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1. Introduction

We are concerned with the Cauchy problem for linear evolution equations

, (1.1)

of "hyperbolic'* type in a Banach space E. "Hyperbolic" type means that
the linear opeators — A(t) are the infinitesimal generators of Co-semigroups on
E. In this paper, as T. Kato [1], [2], [3] and [4], we deal with the class that

there exists a certain dense linear manifold F in E contained in all the domains
D(A(t)).

Roughly speaking, our assumptions consist of the reflexivity of £*, strong
continuity in t of A(t) and its dual A(f)', the stability of (A(t)} on E and F

(see §2) and the existence of a mollifying operator for {A(t)} (see §3).
Those are closely related among others to [3]. The main difference lies in
weakening the smoothness condition of A(t) in t instead of adding the reflexivity
of E. In [3] the norm-continuity of A(t): F-+E is assumed.

In the proof of our theorem essential use is made of the energy estimates
as S. Mizohata [7]. Hence the proof is quite different from [3] in which the
integral equations take effect. The author wonders if, even under such a weak
smoothness condition of A(i), one can prove a priori the strong convergence of
Un(t, s) in §4.

We note here some notations and terminology used in the sequel. The

norm of a Banach space E is denoted by \\ \\E. The inner product by ( , )£,
if E is Hibert. E/ is the dual space of E, and <(-, •)> is the scalar product of
Ef and E. Ew is the locally convex space endowed with the weak topology. Let

F be another Banach space. -C(β\ F) is the Banach space of all bounded linear

operators of E to F with the uniform norm || ||F,£> an<l -Cs(E-\ F} is tne locally
convex space with the strong topology. We will abbreviate -C(E\ E) as -C(E),

I I * \\E E as II HE and so forth. For a linear operator A of E and a linear manifold
GdD(A) in E, A\G is the restriction of A to G. A' is the dual of A^X(E\ F).
A* is the ajoint of A, if A is a densely defined linear operator in a Hubert
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space. For an interval [a, b] and a Banach space E, J2p(\ay b~\\ E), l</>< + °°,
is the Banach space of all measurable functions / such that ||/( )llέ is inte-
grable on \a,b]. ^([fl, ft]; E) is the set of all absolutely continuous functions

/ such that

with some g^~Cp([a, ft]; E). For a metric space D and a locally convex space
Ey C(D\ E) is the set of all continuous mappings of D to E. Cl([a, ft]; £)
is the set of all continuously diίferentiable functions. <Bl'\R" X [a, b]) is the set
of all complex valued functions defined on (#, £)eJRwx[α, b] which are uni-
formly bounded and continuous in (x, ί), and are difϊerentiable in x with uniformly

bounded and continuous derivatives.
The author expresses his hearty thanks to Professor H. Tanabe.

2. Stable families

Let E be a Banach space. In this section {^4(*)}o<κr denotes a family
of densely defined, closed linear operators in E. Following [3], we say {A(t)} is
stable if there are an open interval (βy oo) contained in all p(—A(t)) and a

constant M such that

«
||Π(λ+-4(fy))~1||£<Λf(λ--/8)~*, λ>/3,

for any finite family {ίy} 1<y<jfe with 0 < ̂  < < tk < T. The product Π is time-
ordered. If {A(t)} is such a family, then we write simply

A few criteria for stability have been given in §3 [3]. Specializing one of
them in the case of E being Hubert, we state the following:

Proposition 2.1. Let E be a Hiϊbert space and {N(t)}Q<t<τ be a family of

isomorphisms of E to itself such that

(2.1)

with some constant C. Assume that

A(f) = N(t)A(t)N(tγ\ 0<ί< T , (2.2)

are almost anti-symmetric (namely D(Ά(t))=D(A(t)*), A(t)+A(t)* <=.£(£))
and that there is a constant β such that

\\A(t)+A(t)*\\E<2β,0<t<T.

Then
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with M=\\N(T)-l\\^τ\\N(0)\)E.

