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0. Introduction

The purpose of this paper is to study smooth SU(#n)-actionson a compact
orientable 2m-manifold whose rational cohomology ring is isomorphic to
H*(P,(C);Q). First we show the following result.

Theorem 2.1. Letn =7 and 0<k<n—4. Let M be a compact orientable
smooth 2(n--k)-manifoldwith

H*M; Q) = H*(P,.,(C); Q) .

Then for any nom-trivial smooth SU(n)-action on M, the stationary point set
F=F(SU(n), M) is an orientable 2k-manifoldwith

H¥(F; @) = H*(P\(C); Q)
and there is an equivariant diffeomorphism
M = 9D x X)/S*.

Here X is a compact connected orientable (2k—-2)-manifolawhich is acyclic over
rationals, X admits a smooth S'-action which is free on dX, the SU(m)-action is
standard on D** and trivial on X, and

m(X) = m(M)..
Furthermore, if
H*(M; Z)= H*(P,.(C); Z),
then X is acyclic over integers, the S*-action on X is semi-free, and
HX(F; Z) = H¥*(Py(C); Z) .

Corollary 2.2. Let n>=7 and 0<k<n—4. Let M be a compact connected
smooth 2(n-k)-manifoldwhich is homotopy equivalent to P, (C). If M admits
a non-trivial smooth SU(n)-action, then M is diffeomorphico P, (C).
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Examples of SU(n)-actions on cohomology complex projective spaces are
constructed in section 3. And we have the following results.

Theorem 3.1. Letn>2, k> 1 andp>=1. Then there is a compact orientable
2(n-+k)-manifoldM such that

m(M) = Z[pZ and H*(M; Q) = H*(P,.+,(C); Q)
and M admits a smooth SU(n)-action with
F(SU(n), M) = PxC).

Theorem 32. Let n>=2 and k>3. Let G be a finitely presentable group
with H(G; Z)=H,G; Z)=0. Then
(@) there is a compact orientable 2(n-+k)-manifoldM such that

m(M) =G and H*M; Z) = H*(P,.,(C) Z)
and M admits a smooth SU(n)-action with
F(SU(n), M) = P,(C),
(b) there is a smooth SU(n)-actionon P, (C)such that
m(F) =G and H*(F;Z) = H*(P4C); Z),
where F=F(SU(n), P,.4(C)).

Next, in section 4, we study a signature of closed orientable manifold which
admits a smooth G-action with isotropy groups of uniform dimension, and we
have a result which is a generalization of the fact that Sign(M)=0 if M admits
a smooth circle action without stationary points.

Next we study smooth SU(3)-actions on orientable 8-manifolds in section 5,
and as an application we show a similar result as Theorem 2.1 for non-trivial
smooth SU(3)-action on a cohomology complex projective 4-space. We con-
struct examples of stationary point free SU(3)-actions on orientable §-manifolds
with non-zero signature in section 6.

As a concluding remark, classification of smooth SU(#)-actionson orientable
2n-manifolds is done in the final section.

1. SU(n)-actions with certain isotropy types

Let £ be a manifold with smooth SU(n)-action (n>3). Assume that
the identity component of each isotropy group is conjugate to SU(n— 1) or
NSU(n—1), the normalizer of SU(n—1)in SUm). Then S'=NSU(n—1)/
SU(n—1)acts naturally on
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X = F(SU(n—1),E),
the stationary point set of SU(r—1). It is easily seen that
(1.2 SUn)/SUnr—1)xX —E, [gSUm—1),X] — gx
S

is an equivariant diffeomorphism as SU(n)-manifolds, since g =SU(n) and
g'SU(n—1)gc NSU(n—1) imply g NSU(n—1).

Lemma 12. Let V be a real vector space with linear SU(n)-action(n>=3).
Assume that the identity component of each isotropy group on the invariant unit sphere
SV) is conjugate to SU(m—1) or NSU(n-l). Then V) = SU(n)/SU(n—1)
as SU(n)-spaces.

Proof. By (1.1), there is an equivariant diffeomorphism
S(V) = SU(n)/SU(n—lL)}‘)g F(SUmn—1)S(V)),
where F(SU(n—1),S(V))is a sphere. Then it is easly seen that
F(SU(n—1), S(V)) = S*
by the homotopy exact sequence of the fibre bundle
F(SUn—1), S(V))— S(V)— P,_,(C).
Considering S*-actions on S*, we have
S(V) = SU(n)/SUn—1)
as SU(n)-spaces. q.e.d.

Lemma 13. Let Vbe a real vector space with linear SU(n)-action such
that S(V)=SU(n)[SU(rn—1ps SU(n)-spaces(n=3). Then the SU(n)-action on
V=R*is equivalent t0 the standard action.

Proof. Thisisaknown result (see [8], Theorem I), but we give an elemen-
. tary proof for the completeness. It is well-known that a real irreducible SU(#n)-
vector space R*" with an invariant complex structure is equivalent to R* with
the standard SU(n)-action. S0 we prove the existence of an invariant complex
structureon V. Denote by Z,, the center of SU(n). Then Z, is a cyclic group
of order », and the Z,-action on S(¥) is free, since

Z,NSUn—1)={1} .
Consider a direct sum decomposition

V=V& oV,
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as Z,-vector space, where V,(i= 1, --+,k) are irreducible. Leaving a non-zero
vector v, € V,fixed, we have an element g;&SU(n) such that
v, =gmeV; (=1, k)
by the transitivity of the SU(n-action on S(V). Then
V=gV, T=1,-,k).

