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1. Introduction

We are concerned with the Cauchy problem for linear evolution equations
duldt+ A(tyu = f(2), 0<t<T, (1.1)

of “hyperbolic” type in a Banach space E. ‘“Hyperbolic” type means that
the linear opeators —A(t) are the infinitesimal generators of Cj-semigroups on
E. In this paper, as T. Kato [1], [2], [3] and [4], we deal with the class that
there exists a certain dense linear manifold F in E contained in all the domains
D(A(t)).

Roughly speaking, our assumptions consist of the reflexivity of E, strong
continuity in ¢ of A(¢) and its dual A(t)’, the stability of {4(f)} on E and F
(see §2) and the existence of a mollifying operator for {A(f)} (see §3).
Those are closely related among others to [3]. The main difference lies in
weakening the smoothness condition of A4(t) in # instead of adding the reflexivity
of E. In [3] the norm-continuity of A(t): F— E is assumed.

In the proof of our theorem essential use is made of the energy estimates
as S. Mizohata [7]. Hence the proof is quite different from [3] in which the
integral equations take effect. The author wonders if, even under such a weak
smoothness condition of A(t), one can prove a priori the strong convergence of
U,(t, s) in §4.

We note here some notations and terminology used in the sequel. The
norm of a Banach space E is denoted by ||+||z. The inner product by (-, +)z,
if E is Hibert. E’ is the dual space of E, and <{-, -> is the scalar product of
E’ and E. E, is the locally convex space endowed with the weak topology. Let
F be another Banach space. _L(E; F) is the Banaclt space of all bounded linear
operators of E to F with the uniform norm ||:||z z, and L(E; F) is the locally
convex space with the strong topology. We will abbreviate L(E; E) as L(E),
ll*llz, as ||+]|z and so forth. For a linear operator A of E and a linear manifold
GCD(A) in E, A is the restriction of 4 to G. A’ is the dual of A= L(E; F).
A* is the ajoint of 4, if 4 is a densely defined linear operator in a Hilbert
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space. For an interval [a, 8] and a Banach space E, L)([a, b]; E), 1<p<+-oo,
is the Banach space of all measurable functions f such that ||f(-)||% is inte-
grable on [a,8]. W ,([a, b]; E) is the set of all absolutely continuous functions
f such that

ft) = flay+{ g(ryar, a<e<,

with some g&_.L([a, b]; E). For a metric space D and a locally convex space
E, C(D; E) is the set of all continuous mappings of D to E. C'([a, b]; E)
is the set of all continuously differentiable functions. B"%R"X [a, b]) is the set
of all complex valued functions defined on (x, #)&R" X [a, b] which are uni-
formly bounded and continuous in (x, ¢), and are differentiable in x with uniformly
bounded and continuous derivatives.

The author expresses his hearty thanks to Professor H. Tanabe.

2. Stable families

Let E be a Banach space. In this section {4(f)},ci<r denotes a family
of densely defined, closed linear operators in E. Following [3], we say {A(t)} is
stable if there are an open interval (8, o) contained in all p(—A(t)) and a
constant M such that

L0+ AE) - <MO—B) > 8,

for any finite family {¢;},<;<; with 0<?,<---<#<T. The product IJ is time-
ordered. If {A(#)} is such a family, then we write simply
{A@}c4(E; M, B).

A few criteria for stability have been given in §3 [3]. Specializing one of
them in the case of E being Hilbert, we state the following:

Proposition 2.1. Let E be a Hilbert space and {N(t)},ci<r be a family of
isomorphisms of E to itself such that

NN () s < e, 0<s, 1< T, @2.1)
with some constant C. Assume that

A(t) = N®A@N() ™, 0<t< T, (2.2)
are almost anti-symmetric (namely D(A(t))=D(A(t)*), A(t)+A(t)*s-L(E))

and that there is a constant B such that
1A@)+A(t)*||:<28, 0<t<T.
Then
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{A@)} c 9(E; M, B)
with M=||N(T) || zeT||N(0)|| 5.
Proof. We have for each A>@ and te [0, T7]

v+ A@l==A—B)lIylle,  yED(A()); (2.3)
I+ A@)*)lle=A—B)lIylle, yED(ARY*). (24)
(2.3) and (2.4) imply
(B, @) p(—A(2)), 0<t<T, (2.3)
and ‘
I+AE) < (A—B)H 1> (2.6)

Whereas by (2.2) and (2.5) we obtain

(B) OO)CP(—A(t))) 0T ’
and

(AHA@) = N O+ A@D)NG) 2.7)
(2.1), (2.6) and (2.7), then, show the desired result.