Proof. We have for each λ>/δ and *<= [0, Γ]

H(λ+^(%|U>(λ-/8)IW|Λ, ytΞD(A(t) ); (2.3)

\\(\+A(tY)y\\E>(\-β)\\y\\E, y^D(A(t}*). (2.4)

(2.3) and (2.4) imply

(β, oo)c.P(-A(t)), 0<t<T, (2.5)

and

\\(\+A(t)Γί\\E<(\-β)-1, λ>/3 . (2.6)

Whereas by (2.2) and (2.5) we obtain

(β, °°)Cp(-A(t)),Q^t<T,

and

(λ+^(OΓ = N(t)-\\+A(t))-W(t) . (2.7)

(2.1), (2.6) and (2.7), then, show the desired result.

3. Mollifying operators

Let E and F be Banach spaces such that F is densely and continuously
embedded in E. We consider families of bounded operators p^-C(E; F).

A faimly {pn(t)}0<t<Tfn=12... is said to be a mollifying operator if ρn belongs to

£([0, ΓJ; J?s(£; F))n^([0, Γ]; J?s(£)) (3-1)

for each n, and

limp.(ί) = / inJ7s(F), (3.2)

for each *e[0, Γ].

Let {-4(ί)}0<ί<r be a family of A(f)^X(F\ E) and {ρn(*)} be a mollifying
operator. We define the family {Cn(t)}0<t<τ >n==1 >2>... of elements of ̂ (F; £) by

C.(f) = A(t)pn(t)-Pn(t)A(t)+dpn(t)ldt .

{pn(t)} is said to be a mollifying operator for the family {A(t)} if Cw belongs to

£([o, T] j:s(£)) n C([Q, T] J:,(F)) (3.3)

for each n, which implies Cn(t) e J7(£) Π -̂ (ί1), and

lim C.(ί) = C(ί) inXs(F) (3.4)
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for each *e[0, T] with

sup \\Cn(t)\\F<oo . (3.5)
»

The following example shows that the mollifying operator can be inter-
preted as an abstract version of Friedrichs' mollifier for the operator theory.

EXAMPLE 3.1. Let E=J?2(Rm)y F=Ml(Rm) and {pε*} ε>0 be Friedrichs' molli-
fier. Then {pn(t)} defined by

pn(t)u = p1/n*u, u£ΞE,

becomes a mollifying operator for any family {A(t)}0<t<τ of first order differential

operators

A(t)u = Σ α ,(#, t)du/dχ.+b(x, t)u,
j = l ] J

with the coefficients

[0, Γ\).

There is a somewhat interesting way to construct mollifying operators

(cf. Theorem 6.1 [3]).

Proposition 3.2. Let {S(t)}0<t<τ be a family of isomorphisms of F to E

such that

and that, when we regard them as closed operators in E, we can choose a sequence

{^«}»=ι 2 •••> 0<λ!<λ2< ---- *°o, of n p(S(t)) satisfying the estimate

with some constant C independent of t. Assume

S^A^S^-^A^+B^), 0<ί< T , (3.6)

with some B<=C([0, Γ]> -C.(E)), then {ρ,(ί)}o<«r..-iA defined %

is a mollifying operator for {A(t)} .

Proof. Actually we can observe that

([0, T\; -C.(E; F)) ,

lS(ί))-l(dS(t)ldt)(l-\^S(t))-1. (3.7)

Since (3.6) implies
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S(t)A(t)z = A(t)S(t)*+B(t)S(t)*> x

and we have

S(t)-\F) = (l-x

we can write f or y e F

(A(t)Pώ-p.(t)A(t))y

(3.8)

From (3.7) and (3.8) we can conclude

CBe£([0, T\', J:.(E; F)) ,

lim Cn(t) = 0 in

4. Construction of the evolution operator

Theorem 4.1. Let E and F be reflexive Banach spaces such that F is den-
sely and continuously embedded in E, S be an isomorphism of F to E, and {A(t)}0<t<τ

be a family of closed linear operators in E with all D(A(t)) containing F. Assume

(I) A(.)lreC([0, T\ , -C,(F; E)) ,

(A(>)lFy(EC([0,T};-Cs(E';F')).

(II) {A(t)}cS(E;M,β).

(Ill) SA(t)S~l are all densely defined,

(IV) There is a mollifying operator {/>„(*)} for

Then we can construct the evolution operator {U(t, ί)}0<s<ί<r with the following

properties:

a)

b)

U( , s)eC([s, T\; -CS

c) U(t, s)U(s, r) = U(t, r),

d) U(; s)GC\[s, T]; J7S(F; E)),

(dldt)U(t,s)=-A(t)U(t,ί).

e) U(t, )e^([0, ί]; -CS(F E)),



306 A. YAGI

(dlds)U(t,s)= U(t,s)A(s).