Since the Z,-action on S(V,) is free, there is a complex structure J, on V; such
that

o, =Jioc, ov, = av,+bJw,

for some a, be R, b+0, where o is a generator of Z,, moreover the real vector
space V, is spanned by {v,, J1v,;} . Therefore there is a complex structure J on
V such that

Jo,— Jw,, Jgou,—gJw, and ov = av+bJv
for each v V. Then
gov = agv+bgJv,
ogv = agv+bJgv

for any g SU(n). Therefore the complex structure J is SU(n)-invariant, since
go=aogand b=0. q.e.d.

Let M be a closed connected manifold with smooth SU(n)-action (n>3).
Assume that the identity component of each isotropy group is conjugate to one
of the following

SUn), SUn—1) and NSU(n—1).

Assume that the stationary point set F=F(SU(n),M) is non-empty. Let U be
an invariant closed tubular neighborhood of Fin M. Then there is an equivari-
ant decomposition

M= U U(SU(n)/SU(n—ls)lxX) = U(SZ""gagX),
where X=F(SU(n—1), M—int U) with the natural S*-action. Since
dU= SU(n)/SU(n— ls)1>_< 0X =Sz”“s>l< 0X

as SU(n)-maifolds, the S'-action on 8Xis free, F=0.X/S",and the disk bundle
U —Fwith SU(n)-action is equivariantly isomorphic to the disk bundle

D*x0X — 0X/[S*,
st

where the SU(n)-action on D** is standard by Lemma 1.2 and Lemma 1.3.



ACTIONS ON PROJECTIVE SPACES 319
Therefore the codimension of F in M is 2m, X is connected, and there is an
equivariant diffeomorphism
(1.4) M = 9D x X)|S= DZ"IX oXu Sz""lXX
N N
as  SU(n)-manifolds.

Lemma 1.5. Let G be a closed connected proper subgroup of SU(n), (n=7).

If
dim G>n*—4n+7 = dim N(SU(n—2), SU(n))

then G is conjugate to SU(n—1)or NSU(n—1)in SU(n).

Proof. The inclusion p: G SU(n) gives an #n-dimensional complex repre-
sentation of G. First we show that the representation p is reducible. Suppose
that p is irreducible. Then G is semi-simple from the Shur’s lemma. If G is
not simple, then there are integers p>q> 2 with n=pgq, such that G is conjugate
to a subgroup of the tensor product

SU(p)®SU(9)

in SU(pq),by considering the induced representation of the universal covering
group of G. Therefore

2
dim G < p+ ¢—2 <<%) +2<”—~—(”;“1) .
If G is simple but not one of the type

Aka D2k+1 and Eea

then G is conjugate to a subgroup of SO(n) or Sp(n/2),(see [6], p. 336,
Theorem 0.20). But

dim SO (n) = @  dim Sp(%) _ n(n;—l)

and hence

dim G <™ +1)
2

If G is of type Dypy; (R>2), then the lowest dimensional non-trivial irreducible
complex representation is (4k-+2)-dimensional (see [6], p. 378, Table 30).
Therefore 4k+2<nand hence

dim G = dim SO(#k--2) = (2k+1)(4k+1)<’_’(”7—9 .

If G is of type E;, then n>27 (see [6], p. 378, Table 30). Therefore
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dimG = 78<3n<’£(32ﬂ) .
Finally, if G is of type 4,_, (k<n),then
lfgé_— h <n ,
2
by the Weyl's formula (see [14], Theorem 7.5). Therefore
dim G = dim SU(k) = k2-1<3n-—2<’1(%59 .

Consequently

dimGg’lﬁl’_zﬂ),

if p: G SU(n)is irreducible (z>>4). Therefore p is reducible, if

dim G >n*—4n-+7 and n>7.
Since p is reducible, G is conjugate to a subgroup of

NesUm-p),  SUm), (1<p<)
the normalizer of SU(n—p)in SU(n). But

dim N(SUmn-p), SUn))<n’—4n+7
for 2<p <% Therefore G is conjugate to a subgroup G’ of NSU(n—1). If
G’'+=NSU(n—1), then
dim G’ <dim G" 41
where G”’=G’I1 SU(n— 1), by the isomorphism
NSUn—1)|SUn—1)= S* .
If G”"= SU(n—1) then G'=G"=SU(n—1). If G”’#+=SU(n—1), then
dim G’ <(n—2)* = dim N(SU(n—2),SU(n—1)),

by making use of the first part of the proof of this lemma for SU(n— 1)instead
of SU(n), and hence
dimG'<(n—2Y+1<n*—4n+7.

Consequently we see that G is conjugate to SUm— 1) or NSU(n—1)in SU(n).
g.e.d.
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Lemma 16. Let M be a manifold with smooth SU(n)-action. If dim M <
4n—8, then

dim SU(n),>n*—4n+7
for each x& M.

Proof.  Since SU(n)/SU(n),is equivariantly embedded in M,
dim SU(n)—dim SU(n),<dim M <4n-8 .
Hence dim SU(#),>dimSU(n)—(4n—8)=n"—4n+-7. g.e.d.

2. SU(n)-actions on cohomology complex projective spaces

In this section we prove the following results.

Theorem 2.1. Let n>=7 and 0<k<n—4. Let M be a compact connected
orientable smooth 2(n-k)-manifoldwith

H*(M; Q) = H*(P,.4(C); Q) .

Then for any non-trivial smooth SU(n)-action on M, the stationary point set
F=F(SU(n), M) is an orientable 2k-manifoldwith

HX(F; Q)= H*(P(C); Q)
and there is an equivariant diffeomorphism
M = 9(D*x X)/S*.

Here X is a compact connected orientable (2k—+-2)-manifoldwhich is acyclic over
rationals, X admits a smooth S*-action which is free on 0X, the SU(n)-action is
standard on D** and trivial on X, and

(X)) = = (M) .
Furthermore, if
H*(M; z) = H*P,.(C); Z),
then X is acyclic over integers, the S*-action on X is semi-free, and
HX(F; Z) = H*(Py(C); Z) .

