

Title	1-conformally flat statistical submanifolds
Author(s)	Uohashi, Keiko; Ohara, Atsumi; Fujii, Takao
Citation	Osaka Journal of Mathematics. 2000, 37(2), p. 501–507
Version Type	VoR
URL	https://doi.org/10.18910/12027
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

1-CONFORMALLY FLAT STATISTICAL SUBMANIFOLDS

KEIKO UOHASHI, ATSUMI OHARA and TAKAO FUJII

(Received May 11, 1998)

Introduction

We study 1-conformally flat statistical submanifolds of flat statistical manifolds. Let φ be a function on a domain Ω in an affine space \mathbf{A}^{n+1} . Denoting by \tilde{D} the canonical flat affine connection on \mathbf{A}^{n+1} , we can consider a Hessian domain $(\Omega, \tilde{D}, \tilde{g} = \tilde{D}d\varphi)$ a flat statistical manifold. In this paper, we show that, if \tilde{g} is positive definite, *n*-dimensional level surfaces of φ are 1-conformally flat statistical submanifolds of $(\Omega, \tilde{D}, \tilde{g})$, and that a 1-conformally flat statistical manifold with a Riemannian metric can be locally realized as a submanifold of a flat statistical manifold.

The concept of α -conformally equivalence was first treated in [9] with respect to sequential estimation theory. On the realization of statistical manifolds in the affine space, see [5][6][7].

1. Theorems

Let \overline{D} be the canonical flat affine connection on an (n + 1)-dimensional real affine space \mathbf{A}^{n+1} , and $\{x^1, \ldots, x^{n+1}\}$ the canonical affine coordinate on it, i.e., $\overline{D}dx^i = 0$. If the Hessian $\overline{D}d\varphi = \sum_{i,j} (\partial^2 \varphi)/(\partial x^i \partial x^j) dx^i dx^j$ of a function φ on a domain Ω in \mathbf{A}^{n+1} is non-degenerate, we call $(\Omega, \widetilde{D}, \widetilde{g} = \widetilde{D}d\varphi)$ a Hessian domain.

For a torsion-free affine connection ∇ and a pseudo-Riemannian metric h on a manifold N, the triple (N, ∇, h) is called a statistical manifold if ∇h is symmetric. If the curvature tensor R of ∇ vanishes, (N, ∇, h) is said to be flat. A Hessian domain $(\Omega, \tilde{D}, \tilde{g} = \tilde{D}d\varphi)$ is a flat statistical manifold. Conversely, a flat statistical manifold is locally a Hessian domain [1][10].

For $\alpha \in \mathbf{R}$, statistical manifolds (N, ∇, h) and $(N, \overline{\nabla}, \overline{h})$ are said to be α conformally equivalent if there exists a function ϕ on N such that

$$\bar{h}(X, Y) = e^{\phi}h(X, Y),$$

$$h(\bar{\nabla}_X Y, Z) = h(\nabla_X Y, Z) - \frac{1+\alpha}{2}d\phi(Z)h(X, Y)$$

$$+ \frac{1-\alpha}{2}\{d\phi(X)h(Y, Z) + d\phi(Y)h(X, Z)\}$$

for X, Y, Z $\in \mathcal{X}(N)$, where $\mathcal{X}(N)$ is the set of all tangent vector fields on N. A

statistical manifold (N, ∇, h) is called α -conformally flat if (N, ∇, h) is locally α conformally equivalent to a flat statistical manifold [6].

