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1. Introduction

The known 4-fold transitive groups in which the stabilizer of four points is
nilpotent are *S4, £5, S6, A6, A7, Mn and M12.

In this paper we shall prove the following

Theorem. Let G be a 4-fold transitive group on Ω. If any 2-element and
any 3-element of a stabilizer of four points in G are commutative, then G is S4ί S5ί

56, A*, A79 Mn or M12.

As a corollary of this theorem, we have that a 4-fold transitive group in
which the stabilizer of four points is nilpotent is one of the groups listed in our
theorem.

Our notation is standard (cf. Wielandt [9]). For a subgroup X of G and a
subset Δ of Ω, X^ is the point-wise stabilizer of Δ in X and if X fixes Δ as a
set, the restriction of .XΌn Δ will be denoted by X*. F(X) is the set of points
in Ω= {1, 2, •••, n} fixed by every element of X.

2. Proof of the theorem

We proceed by way of contradiction and divide the proof in ten steps. From
now on we assume that GΩ is a counterexample to our theorem of the least pos-
sible degree. We set D=G1234. Let P and R be a Sylow 2-subgrouρ and Sylow
3-subgroup of Z), respectively.

By [2]-[8], we know the following.

(1) F(D)= {1,2, 3, 4}, I F(P) \ =4 or 5, R Φ1 and PΩ~F^ is not semi-regular.
(2) \F(P)\=4.

Proof. From (1), we have only to show that |F(P)|'=f=5. Suppose
I F ( P ) I -5. We set F(P)= {1, 2, 3, 4, i} and L=<Rd| d eD>. By assumption,
P centralizes L and so i^F(L). Then it follows from L<D that iD^
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Since 2/ΠO: Di\,Zχ\D:Di and \D: D,| Φl by (1), we have |D:D,|>5 and
so \F(L)\ >9. By the Witt's theorem, NG(L)F(L> is a 4-fold transitive group.
Furthermore | F(L) \ <n= \ Ω \ since R Φ 1. Hence by our minimal choice of Ω
we have NG(L)F^^Mn or M12 because |F(L)|>9. Since \F(P)\=S and
[P, L]=l, we have \F(L)\ is odd and so NG(L)F^^MU. Clearly PF^ is a
Sylow 2-subgrouρ of a stabilizer of four points in NG(L)F(L\ so PF^—l by the
structure of Mπ, hence F(L) is a subset of F(P), which is contrary to | F(P) | =5.
Thus we get (2).

Now let m be the maximal number of | P, | with i eΩ— F(P). There exists
some/ eΩ— F(P) such that | P; | =m. We set Pj=Q. Then we have

(3)

Proof. By (1), PΩ-F(L) is not semi-regular, and so ρΦl. It is clear that
P.

(4) //" ρ* is a 2-subgroup of G containing Q properly, then we have

Proof. Suppose that | F(Q*) \ > 4. Then there exists an element g e G with
(Q*)g<D. Since P is a Sylow 2-subgroup of D, (Q*)gd<P holds for some
d^D. By assumption we can choose an element k in F((Q*)gd) with k^F(P).

Then we have m=\Q\<\Q*\=\ (Q*)gd \ < \ P k\ , which is contrary to the choice
ofρ.

(5) NG(Q)F«» is 4-fold transitive.

Proof. In the lemma 6 of [1], we put GΩ=NG(Q)F(Q\ p=2 and k=4, then
(5) follows immediately from (2) and (4).

(6) NG(Qy^SeorMK.

Proof. By (5), NG(Q)F(Q) satisfies the assumption of our theorem. Since
n is even by (2) and QΦ1, n> \F(Q)\ >6. By the minimal choice of Ω , we
have NG(Q)F«»— A6, S6 or M12. On the other hand, we have NP(Q)>Q by (3),
and so it follows from (4) that | F(NP(Q)) \ =4. Thus NG(Q)F(Q^A^ which
shows (6).