Corollary 2.2, Let n>7 and 0<k<n—4. Let M be a compact connected
smooth 2(n-k)-manifoldwhich is homotopy equivalent to P, ,(C). If M admits a
non-trivial smooth SU(n)-action, then M is diffeomorphico P, ,(C).

Proof of Theorem 2.1. By Lemma 1.5, Lemma 1.6 and the assumption
n>7 and 0<k<n—4, the identity component of each isotropy group of the
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given SU(n)-actionon M is conjugate to one of the following
SU(n), SU(n-) and NSU(n—1).

(i) First we show that the stationary point set F=F(SU(n), M) is non-
empty. Assume F=@, then by (1.1) there is a smooth fibre bundle

FSUmn—1),M) - M — P,_,(C).
Thus
X(M) = X(P,(C))- X(F(SU(r—1)M))
and hence

k+1=0(mod n) .

This is impossible by the assumption 0<k<z—4. Thus F=#¢. Then by
(1.4) there is an equivariant diffeomorphism

M =08(D*x X)[S* = D" X0X US” 'x X
81 s sl
as SU(n)-manifolds. Here X is a compact connected orientable (2k-2)-

manifold with smooth S*-action which is free on 9.X.
(ii) Next we show that X is acyclic over rationals. Since

Dz"gé 0X - 0X/S'= F
is a 2n-disk bundle, there is an isomorphism
Hi(M, $"7 X X;Q) = H"(F; Q).
Thus
(2.3) HiM; Q) =H"(Sz"“s>‘§X;Q) fori<2n—2.
Now we show that the euler class e(p) of the principal S*-bundle
p: D" X)—M

is non-zero in H*(M; Q). Assume e(p)=0, then the euler class of the principal
S*-bundle

SZ”—IXX_>S2'I—1><X
S1
is zero in H*(S* ' x X;Q), and hence there is an isomorphism
st
H*(S™; Q)QH*(X;0) = H*(S'; QQQH*(S* ' xXQ) .
st

Therefore
Hi(X;Q) =@ for0<i<2n—2
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by (2.3) and the assumption
H*(M; Q) = H*(P,.,(C); Q) .
But
dim X = 2k+4+2<2n—2.

Thus H***(X ;Q)=@ and this is a contradiction, since the connected manifold
X has a non-empty boundary. Therefore e(p)3=0 and hence

24 H*@Q(D"x X)Q) = H*(S*™**; Q).
There is an isomorphism
HY(D*" X X; Q) = Hipizhso-A DX X, 3(D*"X X);Q)
by the Poincaré-Lefschetz duality, and the homomorphism
H,pyinpia (DX X5 Q) = Hyppyipprni( DX X,0(D* X X);0)

is onto for 0<7 <2n-+2k+2by (2.4). Since Xis a connected (2k-+2)-manifold
with a non-empty boundary,

Hyppiopio (DX X;Q) =0 for i<2n,
and hence
Hi(X;Q)=0 for 0<i<2n.
Therefore X is acyclic over rationals. Then
H*(0X; @) — H¥S™; Q),
by the Poincaré-Lefschetz duality, and hence
H*(F; Q) = H*(Py(C);0) .

Furthermore F(S', X) consists just one point by the P.A. Smith theory (see
[2], chapter IV) from the fact that X is acyclic over rationals and the S*-action

is free on 0.X.
(i) Next we show z(X)=mn(M). Since F(S*, X) = {x;}, there is an
S*-map

s: T = 9(D™ X X)
given by s(y)=(»,%,). Then we have an isomorphism
(M) = =,(8(D* X X))

from the following commutative diagram:
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m(S") —> m(S™7)
id Sx »
7(SY) — > 7, (O(D™ 3X))——> m (M) .

Applying the van Kampen theorem (see [5], p. 63) to the decomposition
oD*xX) = D"xoX US*"'x X,

we have
m(X) = 7, (0(D* x X)),
and hence
m(X) = m(M) .
(iv) Finally we show that the assumption

H¥(M; 2) = H*(P,.(C) 2)
mmplies H*(X, x,; Z)=0. There is a commutative diagram:
Szﬂ—l Si a(DanX)

oo o
P, (C)— M.

Since t*e(p)=e(p,)is a generator of H*(P,_,(C);Z), e(p) is a generator of
H*(M; Z). Therefore

H* QD" xX);2) = HKS™"*+; 2)
by the Gysin seqgence for the principal S*-bundle
p: (DX X)—> M,
and hence X is acyclic over integers and
H*(F; Z) = H*(Py(C); Z)

by the same argument as in (ii). Then the S*-action on X is semi-free by the
P.A. Smith theory from the fact that X is acyclic over integers and the S*-action
is free on 0X. This completes the proof of Theorem 2.1.

Proof of Corollary 2.2. If M admits a non-trivial smooth SU(n)-action,
then by Theorem 2.1, there is an equivariant diffeomorphism

M = 3(D*x X)[S*

as SU(n)-manifolds. Here X is a compact contractible (2k-2)-manifold with
smooth semi-free S*-action with just one stationary point x,. Therefore the
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S'-action on D**x Xis semi-free and its stationary point is only (0, x,). Let U
be an invariant closed disk around the point (0, x,). One may assume that the
S*-actionon Uis linear. Put

W = (D**x X—int U)/S".

Then
oW = dU/S'UBD*™X X)/S' = P,.(C)UM.

Since

(M) = = (W)= 0,

Hy(W,M Z)= 0
and

dim W = 2n+2k+1>6,
we have

M= P,.C)

by applying the #Z-cobordism theorem (see [10], Theorem 9.1) to the triad
(W; M, P,.(C)). This completes the proof of Corollary 2.2.