For a pseudo-Riemannian manifold (\tilde{N}, \tilde{h}) and a submanifold N of \tilde{N} , we call (N, ∇, h) a statistical submanifold of (\tilde{N}, \tilde{h}) if (N, ∇, h) is a statistical manifold, where ∇ is an affine connection on N and h the induced pseudo-Riemannian metric for \tilde{h} . Let $\tilde{\nabla}$ be an affine connection on \tilde{N} . We denote by $T_x N \oplus T_x N^{\perp}$ the orthogonal decomposition of $T_x \tilde{N}$ with respect to \tilde{h} , where $T_x \tilde{N}$ and $T_x N$ are the set of all tangent vectors at x on \tilde{N} and on N, respectively. If $(\nabla_X Y)_x$ is the $T_x N$ -component of $(\tilde{\nabla}_X Y)_x$ for $X, Y \in \mathcal{X}(N)$ and an arbitrary x in N, we call (N, ∇, h) the statistical submanifold realized in $(\tilde{N}, \tilde{\nabla}, \tilde{h})$.

Amari said that, if $(\tilde{N}, \tilde{\nabla}, \tilde{h})$ is a statistical manifold for a Riemannian metric \tilde{h} and a submanifold N of \tilde{N} , (N, ∇, h) is a statistical manifold for the above induced connection ∇ and the induced metric h [1]. For a pseudo-Riemannian metric \tilde{h} , (N, ∇, h) is a statistical manifold if h is non-degenerate. Then, through this paper, we call a statistical submanifold realized in a statistical manifold $(\tilde{N}, \tilde{\nabla}, \tilde{h})$, simply, a statistical submanifold of $(\tilde{N}, \tilde{\nabla}, \tilde{h})$.

In this paper we aim to prove the next theorems.

Theorem 1. Let M be a simply connected n-dimensional level surface of φ on an (n + 1)-dimensional Hessian domain $(\Omega, \tilde{D}, \tilde{g} = \tilde{D}d\varphi)$ with a Riemannian metric \tilde{g} , and suppose that $n \ge 2$. If we consider $(\Omega, \tilde{D}, \tilde{g})$ a flat statistical manifold, (M, D, g)is a 1-conformally flat statistical submanifold of $(\Omega, \tilde{D}, \tilde{g})$, where we denote by D and g the connection and the Riemannian metric on M induced by \tilde{D} and \tilde{g} .

Theorem 2. An arbitrary 1-conformally flat statistical manifold of dim $n \ge 2$ with a Riemannian metric can be locally realized as a submanifold of a flat statistical manifold of dim(n + 1).

We shall show a corollary of Theorem 1 with relation to projectively flat connections and dual-projectively flat connections in the last section.

2. Statistical Manifolds and Affine Differential Geometry

In this section, we study a level surface M of φ on an (n+1)-dimensional Hessian domain $(\Omega, \tilde{D}, \tilde{g})$, using affine differential geometry and the concept of statistical submanifold. A level surface M of φ is an *n*-dimensional submanifold of Ω if and only if $d\varphi_x \neq 0$ for all $x \in M$. Henceforward, we suppose that $n \geq 2$, that \tilde{g} is a Riemannian metric, and that $d\varphi_x \neq 0$ for all $x \in M$.

Let \tilde{E} be the gradient vector field on Ω defined by

$$\tilde{g}(\tilde{X}, \tilde{E}) = d\varphi(\tilde{X}) \text{ for } \tilde{X} \in \mathcal{X}(\Omega).$$

Since \tilde{g} is positive definite and $d\varphi_x \neq 0$ for all $x \in M$, $d\varphi(\tilde{E})$ does not vanish on M and a vector \tilde{E}_x is vertical to $T_x M$ with respect to \tilde{g} , where $T_x M$ is the set of all tangent vectors at x on M. We set $E = -d\varphi(\tilde{E})^{-1}\tilde{E}$ on M. Then the vector field \tilde{E} is transversal to M, and so is E.

Let ι be a canonical immersion of M into Ω . For \tilde{D} and an affine immersion (ι, E) , we can define the induced affine connection D^E , the fundamental form g^E , the shape operator S^E and the transversal connection form τ^E on M by

(1)
$$\tilde{D}_X Y = D_X^E Y + g^E(X, Y)E$$

(2)
$$\tilde{D}_X E = S^E(X) + \tau^E(X)E \quad \text{for } X, Y \in \mathcal{X}(M).$$

We denote by (M, D, g) the statistical submanifold of $(\Omega, \tilde{D}, \tilde{g})$, considering $(\Omega, \tilde{D}, \tilde{g})$ a statistical manifold. Then the next holds.

