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1. Introduction

The known 4-fold transitive groups in which the stabilizer of four points is
nilpotent are S,, Ss, S¢, Ag, A7, My, and M.
- In this paper we shall prove the following

Theorem. Let G be a 4-fold transitive group on Q. If any 2-element and

any 3-element of a stabilizer of four points in G are commutative, then G is S,, S;,
Se» Aoy Az, My or M.

As a corollary of this theorem, we have that a 4-fold transitive group in
which the stabilizer of four points is nilpotent is one of the groups listed in our
theorem.

Our notation is standard (cf. Wielandt [9]). For a subgroup X of G and a
subset A of Q, X, is the point-wise stabilizer of A in X and if X fixes A as a
set, the restriction of X on A will be denoted by X*. F(X) is the set of points
in Q={1, 2, .-+, n} fixed by every element of X.

2. Proof of the theorem

We proceed by way of contradiction and divide the proof in ten steps. From
now on we assume that G® is a counterexample to our theorem of the least pos-
sible degree. We set D=G,;,. Let P and R be a Sylow 2-subgroup and Sylow
3-subgroup of D, respectively.

By [2]-[8], we know the following.

(1) F(D)=A{1,2,3,4}, |F(P)|=4o0r5, R+1and P®-F® {snot semi-regular.
(2) |F(P)|=4.

Proof. From (1), we have only to show that |F(P)|=5. Suppose
|F(P)|=5. We set F(P)={l,2,3,4,4} and L=<R*|d€D}. By assumption,
P centralizes L and so i€F(L). Then it follows from L<ID that :?CF(L).
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Since 2 |D: D;|, 34 |D: D; and |D: D;| +1 by (1), we have |D: D;| >5 and
so |F(L)| >9. By the Witt’s theorem, N (L)*® is a 4-fold transitive group.
Furthermore |F(L)| <n=|Q| since R==1. Hence by our minimal choice of Q
we have N (L)*®=M, or M,, because |F(L)|>9. Since |F(P)|=5 and
[P, L]=1, we have |F(L)| is odd and so N (L)"®=M,. Clearly PF® is a
Sylow 2-subgroup of a stabilizer of four points in Ng4(L)*®), so PF")=1 by the
structure of M, hence F(L) is a subset of F(P), which is contrary to |F(P)|=35.
Thus we get (2).

Now let m be the maximal number of |P;| with i€ Q—F(P). There exists
some j EQ—F(P) such that |P;|=m. We set P;=Q. Then we have

(3) 1+Q=+P.

Proof. By (1), P2-F® js not semi-regular, and so Q%1. Itis clear that
Q=+P.

4) If O* is a 2-subgroup of G containing Q properly, then we have
|F(Q*)| <4.

Proof. Supposethat |F(Q*)| >4. Then there exists an element g&G with
(0*)¥*<D. Since P is a Sylow 2-subgroup of D, (Q*)**<P holds for some
deD. By assumption we can choose an element & in F((Q*)¢?) with ke: F(P).
Then we have m=|Q| <|Q*|=|(Q*)**| < | P,|, which is contrary to the choice

of Q.
(5) NQ)F@ is 4-fold transitive.

Proof. In the lemma 6 of [1], we put G®=N(Q)"@, p=2 and k=4, then
(5) follows immediately from (2) and (4).

(6) N(Q)@=Ss or M.

Proof. By (5), Ny(Q)F@ satisfies the assumption of our theorem. Since
n is even by (2) and Q=1, n>|F(Q)| >6. By the minimal choice of Q , we
have Ny (Q)F@=4,, Ss or M},. On the other hand, we have N,(Q)>0 by (3),
and so it follows from (4) that |F(N(Q))|=4. Thus Ny (Q)F @A which
shows (6).

(7) Let S be a nontrivial 3-subgroup of D. Then F(S)=F(Q). Furthermore
RO-F®) 45 semi-regular and the set F(Q) depends only on D but is independent
of the choice of P and Q.

Proof. Since S centralizes Q, S is contained in N,(Q). By (6), SF@=1,
that is, F(Q) is a subset of F(S), hence | F(S)| >6.
In the lemma 6 of [1], we put G®=N(S)F®, p=2 and k=4, then we get
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Ng(S)F® is 4-fold transitive. On the other hand S=1, hence n>|F(S)| >6.
By the minimality of Q, N4(S) ' ®=4, S¢, A;, My, or M.

Suppose F(S)==F(Q). Then we have |F(S)| >7. Since P centralizes S,
P acts on F(S)—F(P) and so |F(S)| is even by (2). Hence Ny (S)F®=M,,.
Therefore QF®=1 by the structure of M,,. Hence F(S) is a subset of F(Q), a
contradiction. Thus we conclude F(Q)=F(S).

From this, the latter half of (7) immediately follows.

(8) Let T be a Sylow 2-subgroup of N (Q) and R* be an arbitrary Sylow
3-subgroup of D. Then [T, R*]=1.

Proof. By (6), there is a 2-element x in N(Q) such that |F(x) N F(Q)|=4
and <xf|gEN (O)FQ@ = Ny Q) @, We set <x?|geNL(0) =M,
(Ne(O))r@=K. Then N (Q)=MK. Let T* be an arbitrary Sylow 2-
subgroup of M, then since by (4) Q is a unique Sylow 2-subgroup of K, T*Q
is a Sylow 2-subgroup of N (Q). Applying (7), for any u&N Q) we get
F(Q)=F(R*)=F((R*)*), hence (R*)*<K. Since |F(xf)NF((R*)*)|=|F(x*)N
F(Q)|=4 for any g N(Q), x* centralizes (R*)*. Hence M centralizes (R¥*)*,
so [T*Q, (R*)*]=1. Since T*Q is a Sylow 2-subgroup of N(Q), there exists
an element v &€ N(Q) such that T=(T*Q)’. Thus we get [T, (R*)*]=1. Put
u=v"'. 'Then (8) holds.

(9) There exists an involution in Q. Let t be an involution in Q, then
| F(2)| =0 (mod 3).

Proof. From (3), the first statement is clear. Since F(R)=F(Q)CF(z),
|F(Q)|=6 or 12 and [R, t]=1, we have |F(t)|=|F(R)|+ |F(t)—F(R)|=0
(mod 3).

(10) We have now a contradiction in the following way.

Let ¢ be an involution in Q. For i€Q—F(t), we set #*=j. Then # nor-
malizes G,;;. There exists an element 2 in G such that G,;;=D*. By (7), Gy;;
fixes F(Q%) asaset. Weset N=(Gy;;)r", then by (4) O is a Sylow 2-subgroup
of N. Again by (7), t normalzes IV, hence ¢ normalizes at least one of the Sylow
2-subgroups of N, say O where mis an element of N. Now # » ™" normalizes
Q, so t" 7" centralizes R by (8), hence ¢ centralizes R*”. Since R* is a sub-
group of Gy;;, R°<N by (7). Hence R™<N. By (6), No(Q")F@ =S, or
M,,. Since the set F(R*)NF(t) is not empty and F(R™)NF(t)%F(R™)=
F(Q*™), we have | F(R*™)N F(t)|=2 or 4. Since R*" centralizes ¢, it follows from
(7) that |[(Q—F(R™)NF()|=0 (mod 3). Hence |F(¢)|=|F(t)NFR™)|+
[(Q—F(R™))NF(t)| =1 or 2 (mod 3), contrary to (9).
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