3. Construction of SU(n)-actions

In this section we construct SU(n)-actions on cohomology complex projec-
tive spaces, and we have the following results.

Theorem 3.1. Letn>2, k=1 andp>1. Then thereis a compact orientable
2(n+-k)-manifoldM such that

m(M) = Z[pZ and H*(M;Q) = H*(P,.,C); Q)
and M admits a smooth SU(n)-actionwith
F(SU(m), M) = Py(C).

Theorem 3.2. Let n>2 and k>=3. Let G be a finitely presentable group
with H\(G; Z)=H,(G;Z)=0. Then
(@) there is a compact orientable 2(n+k)-manifoldM such that

m(M) = G and H*M; Z) = H*(P,.,C);Z)
and M admits a smooth SU(n)-action with
F(SUmn), M) = Py(C),
(b) there is a smooth SU(n)-actionon P,.,(C)such that
m(F)y= G and H*(F;Z) = H¥(Py(C);Z),
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where F=F(SU(n), P,.4(C)).

First we prepare the following lemma. It is proved by a similar argument
as in the proof of Theorem 2.1 and Corollary 2.2, so we omit the proof.

Lemma 3.3. Let X be a compact orientable (2k-+2)-manifoldwhich is
acyclic over Z (resp. Q). Assume that X admits a smooth S'-action which is free
on0X. Ifnz=2, then

(a) M=0(D™xX)/S%s a cohomology P, ,,(C)over Z (resp. Q),

®  m(M)=r(X).

Moreover if n+k>3and X is contractible, then M=P, ,(C).

Now we construct an acyclic S*-manifold. Let W be a closed orientable
smooth homology (2k+-1)-sphere over Z (resp. Q) and let

(3.4) Y=PC)X[0,1]%W, (k>1).

Then F is a compact connected orientable smooth (2k-1)-manifoldwith
boundary

0Y = P,(C)X0UPLC)X 1.

It is easily seen that
(3.5) (Y)= n (W),
(3.6) Hi{Y; Zy= Hi(P(C); Z)DH(W; Z), (0<i<2k).
Furthermore there is a smooth principal S*'-bundle

pE—-Y
such that 9;E—P,(C)X i, (=0, 1) is equivalent to the Hopf bundle S***—P,(C),
where 0,E=p Y (P,(CXi). Then
3.7) m(E) = m(Y),
(3.8) H*(E, 0,E;A) =0

where A=Z (resp. @), by (3.6) and the Gysin sequence for S’-bundles.
Furthermore

X=EU D**?

98

is a compact orientable manifold with a semi-free smooth S*-action which is
linear and free on 0.X=0,F=S%**'. 1t is easily seen that

3.9) m(X)= = (W), by (3.5) and (3.7),

(3.10) X is acyclic over Z (resp. Q), by (3.8).
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Proof of Theorem 3.1. Put W=S%"/Z,a lens space, in (3.4). Then
there is a compact orientable (2k-+2)-manifold X with a semi-free smooth
S*-action which is linear and free on 8X=.S%"! such that z,(X)=Zand X is
acyclic over @. Then by Lemma 3.3, the SU(n)-manifold

M = (D" x X)/S*
is a compact orientable 2(n-k)-manifold such that
(M) = Zy, H*(M; Q) = H*(P,.4(C); Q)
and
F(SU(n), M) = 0X[S*= P(C). g.e.d.

REMARK 3.11. It is known that if G is a finitely presentable group with
H(G; Z)=H/(GZ)=0, then for each m>7, there is a compact contractible
smooth #-manifold P such that

m(0P)= G (see [12]).
It is known that there are infinitely many groups satisfying the above condition.

Proof of Theorem 3.2 (a). Let k>3. Put W=0P, a smooth homology
(2k+1)-sphere over Zwith 7,(0P)=G, in (3.4). Then there is a compact orient-
able (2k+2)-manifold X with a semi-free smooth S*-action which is linear and
free on 0X=S2%"', such that =z, (X)=Gand X is acyclic over Z. Then by
Lemma 3.3, the SU(n)-manifold

M = 3(D*x X)/S"
is a compact orientable 2(n+ k&)-manifold such that
w(M)= G, f*(M; 2) = H¥(P,.(C);2)
and

F(SU(n), M) = P,(C). qe.d.

Proof of Theorem 3.2 (b). Let k>3. For a given group G satisfying the
hypothesis, there is a compact contractible smooth (2k+-1)-manifoldp such that

m(0P)= G
by Remark 3.11. Let
Y = P,(C)x [0, 1]4 P,
a boundary connected sum with boundary

0Y = P,(C)#0P UP,C)x 1.
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Then P,(C)X 1 is a deformation retract of Y, and hence there is a smooth
principal S*-bundle

p:E-Y,
such that 8,E—P,(C)X 1 is equivalent to the Hopf bundle S*** —P,(C),where
0,E=p~'(P(C)x1). Then
X= EU D%+

0,8
is a compact contractible (2k-+2)-manifold with a semi-free smooth S'-action.
Then by Lemma 3.3, the SU(n)-manifold

M = 3¥(D*"x X)/S?
is diffeomorphic to P, ,(C)for n>2, and
F(SU(m), M) = 0X/[S*'= P,(C)#0P.
Therefore there is a smooth SU(n)-action on P, ,(C)such that
m(F)=G and H*(F; Z) = H*Py(C);Z),
where F=F(SU(n),P,4(C)). g.e.d.

4. Signature of certain smooth G-manifolds

The purpose of this section is to study a signature of closed orientable
manifold which admits a smooth G-action with isotropy groups of uniform
dimension. We have the following result.