Proof. For the partition {tk}0<k<n, tk=kT\n, of the interval [0, T] we define
the approximation {An(t)}ϋ<t<τ to {A(t)} by

An(t) = A(tk),

and the evolution operator {Un(t, i)}0<s«<r f°r

UΛ(t,s) = exp(-(ί-ί;.μ(ί, ))

Putting

we approximate {-*?„(*)} to {A(t)} in the similar way and define the evolution
operator {Vn(t, s)}

Vn(t, ,) = exp(-(ί-f,).ϊ(ί,))

By (II) and (III) we have

<->\ \\Vn(t, ί)||£<Λί/('-) . (4.1)

Lemma 4.2. For each ίe [0, Γ]

= 0,

therefore

expί-r^O)^-1^ = S-lQxp(-rA(t))y . (4.2)

Since D(A(t)) is dense in E, (4.2) holds for any x^E, hence the result is obtained.
The preceding lemma asserts that

exp(-rA(t))(F)cF,r>0,

and {exp(— rA(t))}r>0 is a Co-semigroup on F for each ίe [0, 71]. Thus we have
obtained

U.(t, s) e J%F), \ I Un(t, s)\ \F < M 'βW'-'J , (4.3)

where Λf^.
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Lemma 4.3. Let s<= [0, T) and /e -£(!>, T] F) Π C([s, T] E).

j, T] JP) Π ̂ ([ί, T] £) w the solution of

du/dt+A(t)u =f(t), ί<f <T, (4.4)

then for each t^[s, T]

u(t) = Iim{t7.(ί, *X*)+ f V.(f, τ)/(τ)rfτ} (4.5)
»-><*> js

both in E and Fw> and hence

For re [ί, ί]— {ίt} we have

(d/dτ)Un(t, r)u(r) = Un(t, τ){Aa(τ)-A(τ)}U(r)

+ Un(t,τ)f(τ). (4.6)

Since Un(t, )u( ) is continuous in τe[ί, t], integrating (4.6) on [ί, t], we get

«(*)- C .̂(ί, *)u(ί)- ( V.(ί, τ)/(τ)rfτ
Js

According to Lebesgue's dominated convergence theorem, (I) and (4.1) imply

lim||Γi7.(f, r){An(r)-A(r)}u(τ)dr\\E = 0 ,
»-»<*> J s

which shows (4.5) in E. Next we have by (4.3)

||̂ τ} , (4.7)

therefore there is a subsequence {«'} such that

y = lim {Un>(t, ήu(s)+ [ V/(ί, τ)/(τ)Jτ} in Fw

with some y^F. But, since the convergence in Fw implies that in EW9 y must
be equal to u(t). Thus we conclude

u(t) = Iim{J7.(ί, ίX*)+ .(ί, τ)/(τ)dτ} in f . .
» .̂oβ Js

The last inequality is the immediate consequence of (4.7) and (4.5) in Fw.
Now, let se[0, T) and />e(l, oo) be fixed and define
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It is known that

X' = .£,([*, Γ] £')> y = _£•,([*, Γ] ί")

with /)""1+ήr~1=l, so that -SΓ and Y are also reflexive. For a fixed y^F, we put

We have evidently

dunldt£ΞX, sup\\dunldt\\x<oo;

unς=Y, sup|k||y<oo. (4.8)

Therefore there is a subsequence {w7} such that

v = \imun' in Yw , (4.9)
«'-><»

«j = lim dun>\dt in JΓW . (4.10)

For any g^E' let G^X' be the step function

then, since

we have

= <y+ 1 w(τ)rf
Js

namely

y+ ( V(τ)rfτ = lim v(0 in ^
Js w'->°«

Putting

(4.12)

(4.13)

we will prove that u is a solution of (4.4) with/=0.
Clearly we see
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on account of

(4.14)

Since

u = lira un

f in Xw»/->«,

follows from (4.1) and (4.11), and (4.9) implies

v — lim un

f in Xw ,
n'.j.oo

we obtain u=v^ Y. Hence we can define Au^X by

(Au) (t) = (A(t)lF)u(t), a.e. ί e [s, T] .