3. Mollifying operators

Let E and F be Banach spaces such that F is densely and continuously
embedded in E. We consider families of bounded operators pe L(E; F).
A faimly {p,(t)}o<i<r n=12,. is said to be a mollifying operator if p, belongs to

C([0, T]; -LAE; F) N C([0, T]; LE)) (3.1)
for each 7, and
},irg p,(8)=1 in _L(F), 3.2)

for each t<[0, T].
Let {A(£)}o<i<r be a family of A(f)e-L(F; E) and {p,(t)} be a mollifying
operator. We define the family {C,(2)}o<;<r n-12,.- Of elements of L(F; E) by

C,lt) = A@)p(t)— PO AW) +dpi(D)dt
{p.(?)} is said to be a mollifying operator for the family {4(#)} if C, belongs to
C([0, T1; L(E) NC([0, TT; L(F)) (3.3)
for each n, which implies C,(t)e L(E) N L(F), and
£1_£E C,(t)=C(t) in L(F) (3.4)
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for each t< [0, T] with
sup_[IC,(Dlle<oe . | (3.5)

0<i<r,n=1,2,
The following example shows that the mollifying operator can be inter-
preted as an abstract version of Friedrichs’ mollifier for the operator theory.

ExampLE 3.1. Let E=_L,(R"), F=4*(R") and {py} >, be Friedrichs’ molli-
fier. Then {p,(f)} defined by

p,,(t)u = Pim*U, uck )

becomes a mollifying operator for any family {4(¢)} <7 of first order differential
operators

Aty = 3 ay(x, )oufox; +-b(x, tyu, ueF,
with the coeflicients
a;, be B(R"X[0, T]).

There is a somewhat interesting way to construct mollifying operators
(cf. Theorem 6.1 [3]).

Proposition 3.2. Let {S(¢)}o<i<r be a family of isomorphisms of F to E
such that

SeCY[0, T]; L(F; E))

and that, when we regard them as closed operators in E, we can chaose a sequence
PNt aciz 0N <A, <:+—>00, of NN p(S(t)) satisfying the estimate
‘ ! o<t<T :

Iu—S@) Me<C/Apn=1,2, -,
with some constant C independent of t. Assume
S(H)A()S(t) ' DA(t)+B(t), 0<t<T, (3.6)
with some Be (([0, T1; L(E)), then {p,(t)} o<t<r =12, defined by -
pat) = (1—251S(8))
is a mollifying operator for {A(t)}.
Proof. Actually we can observe that
P.€C([0, T]; L(E; F)),
dp,(t)]dt = Ay (1—A71S(2)) " H(dS(2)/dt) (1—n;'S(2)) ™" . (3.7)

Since (3.6) implies
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S)A(t)z = A(t)S(t)z+B()S(¢)z, =z S(Et) ' (F),
and we have
S()7HF) = (1—2:S(@®)"(F) = p(t) (F),
we can write for ye F

(A@)pt)— PO A))y
= P {(1=2:"S(@©)) A1) — A1) (11" S@)} pult)y
= =X 'pa(B)B@)S(2)pa(2)y - 3.8)
From (3.7) and (3.8) we can conclude

C.eC([0, T]; -L(E; F)),
lim C,(f) =0 in L(F).

4. Construction of the evolution operator

Theorem 4.1. Let E and F be reflexive Banach spaces such that F is den-
sely and continuously embedded in E, S be an isomorphism of F to E, and {A(t)} o<i<r
be a family of closed linear operators in E with all D(A(t)) containing F. Assume

I A()r<0, T]; L(F; E)),
(A(-)ir) €0, T]; LAE"; F)).
1) {A@)}cgE; M, B).
(III) SA(t)S! are all densely defined,
{SA()S Y} G(E; M, B).
(IV) There is a mollifying operator {p,(t)} for {A(?) s} -
Then we can construct the evolution operator {U(t, $)} o<s<i<r With the following
properties:
a) UeCl({(t, s); 0<s<t<T}; L(E)),
U2, )l <Met=2 .
b) Uel({(t, s5); 0<s<t<T}; L(F; F,));
U(-, s)eC([s, T1; L(F)), 0<s<T;
U, )| <DIIS |5, 5lISl5, p65¢ 2 .
c) U, s)U(s,r)= Ut r), 0<r<s<t<T;
U(s,s) =1,0<s<T.
d) U(-,$)eC(s, T; LiF; E)), 0<s<T;
(0/ot)U(t, s) = —A@)U(2, s) .
e) Uz, -)eCY ([0, t]; L(F; E)), 0<t<T;
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0/0s)U(2, s) = U2, s)A(s) .