Theorem 4.1. Let G be a compact Lie group and H a closed connected
subgroup. Let M be a compact orientable manifold without boundary. Assume
that M admits a smooth G-action such that the.identity component of an isotropy
group G, is conjugate to H in G for each point x of M. Then F(H,M), the
stationary point set with respect to the H-action, is orientable, and

(a) if dim N(H)=+dim H, then Sign(M)=0,

(b) if dim N(H)=dim H, then

| N(H)/H | Sign(M) = Sign (G/H) Sign (F(H, M)) .

Here N(H) is the normalizer of H in G, | N(H)[H\ is the order of the finite group
N(H)/H.

The result is a generalization of the fact that Sign(M)=0 if M admits a
smooth circle action without stationary points.

Lemma 4.2. Let G be a compact Lie group and H a closed connected sub-
group. Let M be a smooth G-manifoldsuch that the identity component of G, is
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conjugate to H in G for each point x of M. Then

(a) the W(H)-actionon F(H,M)is almost free (i.e. all isotropy groups are
discrete), where W(H)=N(H)/H,
(b)  there is an equivariant diffeomorphism

M=G x FH,M) = G/H x FH,M),
NCHD> W(H)

() ifM is orientable, then F(H, M) is orientable.

Proof. By the assumption, the identity component of G, is equal to H for
each point x of F(H, M), and the mapping

/: GxF(H, M)—> M

given by f(g, x)=g x is surjective. Moreover f(g, x) is in F(H, M) if and only
if ge N(HYhus W(H) acts on F(H, M) naturally and (b) is proved. Next, if
an isotropy group W(H),is not discrete for a point x of F(H, M), then

dim G, +dim H .

This contradicts our assumption, and (a) is proved. By (b), the product
manifold G/HX F(HM) is a total space of a principal W(H)-bundleover M.
Therefore G/Hx F(HM) is orientable, if M is orinetable, and hence F(H, M)

is orientable. q.e.d.

Lemma 4.3. Let G be a compact Lie group which is not discrete. Let M be
a compact orientable smooth manifoldwithout boundary.  Then, Sign(M)=0 if M
admits an almost free smooth G-action.

Proof. G contains a circle subgroup and the circle action on M has no
stationary points. Therefore Sign(M)=0. g.e.d.

Proof of Theorem 4.1. Denote by W(H)’ the identity component of
W(H). Then

G/H x F(H, M)

W)Y

is a total space of a principal W(H)/W(H-bundle over M by Lemma 4.2. (b).
Therefore

I W(H)[W(HY| -Sign(My Sign(G/H x F(H, M)).

Next, GIH X F(H,M) is a total space of a smooth fibre bundle over an orient-

wa )Y
able manifold (G/H)/W(H)ith a fibre F(H, M) and a structure group W(H)’
which is connected. Therefore
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Sign(G/H_x, F(H, M)) = Sign(G/H)/W(HY)- Sign (F(A)
for a certain orientation of F(H, M) by [4]. By the above equations,
I W(H)/W(H)|Sign(M) = Sign((G/H)/W(H)’) Sign(F(H,M)).

Now, if dim W(H)=0then Sign(F(H,M))=0 by Lemma 4.2 (a) and Lemma
43. If dim W(H)=0,then

I W(H)| Sign(M) = Sign(G/H) Sign(F(H, M)) .
This completes the proof.

REMARK 4.4. Let G be an arbitrary compact connected Lie group and T
be a maximal torus. Then Sign(G/T)=0, since G/T is stably parallelizable
(see [3], section 5.4).

REMARK 4.5. Let G be a compact connected Lie group and H a closed
connected subgroup. Then Sign(G/H)=0 if

rank G'=rank H (see [7])-

Because the left translation on G/Hof a maximal torus of G has no stationaly
points.

5. SU(3)-actions on orientable 8-manifolds

The purpose of this section is to prove the following result.

Theorem 5.1. Let M be a closed connected orientable 8-manifold. Assume
that M admits a non-trivial smooth SU(3)-actionwith a principal isotropy type (H).
Then

(a) H'M; @)=, if dim H=0,

(b) Sign(M)=0, ifdim H=1 and M has not isotropy types (NSU(2))and

(T.0),

(¢) Sign(M)=0, ifdim H=2,

(d H'M @)=0, if dim H=3 and M has not an isotropy type (NSU(2)),

() M=P,C)x FINSU(_2),M), if dim H=4.
Here NSU(2) is the normalizer of SU(2) in SU(3), the identity component of T,
is a maximal torus of SU(3)and T, has 2-components.

First we recall an additivity property of the signature due to S.P. Novikov
(see [1], p. 588). Suppose that Y is a compact oriented 4zn-manifold with
boundary dY. Let H**(Y; @) denote the image of the natural homomorphism

j¥: H™(Y,0Y; Q) - H*(Y;Q).
Then the bilinear form B on #”(Y\ Q) defined by
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B(j*(a), j*(b)) = ab[Y]

is symmetric and non-degenerate by Poincare-Lefschetz duality. We can now

define Sign(Y) as the signature of B. Suppose now that Y’is another compact

oriented 4z-manifold with boundary 0Y’=—0Y. Then X= Y U Y'is a closed
oY

orineted 4n-manifold and
(5.2) Sign(X) = Sign(Y)+Sign(Y”’).

REMARK 5.3. Let £ be an orientable k-plane bundle over a closed orien-
table manifold X. Denote by #(&), e(§) and D(¢g), the Thom class, the Euler
class and the disk bundle of &, respectively. Then D(&) is a compact orientable
manifold and there is a commutative diagram:

H*(D(e), FD &)1 H*(TD(G»
=t [fp =~ | %
o x) =19 e,

Here +Jris the Thom isomorphism defined by
Y(a) = w*(a)-4(€) .