(7) Let Shea nontrivial ^-subgroup of D. Then F(S)=F(Q). Furthermore
pv-F(Rϊ js semi-regular and the set F(Q) depends only on D but is independent

of the choice of P and Q.

Proof. Since S centralizes ρ, S is contained in ND(Q). By (6), SF™=1,
that is, F(Q) is a subset of F(S), hence \F(S) \ >6.

In the lemma 6 of [1], we put GQ=NG(S)F(S\ p=2 and k= 4, then we get
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ΛΓG(S)F(S) is 4-fold transitive. On the other hand SΦ1, hence n> \F(S)\ >6.
By the minimality of Ω, JVG(S)F(S)— AG, S6y A7, Λfu or M12.

Suppose F(S)3=F(Q). Then we have |F(5)| >7. Since P centralizes 5,
P acts on F(S)-F(P) and so |F(S)| is even by (2). Hence NG(S)F^^M12.
Therefore QF^=l by the structure of M12. Hence F(S) is a subset of F(Q), a
contradiction. Thus we conclude F(Q)=F(S).

From this, the latter half of (7) immediately follows.

(8) Let T be a Sylow 2-subgroup of NG(Q) and /?* be an arbitrary Sylow
^-subgroup of D. Then [T, R*]=l.

Proof. By (6), there is a 2-element x in NG(Q) such that | F(x) Π F(Q) \ =4

and <xg\gtΞNG(Q)yw = #c(0)'«>. We set <^|^eJVG(0)> = M,
(NG(Q))F(Q}=K. Then NG(Q)=MK. Let Γ* be an arbitrary Sylow 2-
subgroup of M, then since by (4) Q is a unique Sylow 2-subgrouρ of K, T*Q
is a Sylow 2-subgroup of NG(Q). Applying (7), for any u^NG(Q) we get

F(Q)=F(R*)=F((R*)«), hence (R*) £K. Since | F(x*) Π ̂ (Λ*)") I = I F(x<) Π
F(0| = 4 for any^eΛ/'cίρ), ̂  centralizes (Λ*)M. Hence M centralizes (Λ*)M,
so [Γ*ρ, (Λ*)M] = 1. Since T*ρ is a Sylow 2-subgroup of NG(Q), there exists
an element v^NG(Q) such that T=(T*g)t;. Thus we get [Γ, (Λ*)"1']-:!. Put
u=v~l. Then (8) holds.

(9) There exists an involution in Q. Let t be an involution in Q, then
\F(t)\=0(mod3).

Proof. From (3), the first statement is clear. Since F(R)=F(Q)c,F(t),
\F(Q)\=6 or 12 and [R, t]=l, we have \F(t)\ = \F(R)\ + \F(t)-F(R)\=0
(mod 3).

(10) We have now a contradiction in the following way.

Let t be an involution in Q. For i^£l—F(t), we set i'—j. Then t nor-
malizes CM;. There exists an element z in G such that G12i~Dz. By (7), G12|;

fixes F(QZ) as a set. We set N=(Gl2ij)F(Q^y then by (4) Qz is a Sylow 2-subgroup
of N. Again by (7), t normalzes N, hence t normalizes at least one of the Sylow
2-subgroups of N, say Qzm where m is an element of N. Now t M~IZ~I normalizes

Q, so tm~lz~l centralizes R by (8), hence t centralizes Rzm. Since Rz is a sub-
group of G12ij9 RZ<N by (7). Hence Rzm<N. By (6), Λ^ρ™)^"')^ Or

M12. Since the set F(Rzm)Γ(F(t) is not empty and F(Rtm)nF(t)^F(Ritm)=
F(Qzm), we have | F(R'm) Π F(ί) | =2 or 4. Since .R™ centralizes t, it follows from

(7) that \(Sl-F(Rgm))Γ{F(t)\=0 (mod 3). Hence \F(t)\ = \F(t)nF(R*m)\ +
1 = 1 or 2 (mod 3), contrary to (9).
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