For any G^Xr

<An<un>-Au, G>

= <«„', {(^/-^),F}
/G>+<W/-tt, (^,Fyc> . (4.15)

According to the dominated convergence theorem, (I) and (4.3) imply that the
first term of (4.15) tends to 0 as w'^oo. The second also goes to 0 by (4.9).
Therefore we get

'iv, G> = <Au, G>,
fl'^oo

or equivalently

^ = lim An'uj mXw. (4.16)
W/^0* X '

Letting w'-^oo in the equality

.dun'ldt = —AH'un' in X

in view of (4.10), (4.14) and (4.16), we obtain

du/dt= -Au mX. (4.17)

Next, we operate the mollifying operator pn(t) to u(t). Obviously

Pnu = pn( )u(.)tΞC([s,T];F).

By (3.1) and (4.13) ρnu is, as an E valued function, absolutely continuous and

-^WP.(ίMO+C.(ίXO, (4.18)

a.e. *GΞ|>, T] i

Since the right hand side of (4.18) is continuous by (3.3), we conclude
( [ s , T ] ; E ) . Noting
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we can apply Lemma 4.3 to (pn—pm)u, and obtain

. (4.19)

(4.19) shows by (3.2), (3.4) and (3.5) that {pwtt}»=ι,2, is a Cauchy sequence
in C([s, T]; F) with the uniform topology, from which we can deduce

u(t) = lim pn(t)u(t) in F, s < t < Γ .»->.<»

Hence w belongs to C([s, T]; F), moreover to Cl([s, T]\ E) on account of (4.12),
(4.14) and (4.17). Thus we have proved

E.

w=y.

Lemma 4.4. For any 0<ί<£< T and x^E, {Un(t, s)x}n=12t. .. converges in

Let u be the solution of (4.20) whose existence was already established.
Lemma 4.3 claims

u(t) = lim Un(t, s)y in £", y <Ξ F , (4.21)»->«>

in particular the existence of the limit. The convergence for general x^E
follows from (4.1) and the density of F in E.

We define the linear operator U(t, s), 0<ί<ί<T, of E

U(t, s)x = lim Un(ty s)x mE,x<=E.
n+o*

It suffices to prove that {U(t, s)} has the properties a)~e). First of all, d)
is obtained by (4.21). The inequality in Lemma 4.3 asserts

U(t, s)f=-C(F), \\U(t, ί)||F<M'('-) . (4.22)

c) is clear from (4.1). (4.1) implies also

U(t, *)€=£(£), \\U(t, s)\\E<M^'-« . (4.23)

Letting w-»°° in

Uu(t, t)y=y- \'ua(t, σ)ΛH(σ)ydσ, y e F ,
Js

in view of
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we get

U(t, s)y = y- f V(ί, σ)A(σ)yd<r , (4.24)
Js

which shows e). By d) and e) we see

E7( , 0

on the other hand (4.24) gives the continuity at t=sy therefore a) follows from
(4.23) and the density of F. It is not difficult to verify the first assertion of b)
by a), (4.22) and the reflexivity of F. The rest of b) have already been proved

above.
We give here a formulation on the Cauchy problem for (1.1) without its

standard proof.

Theorem 4.5. Let {^4(£)}o<f<τ satisfy the assumptions made in Theorem 4.1.
Then for any y<=F and any f<=C([Q, T]; F), the problem

(du/dt+A(t)u =/(ί), 0<ί< T ,

\u(G)=y

has the unique solution in £([0, Γ] F) Π £*([(), T] £), which is given by

u(t) = U(t, 0)y+ Γt7(ίf r)f(τ)dry

5. Application to hyperbolic systems

As an application of our preceding theorems we consider the Cauchy pro-
blem for a system of linear partial differential equations

(x, t)u =f(x, ί), (x9 t)^Rnχ[0, T] ,

u(x, 0) = φ(x) .