There is an equation
(@)« r(b) = (—1)*2ar(ab- e(€)) for be H?(X) .

Therefore we can calculate Sign(D(&)) from the information about the co-
homology ring H*(X) and the Euler class e(&).
Now we prepare the following results.

Lemma 5.4.

(a) H*(SU3); Z)=Nzxs %), deg x;=1, (1=3,5).

(b) H*SUQ3)/SUQ2)Z)=H*(S®;Z) and the right translation of NSU(2)/
SU(2)=S"induces a trivial action on H*(SU(3)/SU(2);2).

(c) H*(SU3)/SO3)R)=H*(S®; Q), and the right translation of NSO(3)/
SO(3)=Z,induces a trivial action on H*(SU(3)/SO(3);Q).

(d) H*SUQR)|T;Z)=Z[u,, u,y 4s][(5152 $3),
where T is a maximal torus of SU(3) consists of all diagonal matrices, s, is the k-th
elementary symmetric polynomials, and deg u,=2, (i=1, 2, 3). Furthermore the
induced action of N(T)]T=S,, the symmetric group on 3-elements, is given by

a*(u;) = ap acS,.

(&)  HHSUG)D(mn); Q=N s), degxi—i, (i=2, 5). Here D(m, n)
is a closed one-dimensional subgroup defined by
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zm

D(m, n) = 2" ];zec, |zi=1

o~ (m+n)
P

Jor any pair of integers (m, n)=(0, 0).

Proof. Since SU(3)/SU(2)=S%b) is true. (a) is proved by making use
of the Gysin sequence for

SU2) - SU3) — S°.
(c) is proved from
7, (SU(3)/SO(3)) =0 and =,(SUQ3)/SO3)) = Z,.

(d) is a classical result (see [9]). In fact u;= p¥(u)where u is a generator of
H*(P,(C); Z) and p, ; SU(3)/T— P,(C)is defined by

Pil(%ap)* T) = (%11 250 %3;) -

Finally (e) is proved from the fact that the Euler class of principal S*-bundle
z: SU(3)/D(m, n)— SU(3)/Tis

e(n) = nu,+mu, ,
and hence the homomorphism

HYSUGYT; @ - HysUG)T;0

is an isomorphism. g.e.d.

Lemma 5.5.

(a) Let @ be an 8-dimensional non-trivial real representation of SU(3). Let
(H,) be the principal isotropy type of the linear action given by . Then there are
only the following cases:

(1) @=Adsyem,He=T: a maximal torus of SU(3),

(i) @=p,+ trivial summand, H,=SU(2),
where p,: SU(3)— O(6) is the standard representation.

(b) Let +r be a 4-dimensionalnon-trivial real representation of NSU(2). Let
(Hy) be the principal isotropy type of the linear action given by {r.  Then there are
only the following cases:

(1) v=Adysuw, Hy=T: a maximal torus of NSU(2),

(i) Y=oy Hy=D(k—1, —k), (ke Z),
where the representation ap: NSU(2)—U(2)C O(4) is given by
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Xy %, 0 " "
Y%y YR
Op| X1 Xy 0= ky ky
0 0 y Yo%y Y X/

(iii) v is inducedfrom a non-trivial real representation of S*, via the natural
projection NSU(2)— NSU(2)/SU(2> S, and H) = SU(2), where H, is the
identity component of Hy.

We omit the proof (see [8], Theorem I).

From now on we assume that M is a closed connected orientable smooth
8-manifold and M admits a non-trivial smooth SU(3)-action with a principal
isotropy type (H). Then SU(3)/H is orientable by the differentiable slice
theorem (see [11], Lemma 3.1).

We will prove Theorem 5.1 by the following many propositions.

Proposition 5.6. Assume that SU(3)S is conjugate to H°in SU(3)for each
xeM. Here G’ is the identity component of G and SU(3), is the isotropygroup
at x. Then,

(a) Sign(M)=0, if dim H=1or 2,

(b) H*M; @)=0, ifdim H=0or 3,

(c) M=P,C)x F(NSU(2),M), if dim H=4.

Proof. If dim H=1 or 2, then Sign(M)=0 by Theorem 4.1 and Remarks
44, 45. If dim H=0, then M=SU(3)/Hand hence HM; @)=0by Lemma
54 (a). By Lemma 4.2 there is an equivariant diffeomorphism

M = SUQ@)H'XFX = N(HH, F = F(H', M).

If dim H=4, then H° is conjugate to NSU(2) in SU(3) and N(NSU(2)}=
NSU(2). Therefore

M = P,C)x FINSU(2),M).

Finally if dim H=3, then H° is conjugate to SO(3) or SU(2) in SU3). If
H°=S0(3),then dim F=3 and

HYM; Q) = HY(SU(3)/SO(3)x FQ) = 0

by Lemma 5.4 (c). Next if H°’=SU(2), then dim F=4, F admits a smooth
S*-action without stationary points and there is an equivariant diffeomorphism

M= S°XF.
51

There is a sufficiently large integer n such that the S'/Z,-actionon the orbit
space F/Z,is free. Then there is an isomorphism
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H*(M; Q) = H*(M’; Q) ,

where

M' = (S°|Z, < F|Z,)/(S*|Z,),
and there is a fibre bundle

S|z, - M'— FIS*

with a structure group S'/Z,. Here F/S'=(F|Z,)/(S*/Zj3 a 3-dimensional
rational cohomology manifold. Therefore

HYM;Q)=H‘M’; @ =0 . q.e.d.

REMARK 5.7. Now Theorem 5.1 is proved for dim H=0 or 4. Moreover,
Theorem 5.1 is proved for the case H°=.SO(3), since SO(3)is not conjugate to
any subgroup of NSU(2)in SU(3)and H with H°=.SO(3)is not a principal iso-
tropy group of any 8-dimensional real representation of SU(3)by Lemma 5.5.