Lemma 2.1. A statistical submanifold (M, D, g) coincides with a manifold (M, D^E, g^E) induced by an affine immersion (ι, E) , i.e.,

$$D = D^E, g = g^E$$
 on M .

Proof. Let $D^{\tilde{E}}$ be the induced affine connection, $g^{\tilde{E}}$ the fundamental form, $S^{\tilde{E}}$ the shape operator, and $\tau^{\tilde{E}}$ the transversal connection form, for \tilde{D} and \tilde{E} . Since E_x and \tilde{E}_x are vertical to $T_x M$ for $x \in M$ with respect to \tilde{g} , $D = D^E = D^{\tilde{E}}$ holds. From (1) and $\tilde{D}_X Y = D_X^{\tilde{E}} Y + g^{\tilde{E}}(X, Y)\tilde{E}$, we have

(3)
$$g^{\tilde{E}} = -d\varphi(\tilde{E})^{-1}g^{E}.$$

By [3] we know that

(4)
$$g^{\tilde{E}} = -d\varphi(\tilde{E})^{-1}g$$

From (3) and (4) $g = g^E$ holds.

Since g is non-degenerate, so is g^E . Then (ι, E) is called a non-degenerate immersion. Moreover, the immersion (ι, E) has the following property.

Lemma 2.2. An affine immersion (ι, E) is equiaffine, i.e.,

$$\tau^E=0 \quad on \ M.$$

Proof. We have

(5)
$$\tau^{E} = (d \log |d\varphi(\tilde{E})|)(X)$$

K. Uohashi, A. Ohara and T. Fujii

by [3]. Calculating the right-hand side of (5), we have

$$\tau^E = d\varphi(\tilde{E})^{-1} X(d\varphi(\tilde{E})).$$

Thus, we obtain

$$\begin{split} \tilde{D}_X E &= -\tilde{D}_X (d\varphi(\tilde{E})^{-1}\tilde{E}) \\ &= -X (d\varphi(\tilde{E})^{-1})\tilde{E} - d\varphi(\tilde{E})^{-1} D_X \tilde{E} \\ &= d\varphi(\tilde{E})^{-2} X (d\varphi(\tilde{E}))\tilde{E} - d\varphi(\tilde{E})^{-1} \{S^{\tilde{E}}(X) + \tau^{\tilde{E}}(X)\tilde{E}\} \\ &= -d\varphi(\tilde{E})^{-1} S^{\tilde{E}}(X). \end{split}$$

Hence $S^E = -d\varphi(\tilde{E})^{-1}S^{\tilde{E}}$ and $\tau^E = 0$ hold.

It is known that the structure induced by a non-degenerate equiaffine immersion is the statistical manifold structure. Conversely, Kurose proved the next proposition.

Proposition 2.3 ([6]). A simply connected statistical manifold can be realized in A^{n+1} by a non-degenerate equiaffine immersion if and only if it is 1-conformally flat. Such an immersion is uniquely determined up to affine transformations of A^{n+1} .

Proposition 2.3 can be proved by projectively flatness of the dual connection of a given connection [2]. Finally, let us show Theorem 1.

Proof of Theorem 1. By Lemma 2.2 and Proposition 2.3 a statistical manifold (M, D^E, g^E) is 1-conformally flat. Thus Theorem 1 holds by Lemma 2.1.

3. Proof of Theorem 2

Let (N, ∇, h) be a 1-conformally flat statistical manifold of dim $n \ge 2$ with a Riemannian metric h. By Proposition 2.3 (N, ∇, h) can be realized by a non-degenerate equiaffine immersion. We denote by (ι, E) a non-degenerate equiaffine immersion into \mathbf{A}^{n+1} which realizes (N, ∇, h) . Then we can immerse (N, ∇, h) into a flat statistical manifold as the next lemma.

