauffman polynomials of the twolinks

[ ; 1 2 2 1 2 ; ] [ ; 2 2 1 2 1; ]

coincide, respectively; see [15, Propositions 4 and 5].

6. 2-bridge knots and links

In this section, we show the following theorems using Theorem 4.1.

Theorem 6.1. For any positive integer , there exist2 , mutually distinct, am-
phicheiral, fibered 2-bridge knots, which are skein equivalent and have the same
Kauffman polynomial and LG invariant.
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Theorem 6.2. For any positive integer , there exist2 , mutually distinct, am-
phicheiral, fibered 2-bridge links, which are skein equivalent and have the same
Kauffman and2-variable Alexander polynomials and LG invariant.

In order to prove these theorems, we prepare some notations for 3-braids and their
properties, which are given in [15]. Let be a 3-braid and1, 2 1, inte-
gers. We define a 3-braid (1 2 1 ) as follows:

(29) ( 1 2 1 ) =
1

2
1 2

1
1 1

1 2
1 if is odd;

1
2

1 2
1

1

2
1

1 if is even.

Thus if is a pure 3-braid and is even, then

(30) [ ; 1 2 ] = [ ( 1 2 1 )];

see Figs. 6 and 7.
Furthermore, for a 3-braid and integers1, 2 1, , we define 3-braids

as follows:

1 = ( 1 1) = 1

2
1 1

1 ;(31)

1 2 1 = 1 2 1(32)

Then it is easy to see:

(33) 1 2 1 = 1 2 1

where 2 [15, Lemma 1]. Let 1, 2 , = 3 1, be the integers
obtained by = , where 0 (mod 31), 0 (mod 3 ), and

(34) =
1 if

3

1

1 (mod 3);

1 if
3

1

2 (mod 3).

Then 1 2 = ( 1 2 1 ). Furthermore, we have

(35) 1 2 = ( 1 2 1)

Lemma 6.3. Suppose that is a strongly amphicheiral pure3-braid and 1,

2 are integers. Then

(36) LG( [ 2 1 2 2 2 ]) = LG( [ 2 1 2 2 2 ])
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Proof. Choose integers1, 2 , = 3 1, so that 21 2 2 2 =
(2 1 2 2 2 1 2 ) as above. Then we have

[ 2 1 2 2 2 ] = [ (2 1 2 2 2 1 2 )](37)

= [ ; 2 1 2 2 2 1 2 ]

By using (35), we have

[ 2 1 2 2 2 ] = [ (2 1 2 2 2 1)](38)

= [ ; 2 2 1 2 2 2 1]

Thus by using Theorem 4.1, we obtain (36).

Proof of Theorem 6.1. Let = (2 1
2

2 2
1 )( 2 2

2
2 1

1 ) be a nontrivial
pure amphicheiral 3-braid, = 1. We show that the 2 knots in theset

(39) K = [ 2 1 2 2 2 ] = 1

are the desired ones. In the proof of Theorem 1 of [15] it is proved that these knots
are mutually distinct, amphicheiral, fibered 2-bridge knots, and are skein equivalent
and have the same Kauffman polynomial. So we have to prove that they share the
same LG invariant. In fact, we have

LG( [ 2 1 2 2 2 1 2 2 +1 2 ])(40)

= LG( [ 2 1 2 2 2 1 2 2 +1 2 ])

= LG( [ 2 1 2 2 2 1 2 2 +1 2 ])

= LG( [ 2 1 2 2 2 1 2 2 +1 2 ])

= LG( [ 2 1 2 2 2 1 2 2 +1 2 ])

= LG( [ 2 1 2 2 2 1 2 2 +1 2 ])

= LG( [ 2 1 2 2 2 1 2 2 +1 2 ])

where we use (33) and Lemma 6.3. This completes the proof.