Proposition 5.8. Suppose dim H=1. Then Sign(M)=0, if M has not iso-
tropy types (NSU(2))and (T).

Proof. By Proposition 5.6 (a), one may assume that there is an isotropy
type (K,) with dim K;>1. Then by making use of the differentiable slice
theorem, there is an isotropy type (K,)and there is an equivariant decomposition

M = D(»,) UD(»,),
where D(v;) is an equivariant normal disk bundle of an embedding SU(3)/K;
CM, and
0D(v,) = —0D(v,)= SUQ3)/H .
Thus
Sign (M) = Sign(D(v,))+Sign(D(v,)) .
Since
H*(SUB3)/KQ) =0 for dim K =2, 4,

by Lemma 54, Sign(D(»;))=0 for dim K;#%2, 4. Let K be a 2-dimensional
closed subgroup of SU(3). Then K is conjugate to one of the following

T, Tey, Ty and N(T)= T,.
Here T?,=Tand T; has i-components. By Lemma 5.4 (d),
HY(SUQ)/T;Q) = QdQ,

H4(SU(3)/T(2);Q) =0,
HY(SUQB3)/Tw;0) = H(SURB)/N(T) Q) = 0 .
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Thus Sign(D(»;))=0, if K;=T,, or N(T). If K,=T, then Sign(D(»;))=0
from Lemma 5.4 (d) and Remark 5.3. g.e.d.

REMARK 5.9. If dim H=2 in Theorem 5.1, then H=T or T, since
SU3)/Te, and SU(3)/N(Thre non-orientable by Lemma 5.4(d). Theorem 5.1
is proved for H=T, by Proposition 5.6, since T¢,, is not conjugate to any sub-
group of NSU(2) in SU(3) and T, is not a principal isotropy group of any
8-dimensional real representation of SU(3) by Lemma 5.5. Therefore, it remains
to prove Theorem 5.1 for the cases H=7 and H °=SU(2).

Proposition 5.10. Suppose H=T. Then Sign(M)=0.

Proof. If F(NSU(2), M) is empty, then Sign(M)=0 by Proposition 5.6.
Now we assume that F(NSU(2),M) is not empty. Then

dim ENSUQ2),, M)=1

by Lemma 5.5, and any stationary point (if exists) of SU(3) is isolated by
Lemma 5.5 (a). Let

F(SU(3), M) ={x,, -, x¢}, (=0)
and let D, be an invariant closed disk around x;, such that

D,ND; =0 for i=%j.
Let D=D,U UD,and E=M—intD. Then
D;NF(NSU(2), E)=*=0, EF=1,--,k)

by Lemma 5.5 (a). Let

E,= {xeE|(SUG),) = (NSUQ))},

let U,be an invariant closed tubular neighborhood of E;in E, and let U=U,U D.
Then M—int Uis connected and

(SUB)Y)=(T), for x=M—int U.
Therefore, there is an equivariant diffeomorphism

M—int U= SUB)/T x F, F = FT, M—int U)
N(TH/T

by Lemma 4.2, and there is a commutative diagram:
%
HM— int U; @ — » Hd(M—int U); Q)

HYSUQR)/TXF; QN™IT Y H*(SU(3)|T % 0F; Q)N<TT
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Here 7§ is injective, since H°¥(SU(3)/TQ)=0 by Lemma 5.4 (d), dim F=2,
and each connected component of F has non-empty boundary from the con-
nectedness of M—int U. Thus

H(M—intU; Q) =0,

and hence Sign(M—int U)=0. Next, let U,, *+*, U, be connected components
of U. Then we can prove that

HU;Q) =0, ifUND=¢g,
H'(U; =0, itU;NnD=*9,
and hence
Sign(U) = Sign(U,)+ -+-+Sign(U,) =0 .
Therefore
Sign(M) = Sign(M —int U)+Sign(U) = 0. g.e.d.

We recall the following result which is essentially proved in the proof of
Proposition 5.6 (b).

Lemma 5.11. Let X be a compact connected orientable smooth n-manifold
(0X is empty or not). Let n=7 or 8. Assume that X admits a smooth SU(3)-

action with
(SU3)2) = (SU(2)) for xeX.
Then
H"%X;0) = 0.

Proposition 5.12.  Assume that H°=SU(2) and M has not an isotropy type
(NSU(2)). Then H*(M; Q)=0.

Proof. If F(SU(3),M)=0, then H*(M; @)=0 by Lemma 5.11. Next if
F(SU(3),M)=@, then dim F(SU(3),M)=2 by Lemma 5.5 (a). Let Ube an
invariant closed tubular neighborhood of F(SU(3),M) in M. Then there is
an exact sequence:

H*0U; Q) — HYM; Q) — HY(U; Q@H (M —intU; Q).
Here
H@oU; Q) =H'M—-intU; Q) =0
by Lemma 5.11, and
HYU;Q) = HY(F(SU(3),M); Q) = 0.
Therefore

HYM;Q0) =0. g.e.d.



ACTIONS ON PROJECTIVE SPACES 397
This completes the proof of Theorem 5.1.

6. SZ7(3)-actions on cohomology P,(C)

In the previous paper [13] we have considered smooth SU(3)-actions on
homotopy P,(C). In thissection, first we prove the following result as an appli-
cation of Theorem 5.1.

Theorem 6.1. Let M be a compact connected orientable 8-manifolduch that
H*M; Q) = H*(P(C); Q) -

Then for any mon-trivial smooth SU(3)-action on M, the stationary point set is a
2-sphere and the principal isotropy type is (SU(2)). Furthermore there is an
equivariant  diffeomorphism

M =9(D*x X)|S*.