Proof. For the partition {#;}ocs<n> 2,=kT/n, of the interval [0, T] we define
the approximation {4,(#)},<:<r to {4(2)} by

A4,(t) = A(ty), t<t<tpnr,
and the evolution operator {U,(¢, $)}ocs<i<r for {4,(t)} by

U,(2, s) = exp(—(t—¢,)A(t;)) -~ exp(—(t:1,—5)A(2))
5SS <ltyyy oo tj<t<tj+l .

Putting
A(t) = SA®H)S™, 0L T,

we approximate {4,(¢)} to {4(f)} in the similar way and define the evolution
operator {V,(t, 5)}

Vit s) = exp(—(t—1)A(t;)) -+ exp(—(t:in—9)A(t)))
AN VRN AN AR

By (II) and (IIT) we have
U2, )|l <Me*=2, ||V (2, 5)||s< M=) . (4.1)
Lemma 4.2. For each t=[0, T]

exp(—rA(t)) D S'exp(—rA(t))S, r>0.

For ye D(A(1))
(3/3s)exp(—(r—s)A(1)S exp(—sA())y = 0, 0<s<r,

therefore

exp(—rA(t))S 1y = S-lexp(—rA(t)y . (4.2)

Since D(A(t)) is dense in E, (4.2) holds for any x& E, hence the result is obtained.
The preceding lemma asserts that

exp(—rA(t)) (F)CF,r>0,

and {exp(—7r4(?))},», is a Cy-semigroup on F for each t<[0, T]. Thus we have
obtained

U,(t, s)€L(F), U, )|l <M'e¢9 (4.3)
where M'=M||S||r,£l|Slls, -
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Lemma 4.3. Let s€[0, T) and fe Li([s, T]; F)NC({s, T]; E). IfusC
([s, T1; F)NC([s, T1; E) is the solution of

duldt-+ Aty = f(t), s<t<T, (4.4)
then for each t[s, T]
u(t) = lim {U, (&, a9+ U2, ")fr)ar} (45)
both in E and F,, and hence
(ol <MAF N+ | EN (e}
For r€[s, t]— {t,} we have

(8/0m)U (8, Tyu(7) = U, (2, 7){4.(7)—A(7)}u(7)
+ U8, 1)f(7) . (4.6)

Since U,(t, +)u(-) is continuous in T&(s, t], integrating (4.6) on [s, t], we get
u(t)— Uyt yu(s)— U,(t, n)f (r)ar
— { Ut A~ A uryar
According to Lebesgue’s dominated convergence theorem, (I) and (4.1) imply
tim I U,(t, ) 4,(n)— A@}ur)dll; = 0,
which shows (4.5) in E. Next we have by (4.3)
108 o)+ | Ut f )l
<M+ Ell )l dry 4.7)
therefore there is a subsequence {n’} such that
v = lim (Ut 9u(s)+ | Uyt Of(r)ar i F,

with some yeF. But, since the convergence in F, implies that in E,, y must
be equal to u(¢). Thus we conclude

u(t) = lim{U,(t, )+ | U6, nfr)ar} in F,.

The last inequality is the immediate consequence of (4.7) and (4.5) in F,.
Now, let s€[0, T) and p=(1, o) be fixed and define
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X = 1[5, T); E), Y = L[5, T]; F) .
It is known that

X' =Lls T]; E'), Y' = L[5, T]; F’)

with p~?4-¢7'=1, so that X and Y are also reflexive. For a fixed yeF, we put

u,(t) = U8, s)y, s<t<T.
We have evidently
du,jdt€ X, sup|ldu,|di||x<oo;
e Y, supllully<eo.
Therefore there is a subsequence {#’} such that
V= }/1:2 uy inY,,
w =nl/1_g} duy[dt in X, .
For any g E’ let GEX’ be the step function

{g,s<r<t

G(r) =
10, t<7<T,

then, since
LduyJdt, G> = [ (du(rfdr)ar, g>
= <un(t)_y, g> ’

we have
Lim<u,(2), £ =<y, £>+<w, G
— <o+ [ wiryir, 0,
namely
y+S'w(T)dT =limuy() in B, s<t<T.
Putting ‘

u(t) = y+ s:w(r)df, s<t<T,

we will prove that « is a solution of (4-4-) with f=0. =
Clearly we see

ueW,([s, T]; E)

(4.8)

(4.9)
(4.10)