Proof of Theorem 6.2. Let be as in the proof of Theorem 6.1. Then the links
in the set

(41) L = [ 2 1 2 2 2 (2)] = 1

are the desired ones. Note that the link [ 21 2 2 2 (2)] is also expressed as
[ 2 1 2 2 2 ; 2]. In the proof of Theorem 2 in [15], it is proved that these

links are mutually distinct, amphicheiral, fibered 2-bridge links, and are skein equiva-
lent and have the same Kauffman and 2-variable Alexander polynomials. Also we may
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prove that they share the same LG invariant in a similar way tothe proof of Theo-
rem 6.1, and so we omit it.

In [15, Sect. 4], all the pairs of 2-bridge knots and links through 20 cross-
ings sharing the same Kauffman polynomial are given; cf. [18, 19]. Using the for-
mula [7, Proposition 5.1], the first author has given a computer program calculat-
ing the LG invariant of 2-bridge knots and links. Making use of this, he has seen
that the following 11 pairs of 2-bridge knots and a single pair of 2-bridge links also
share the same LG invariants: for 2-bridge knots [2

2
2

1 ; ] and [ 2
2

2
1 ; ],

where ( ) = (2 2), (4 2), (4 2), (6 2), (6 2), (4 4), (8 2), (8 2), (6 4),
(6 4); [ 2

2
2
1

2
2

2
1 ; 2 2] and [ 2

2
2
1

2
2

2
1 ; 2 2]; and for 2-bridge links

[ 2
2

2
1 ; 2 2 2] and [ 2

2
2

1 ; 2 2 2]. They also share the same HOMFLY poly-
nomials.

Furthermore, the knots and links with the same LG invariant that are constructed
in this paper also share the same HOMFLY and Kauffman polynomials; see Re-
marks 4.4 and 5.2. Compare Theorem 8.1. So we may ask:

PROBLEM 6.4. Does there exist a pair of knots or links with the same LG invari-
ant that have distinct HOMFLY or Kauffman polynomials?

7. Chiral knots

In this section, we show certain knots of the form [ ;1 2 2 ] have the
same LG invariants as their mirror images. Making use of this, we construct a chiral
knot, whose chirality is undetected by the LG invariant.

Proposition 7.1. If is a strongly amphicheiral pure3-braid, then the link

(42) [ ; 1 2 1 2 ]

and its mirror image have the same LG invariant.

Proof. Let us consider a link [ ;1 2 2 ] as shown in Fig. 10 with =
( 1

2
2

1 )( 2

2
1

1 ). Flip it over about a vertical axis in the projection plane.
Then we obtain the link as shown in Fig. 11, where = (1

2
2

1 )( 2

2
1

1 )
and = . Then it may be presented as [ ;2 1 2 1 2 ]. Since

is a strongly amphicheiral pure 3-braid, this and [ ;2 2 1 2 1] are
mutants by (20), whose mirror image is [ ; 2 2 1 2 1]. There-
fore, in particular, the mirror image of the link (42) and

[ ; 1 1], are mutants, whose LG invariant is equal to that
of [ ; 1 1] by using Proposition 3.2 (v) and (vi). By (20)
and (23) in Theorem 5.1, it is equal to the LG invariant of the link (42). This com-
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Fig. 11. The link obtained by flipping [ ;1 2 2 1 2 ].

1 1

pletes the proof.

EXAMPLE 7.2. Let us consider the knot

(43) 2
2

2
1 ;

1

2

1

4

1

2

1

4

By Proposition 7.1, this knot and its mirror image share the same LG invariant.
Thus we cannot detect the chirality of this knot using the LG invariant. Furthermore,
they also share the same HOMFLY and Kauffman polynomials according to the Re-
mark 5.2.

We then consider the 3-manifolds obtained by performing +1 and 1 surgeries on
this knot. If the knot (43) were amphicheiral, then they mustbe homeomorphic. How-
ever, applying the computer program SnapPea of Jeffrey R. Weeks, we obtain the hy-
perbolic volumes of these manifolds: they are 32 52083188 and 32 52148150, respec-
tively, which are given without rounding, out to eight decimal places. Thus we may
conclude that the knot (43) is chiral; cf. [24, Exercise 9H8]. By using the result of
Ruberman [25], this also shows that the knot (43) and its mirror image are not mu-
tants one another. Furthermore, the knot (43) is hyperbolic, and so in particular prime,
since its volume is 33 62982454.