Lemma 3.1. For a simply connected open subset U of N and a small $\varepsilon > 0$, we define a function ϕ on $\tilde{U} = \bigcup_{a \in U} \{\iota(q) \oplus (-\varepsilon, \varepsilon) \cdot E_q\}$ by

$$\phi(p) = e^{-t} \quad \text{for } p = \iota(p_0) + t E_{p_0}, \quad p_0 \in U, t \in (-\varepsilon, \varepsilon).$$

Then (U, ∇, h) is a statistical submanifold of a flat statistical manifold $(\tilde{U}, \tilde{D}, \tilde{D}d\phi)$.

504

Proof. For $X, Y \in \mathcal{X}(U)$, we have

$$d\phi(X) = 0, \ d\phi(E) = -1,$$

and

$$(\tilde{D}_X d\phi)(Y) = X(d\phi(Y)) - d\phi(\tilde{D}_X Y)$$

= $-d\phi(\nabla_X Y + h(X, Y)E)$
= $-h(X, Y)d\phi(E)$
= $h(X, Y).$

Thus, (U, ∇, h) is a submanifold of $(\tilde{U}, \tilde{D}, \tilde{D}d\phi)$.

We also denote by E a vector field on \tilde{U} whose value is E_{p_0} at $p = \iota(p_0) + t E_{p_0}$. On $\iota(U)$ we have

$$E(d\phi(E)) = 1, \quad \tilde{D}_E E = 0,$$

and

$$(\tilde{D}_E d\phi)(E) = E(d\phi(E)) - d\phi(\tilde{D}_E E) = 1.$$

Thus $(\tilde{D}d\phi)_{\iota(p_0)}$ is positive definite for $p_0 \in U$. From continuity of a function ϕ , $\tilde{D}d\phi$ is a Riemannian metric on \tilde{U} for a small ε . Hence $(\tilde{U}, \tilde{D}, \tilde{D}d\phi)$ is a flat statistical manifold.

4. Dual-Projectively Flat Connections

In this section, we describe dual-projectively flatness of an affine connection D on a level surface M and projectively flatness of the dual-connection D' of D.

Let (N, h) be a pseudo-Riemannian manifold. Torsion free affine connections ∇ and $\overline{\nabla}$ on N are projectively equivalent if there exists a 1-form κ such that

$$\bar{\nabla}_X Y = \nabla_X Y + \kappa(X)Y + \kappa(Y)X$$

for $X, Y \in \mathcal{X}(N)$. An affine connection ∇ is called projectively flat if ∇ is locally projectively equivalent to a flat affine connection. Torsion free affine connections ∇ and $\overline{\nabla}$ on N are dual-projectively equivalent if there exists a 1-form κ such that

$$h(\overline{\nabla}_X Y, Z) = h(\nabla_X Y, Z) - \kappa(Z)h(X, Y)$$

for $X, Y, Z \in \mathcal{X}(N)$. An affine connection ∇ is called dual-projectively flat if ∇ is locally dual-projectively equivalent to a flat affine connection [4].

For a statistical manifold (N, ∇, h) there exists the torsion free affine connection ∇' on N such that

$$Xh(Y, Z) = h(\nabla_X Y, Z) + h(Y, \nabla'_Y Z)$$

The connection ∇' is said to be the dual connection of ∇ , and (N, ∇', h) the dual statistical manifold of (N, ∇, h) . If (N^s, ∇^s, h^s) and $(N^s, \nabla^{s'}, h^s)$ are statistical submanifolds of (N, ∇, h) and (N, ∇', h) , respectively, $(N^s, \nabla^{s'}, h^s)$ is the dual statistical manifold of (N^s, ∇^s, h^s) [1].