(4.11)

4.12)

(4.13)
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on account of
duldt = we X . (4.14)
Since

u=Ilimu, inX,

n/ 300

follows from (4.1) and (4.11), and (4.9) implies
v =ﬂl/ig: uy inX,,
we obtain u=ve Y. Hence we can define Aus X by
(Au) (t) = (A@t) 1 p)u(t), a.e. te]s, T].
For any Ge X’
{A,yuy—Au, G>
= <uyty Ay —Air} Go+<uy —u, (A1) G . (4.15)

According to the dominated convergence theorem, (I) and (4.3) imply that the
first term of (4.15) tends to 0 as #'—>co. The second also goes to 0 by (4.9).
Therefore we get

}i»mﬂ(A,,'u,,/, G>=<4u, G),GeX’,

or equivalently

Au = }}12 Ayuy inX,. (4.16)
Letting n’— oo in the equality

duyldt = —A,u, inX
in view of (4.10), (4.14) and (4.16), we obtain

duldt = —Au in X . (4.17)

Next, we operate the mollifying operator P4(2) to u(t). Obviously
Pt = Pa(Ju(-)EC([s, T]; F).
By (3.1) and (4.13) p,u is, as an E valued function, absolutely continuous and
dp,(Oud)dt = — AP (Du(d)+C.(eu(t) (4.18)
ae. tefs, T).

Since the right hand side of (4.18) is continuous by (3.3), we conclude p,ucsC*
([s, T7; E). Noting
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cucsYc L(s T); F),
we can apply Lemma 4.3 to (p,—p,,)%, and obtain
1 {pa(t)— Pa(®}u(t)|| < M’ {49 {p,(5)— Pm(5)} Y|
+ [ Eemnic.n—campurizrt (4.19)

(4.19) shows by (3.2), (3.4) and (3.5) that {p,u},-,,.. is a Cauchy sequence
in C([s, T]; F) with the uniform topology, from which we can deduce

u(t) = lim p,(t)u(t) in F,s<t<T.

Hence u belongs to C([s, T]; F), moreover to C'([s, T]; E) on account of (4.12),
(4.14) and (4.17). 'Thus we have proved

{du(t)/dt = —A@)u(t), s<t<T,
us)=y.
Lemma 44. For any 0<s<t<T and x€E, {U,(t, s)x} n=12,. COMVErges in

(4.20)

E.

Let u be the solution of (4.20) whose existence was already established.
Lemma 4.3 claims

u(t) = lirn U,t,s)y inEyeF, (4.21)

in particular the existence of the limit. The convergence for general xeE
follows from (4.1) and the density of F in E.
We define the linear operator U(¢, s), 0<s<t<T, of E

U, s)x=1im U,(t,s)x inE, xkE.

It suffices to prove that {U(¢, s)} has the properties a)~e). First of all, d)
is obtained by (4.21). The inequality in Lemma 4.3 asserts

U(t, s)e L(F), U@, s)l|p<M'é¢ (4.22)
c) is clear from (4.1). (4.1) implies also
U(t, s)e L(E), [|U(2, s)l|s< Me¢=9 . (4.23)
Letting n—o0 in
Udt, )y =y~ Udt, )Ao)pdo, y<F,

in view of

u@, )A(-ye-L(00, 4; E),
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we get
Utts)y = y—{ Ut ) A(o)yde, (4.24)
which shows e¢). By d) and e) we see
U(-, ")yel({(t 5); 0<s<t<T}; E), yeF,

on the other hand (4.24) gives the continuity at #=s, therefore a) follows from
(4.23) and the density of F. It is not difficult to verify the first assertion of b)
by a), (4.22) and the reflexivity of F. The rest of b) have already been proved
above.

We give here a formulation on the Cauchy problem for (1.1) without its
standard proof.

Theorem 4.5. Let {A(t)}oci<r satisfy the assumptions made in Theorem 4.1.
Then for any ye F and any fC([0, T; F), the problem

{du/dt+A(t)u = f(t), 0<t<T,
u0) =y
has the unique solution in C([0, T; F) N C*([0, T]; E), which is given by

u(t) = UG, O+ U, myf(ryar, 0<e< T,

5. Application to hyperbolic systems

As an application of our preceding theorems we consider the Cauchy pro-
blem for a system of linear partial differential equations

au/at+g a,(x, t)0u[0x,+-b(x, tyu = f(x, t), (x, ) €R"X [0, T],
u(x, 0) = ¢(x).