Here X is a compact connected orientable 4-manifolawhich is acyclic over rationals,
X admits a smooth S'-action which isfree on 0X,the SU(3)-action is standard on D°
and trivial on X.

Proof. Denote by (H), the principal isotropy type of the given SU(3)-
action on M. Since Sign(M)=0, the following are the only possible cases from
Theorem 5.1,

(a) dim H=/ and M has an isotropy type (NSU(2))or (T),
(b) H°=SU(2)and M has an isotropy type (NSU(2)),
(¢) H=NSU(2)and M=P,(C) X F(NSU(2),M).
If H=NSU(2), then X(M)=>5is divisible by X(P,C))=3, and this is a
contradiction. Next if dim H=1, then there is a decomposition
M = D(v,) U D(v,)

as in the proof of Proposition 5.8, where D(»;) is a normal disk bundle over
SU(3)/K;. One may assume K,= NSU(2) or T(,, and hence

X(SUQB)/K) = 3
by Lemma 54. On the other hand,
5 = X(M) = X(SUB)/K,))+X(SUQ)/K,)
Thus X(SUQ3)/K,)=2, and hence K,=T¢ by Lemma 54. Since

H*SU3)/T,», R)=0, there is a contradiction in the following exact sequence
of rational cohomology groups :

H'(0D(w)) —~ H(M) — HXSUG)K)SH(SUB)IK,)
— H*0D(v,)) — H (M) .
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Therefore we obtain H°=SU(2). If F(SU(3),M)=@, then there is a fibre
bundle

F(SU(2),M)— M — P,C) .
Thus X(M)=S5 is divisible by X(P,(C))=3, and this is a contradiction. Hence

F(SU(3),M)=¢ and this implies H=SU(2)by Lemma 5.5 (a). Let U be an
invariant tubular neighborhood of F(SU(3),M) in M. Then

X = F(SU(2), M —int U)

is a compact connected orientable 4-manifold with the natural action of
NSU(2)/|SU(2)=S"which is free on 0X. Furthermore there is an equivariant
diffeomorphism

M =9(D*x X)/S*,
and X is acyclic over rationals by the same argument as in the proof of Theorem
2.1.  Finally,
F(SUG3), M) = 0X/S'= §*. g.e.d.
Next, as a complementary part of Theorem 5.1, we give examples of
certain SU(3)-actions on 8-manifolds with non-zero signature.
Let +: NSU(2)— U(3)be a unitary representation of NSU(2). Then

1y induces a smooth NSU(2)-action yrs on P,(C). Denote by M(+)r), the orbit
manifold of the free smooth action of NSU(2) on SU(3) x P(Cgiven by

he(g, x) = (gh™, vrs(h, x)), g= SU3), ke NSU(2), x=P,(C)..

Then the compact connected orientable 8-manifold M(+r) admits a natural
smooth SU(3)-action without stationary points and

Sign(M(y)) = 1.
EXAMPLE 6.2. Let a: NSU(2)—U(3be a unitary representation given by

/%= * 0N /1 0 O
ak( k% 0! = ‘O 1 0
\0 0 y/ \0O 0 y/.
Then M(ay,) has just two isotropy types
(SU@2)) and (NSU?2)),

where SU(2), has k-components and its identity component is SU(2). (see
Theorem 5.1 (d))

EXAMPLE 6.3. Let 8,: NSU(2)—U(3pe a unitary representation given by
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X1 Xy 0\\ (X1 X3 o
Bel % %, 0, = 1! x; %, 0
0 0 y/ 0 0

Then M(B,)has just three isotropy types
(D(k, —k—1)), (T) and (NSU(2)),

where D(k, —k—1) is a closed one-dimensional subgroup defined in Lemma 5.4.
(see Theorem 5.1 (b))

EXAMPLE 6.4. Let y: NSU(2)— U(3pe a unitary representation given by
/a b O\ a? \/ 2ab b*
Yic d 0/ =(\/2ac adtbc ~/2bd
\0 0 = c* Vv 2¢cd d*
Then M(v)has just three isotropy types
(D(l’ l)(z))’ (T) and (T<2)) ’

where G, is a subgroup of SU(3)such that G, has 2-components and its
identity component is G. (see Theorem 5.1 (b))

7. Classification of smooth SU(n)-actions on orientable 2n-mani-
folds

Let M be a compact connected 2z-manifold with non-trivial smooth
SU(n)-action, then the identity component of each isotropy group is conjugate
to one of the following

SUn), SUmn-I) and NSU(n—1),

for n>5. This is proved similarly as Lemma 1.5. Therefore there is an
equivariant diffeomorphism

M = 3(D* x X)/S"*

as SU(n)-manifolds by (1.1) and (14). Here X is a compact connected
2-dimensional S*-manifold and the S*-action on dX is free if dX is non-empty.
Furthermore if M is orientable, then X is also orientable. Next we remark
that for orientable 2-dimensional S*-manifold X, if the isotropy group Sl=.S*
for x€ X, then S} is a principal isotropy group by the differentiable slice
theorem, and hence the S*-space X — F(S*, X) has just one isotropy type.

(i) If X has just one isotropy type (S?), then 0X=¢ and

M=P, (C)xX.
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(i1) If X has just one isotropy type (Z),then

M= S if 0X %0,
M= L*(k)xS'  if 0X=0.

Here L**7(k)=_S8%"""|Z,s a standard lens space.

(iii) If X has just two isotropy types (Z)and (S*), then

M = P,(C) if 0X 0,
M=S2"">§S?k) ifoX=¢.
S

Here S%, is a 2-sphere with the S*-action given by

€ (%5 %1y X,) = (%05 %, cOSs RO+-x5in kO, — x;sin kO+xcos kE).

This completes the classification.
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