Here u=(ul9 •••, um)* is an w-row vector of unknown functions of (x, i), a^x, t)
and b(x, t) are m X m matrix functions. We assume

Regarding (5.1) as an evolution equation in the Hubert space E=J^2(Rl)y we
define {A(t)}0<t<τ as follows:

\D(A(t))=
1 «
(A(t)u = Σ

Ml(R") is adopted as F. Obviously A(t) are closed linear operators in E with
all D(A(t)) containing F.
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Theorem 5.1. Let {s(t)}Q<t<τ be a family of mxm Hermίtian symbols of
singular integral operators of type Cf such that

(5.2)

for any seminorm p of Cf, and that

(*(*,*, ?fa,?7)>8M^elZ-, (5.3)

with some positive constant δ independent of (t, x9 ξ). Assume that for the symbol

s(ty xy ξ)a(t, x, ξ)s(ΐ, x, ξ)'1 are Hermίtian for all (t, x, ξ). Then {A(t)}0<t<τ defined
above satisfies the assumptions (I)~(IV) in Theorem 4.1.

Proof. Let A*(t) e -C(-C2(Rn} 5 M~l(Rn)) be defined by

A*(t)v = -Σ d/βxj {a fa ί)M +b(x, t)*v ,

then we can observe

(A(t)lFy = kA*(t)h-> ,

where h (resp. )̂ is the canonical isometry of -C2(R") (resp. M~l(Rn)) to £" (resp.
F'). From this (I) follows.

To see (II) we make use of Proposition 2.1. Let <5ι(ί), S2(t) be the sin-
gular integral operators with symbols

It is known that (5.3) implies

, u)E,

with some constants δ'>0, γ>0 and K^X(F\ E)

Therefore

are all isomorphisms of E. (5.2) implies

IW)^/)"1IU<exp(C1|ί

with some constant Cx determined by δ' and some Cp alone. Put
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A(t) = N(t)A(t)N(t)-1, 0<ί< T ,

then the theory of singular integral operators (A. P. Calderόn and A. Zygmund
[5], [6]) teaches us that A(t) and Ά(t)* can be described on F as follows:

Ά(t)u = ί

A(t)*υ = -1

where <Jl(t) are the singular integral operators with the symbols a(t, x, £), Sι(t)

and -®2(0
 are bounded operators on E. Therefore we have

\\(A(t)+A(t)*)u\\E<C2\\u\\E, ueΞF,

with some constant C2 independent of t. From this we can conclude that
A(t) are almost anti-symmetric, whose tedious proof is omitted. Thus Pro-
position 2.1 establishes the stability of {A(t)}> the condition (II).

To verify (III) and (IV) we prepare the following lemma.

Lemma 5.2. Let 5=(1+Λ2)1/2 be the isomorphism of F to E. Then

with some B (= £([0, T]

Actually we have for

{SAφS-i-AWu = Σ [S, a.] (9/3^)5-^- [5, b]S~l u , (5.4)

where [5, T]=ST— TS denotes the commutator. The right hand side of
(5.4) can be extended to the bounded operators on E, from which our lemma
follows.

It is not difficult to see that the perturbed family {A(f)+B(i)}Q<t<τ is still
stable and belongs to 3(E\ M, β+BM) with B= sup ||-B(f)ll* Hence Lemma

5.2 shows (III).
It is observed immediately by Proposition 3.2 and Lemma 5.2 that

is the mollifying operator for {A(t)}9 hence (IV).

REMARK 5.3. If (5.1) is a symmetric hyperbolic system, a(t, x, ξ) are
Hermitian, therefore the preceding theorem is applicable with s(t, x, ξ)=I.

In the case of (5.1) being regularly hyperbolic, there are invertible sym-
bols n(t) e Cf such that

n(t, x, ξ)a(t, x, ξ)n(t, x, ξ)'\ = d(t, x, ξ)
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are real diagonal. Let

s(t,x^)={n(t,x^)*n(tyx^)}V2

be positive definite Hermitian symbols, then

sas'1 = s~ln*dns~l

are Hermitian. Hence Theorem 5.1 can be applied to this case provided that
n is Lipschitz continuous in t.

Finally, we give an elementary example which is neither symmetric nor
regularly hyperbolic.

EXAMPLE 5.4. In (5.1) let m=2, n=\ and

where φ1( φ2 and ψ are real valued functions in .31>0(jRx[0, T]), and a, β are
Lipschitz continuous functions on [0, T] such that

. (5.5)

Then the symbols

\ 1 / 2 0

satisfy the assumptions of Theorem 5.1. In fact

are Hermitian, because

|α

follows from (5.5).
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