REMARK 7.3. In general, we can easily construct a pair of amphicheiral and chi-
ral knots with the same LG invariant, when they are (i) nonprime or (ii) mutants one
another: (i) Let and be distinct prime knots that share the same LG invariant such
that LG( ; 0 1) = LG( ; 1

0
1

1 ) = LG( !; 0 1). Then # ! and # ! are such a
pair. In fact, LG( # !) = LG( ) LG( !) = LG( # !), and # ! is chiral. If # !
were amphicheiral, then and should equivalent by the uniquefactorization theo-
rem and considering the LG invariants, which is false; cf. [11, Sect. 2].

(ii) The knot given in [11, Fig. 7] is chiral, which has a mutant knot that is am-
phicheiral; see [17], [21, p.428].
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+ 0

Fig. 12. Skein triple.

8. The LG invariant and the Conway polynomial

The Conway polynomial ( ; ) Z[ ] [3] is an invariant of an oriented link ,
which is defined by the following formulas:

( ; ) = 1;(44)

( +; ) ( ; ) = ( 0; )(45)

where is a trivial knot and +, , 0 are three links that are identical except near
one point where they are as in Fig. 12.

The first author has proved the following [9].

Theorem 8.1. The Conway polynomial ( ; ) is obtained from the LG invari-
ant LG( ; 0 1) by putting 0 and 1 as follows:

(46) 0 + 1 = 0 1 = 1

This result had been led by the following proposition:

Proposition 8.2. Let be an oriented link. Suppose that the LG invariant
LG( ; 0 1) of is calculated recursively by using the relations(1), (2) in Proposi-
tion 3.1 and Proposition 3.2 (i). Then the Conway polynomial( ; ) is obtained from
it by putting 0 and 1 as (46).

Proof. Let 0, , 1 , be oriented links as in Section 2. Then it follows
from (45) that

( 1 2) = ( 0) + ( );(47)

( 2) = ( 0) ( );(48)

( 2) = ( 0) + ( )(49)

which imply

( 1 2) ( 2) = ( 1 + ) ( 0) + (1 + ) ( );(50)

( 1 2) ( 2) = ( 1 + ) ( 0) + (1 ) ( )(51)
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On the other hand, let ( ; ) be the polynomial obtained from theLG invariant
LG( ; 0 1) by putting 0 and 1 as (46). If the LG invariant LG( ;0 1) of a link

is calculated by using (1), (2) and Proposition 3.2 (i), thenthe polynomial ( ) is
also calculated by using:

( 1 2) ( 2) = ( 1 + ) ( 0) + (1 + ) ( );(52)

( 1 2) ( 2) = ( 1 + ) ( 0) + (1 ) ( );(53)

( ) = 1(54)

where (52) and (53) are obtained from (1) and (2), respectively. Comparing these for-
mulas with (50) and (51), the two polynomials ( ) and ( ) shouldcoincide. This
completes the proof.

Since the first author [7, Theorem 4.1] proved that the LG invariant of an alge-
braic link (see [3]) may be calculated recursively by using the relations (1), (2) and
Proposition 3.2 (i). In particular, he gave a formula for calculating the LG invariant of
a 2-bridge link [7, Proposition 5.1]. Thus Proposition 8.2 implies: The Conway poly-
nomial of an algebraic link may be recovered from the LG invariant by putting 0 and

1 as (46). Also, for prime knots with up to 10 crossings, he checked that the Conway
polynomials are recovered from the LG invariant by putting0 and 1 as (46), and also
he showed that a closed 3-braid has such a property. Finally,he succeeded in general-
izing as in Theorem 8.1.

Corollary 8.3. There exist arbitrarily many2-bridge knots with the same
Kauffman polynomial but distinct LG invariants.

Proof. The second author has proved [16] that there exist arbitrarily many
2-bridge knots with the same Kauffman polynomial but distinct Conway polynomials.
Since the Conway polynomial of a 2-bridge knot is recovered from the LG invariant,
we obtain the result.
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