Statistical manifolds (N, ∇, h) and $(N, \overline{\nabla}, \overline{h})$ are α -conformally equivalent if and only if the dual statistical manifolds (N, ∇', h) and $(N, \overline{\nabla}', \overline{h})$ are $(-\alpha)$ -conformally equivalent. Especially, a statistical manifold (N, ∇, h) is 1-conformally flat if and only if the dual statistical manifold (N, ∇', h) is (-1)-conformally flat [6].

Moreover, Kurose showed that, by Proposition 9.1 in [8], a statistical manifold (N, ∇', h) is (-1)-conformally flat if and only if ∇' is a projectively flat connection with symmetric Ricci tensor, and that

Proposition 4.1 ([6]). A statistical manifold (N, ∇, h) is 1-conformally flat if and only if the dual connection ∇' is a projectively flat connection with symmetric Ricci tensor.

On projectively flatness, Ivanov described the next proposition on section 2 in [4].

Proposition 4.2 ([4]). A statistical manifold (N, ∇, h) is 1-conformally flat if and only if ∇ is a dual-projectively flat connection with symmetric Ricci tensor.

For a level surface of a Hessian domain, we obtain the next corollary of Theorem 1 by Proposition 4.1 and 4.2.

Corollary 4.3. Let M be a simply connected n-dimensional level surface of φ on an (n+1)-dimensional Hessian domain $(\Omega, \tilde{D}, \tilde{g} = \tilde{D}d\varphi)$ with a Riemannian metric \tilde{g} , and suppose that $n \geq 2$. Let (M, D, g) be a statistical submanifolds of $(\Omega, \tilde{D}, \tilde{g})$ and D' the dual connection of D. Then, D is a dual-projectively flat connection with symmetric Ricci tensor and D' is a projectively flat connection with symmetric Ricci tensor.

References

- [1] S. Amari: Differential-Geometrical Methods in Statistics, Springer-Verlag, 1985.
- [2] F. Dillen, K. Nomizu and L. Vrancken: Conjugate connections and Radon's theorem in affine

differential geometry, Monatsh. Math. 109 (1990), 221-235.

- [3] J.H. Hao and H. Shima: Level surfaces of non-degenerate functions in \mathbb{R}^{n+1} , Geom. Dedicata, 50 (1994), 193–204.
- [4] S. Ivanov: On dual-projectively flat affine connections, J. Geom. 53 (1995), 89-99.
- [5] T. Kurose: Dual connections and affine geometry, Math. Zeitschrift, 203 (1990), 115-121.
- [6] T. Kurose: On the divergence of 1-conformally flat statistical manifolds, Tôhoku Math. J. 46 (1994), 427-433.
- [7] H. Matsuzoe: On realization of conformally-projectively flat statistical manifolds and the divergences, Hokkaido Math. J. 27 (1998), 409–421.
- [8] K. Nomizu and U. Simon: Notes on conjugate connections, Geometry and Topology of Submanifolds, IV (F.Dillen and L.Verstraelen eds.), World Scientific, 1992, 152–173.
- [9] I. Okamoto, S. Amari and K. Takeuchi: Asymptotic theory of sequential estimation: differential geometrical approach, Ann. Statist. **19** (1991), 961–981.
- [10] H. Shima: Geometry of Hessian domains, Differential Geometry and its Applications, 7 (1997), 277–290.

K. Uohashi Department of Systems and Human Science Graduate School of Engineering Science Osaka University Osaka 560-8531 Japan e-mail: keiko@ft-lab.sys.es.osaka-u.ac.jp

A. Ohara Department of Systems and Human Science Graduate School of Engineering Science Osaka University Osaka 560-8531 Japan

e-mail: ohara@sys.es.osaka-u.ac.jp

T. Fujii Department of Systems and Human Science Graduate School of Engineering Science Osaka University Osaka 560-8531 Japan e-mail: fujii@sys.es.osaka-u.ac.jp