Here u=(w, -, #,,)" is an m-row vector of unknown functions of (x, £), a,(x, )
and b(x, z) are m X m matrix functions. We assume

a,, be F(R*X[0, TY) .

(5.1)

Regarding (5.1) as an evolution equation in the Hilbert space E=_L,(R"), we
define {A(#)}<i<r as follows:

D(A(t)) = {ucE; ga,au/ax,eE} ,
Atyu = 2 a,Bu[0x,+bu .

J(R") is adopted as F. Obviously A(t) are closed linear operators in E with
all D(A(t)) containing F.
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Theorem 5.1. Let {5(2)}ocicr be a family of mxm Hermitian symbols of
singular integral operators of type Cy such that
p(s(®)—s(t)<C,|t—¢t'|,0<¢t, t'<T, (5.2)
for any seminorm p of Ct, and that
(s(t, %, Ey2, 1)>8]n|% neR", (5.3)
with some positive constant 8 independent of (t, x, £). Assume that for the symbol
alt, %, £) = 2m 3 a(x, O, |E]

(¢, x, E)a(t, x, £)s(t, x, £)~* are Hermitian for all (¢,%,E). Then {A(t)},<,<r defined
above satisfies the assumptions (I)~(IV) in Theorem 4.1,

Proof. Let Ax(t)€ L(LAR"); J™(R")) be defined by
Aty = —2 8/ax,{a,(x, t)*o}+b(x, t)*v,
then we can observe J
(A@®)r) = kAx()R,

where & (resp. k) is the canonical isometry of _[,(R") (resp. A "(R")) to E’ (resp.

F’). From this (I) follows.
To see (II) we make use of Proposition 2.1. Let S,(¢), Sy(¢) be the sin-

gular integral operators with symbols

a(S,(@)) = s(¢, %, &) ,
a(Sy(2)) = s(t, %, &)™ .

It is known that (5.3) implies

Re(S(t)u, u) =8 ||ullz—v(A+1)""u, u)g, us E;
Re(S\(t)*u, u)g =& |ullt—v(A+1)"u, u)z, ucE,

with some constants §'>0, >0 and A _L(F; E)
Au= F[|E|F[u]], uEF .

Therefore
N(t) = Sy(t)+v(A+1)7, 0<t<T,

are all isomorphisms of E. (5.2) implies
IN@NE) " lz<exp(Ci|t—1']), 0<¢, ¢'<T,

with some constant C; determined by &’ and some C, alone. Put
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A(t) = N(OA@)N(@)™, 0<t<T,

then the theory of singular integral operators (4.P. Calderén and A. Zygmund
[5], [6]) teaches us that A(t) and A(¢)* can be described on F as follows:

Aty = i(S,(t)o A(t) o Sy(t)) Au+By(t)u, ucF;
A@t)*v = —i(Sy(t) o A() o Sy(t))*Av+By(t)v, vEF,

where _A(#) are the singular integral operators with the symbols a(t, x, £), B(2)
and B,(t) are bounded operators on E. Therefore we have

I(A(t)+ A(2)*)ull e < Cllullz, uEF,

with some constant C, independent of #. From this we can conclude that
A(t) are almost anti-symmetric, whose tedious proof is omitted. Thus Pro-
position 2.1 establishes the stability of {A4(#)}, the condition (IT).

To verify (IIT) and (IV) we prepare the following lemma.

Lemma 5.2. Let S=(1+A%Y? be the isomorphism of F to E. Then
SA@)S™ = A(t)+B(1), 0<:<T,
with some B C([0, T1; .L(E)).

Actually we have for us F
{SA()S'—A(t)}u = zi [S, a;] (0/0x;)S 'u—[S, ]S~ u, (54)

where [S, T1=ST—TS denotes the commutator. The right hand side of
(5.4) can be extended to the bounded operators on E, from which our lemma
follows.

It is not difficult to see that the perturbed family {A(£)+B(t)}oci<r is still
stable and belongs to G(E; M, B8+BM) with Bzoil;gz' [|B(?)|z- Hence Lemma

5.2 shows (III).
It is observed immediately by Proposition 3.2 and Lemma 5.2 that

Pn(t) =P = (l—l_n_lS)_l’ n= 1) 2; **t
is the mollifying operator for {A(¢)}, hence (IV).

Remark 5.3. If (5.1) is a symmetric hyperbolic system, a(¢, x, ) are
Hermitian, therefore the preceding theorem is applicable with s(t, x, &)=1.

In the case of (5.1) being regularly hyperbolic, there are invertible sym-
bols n(t)e CT such that

n(t, x, £)a(t, x, EYn(t, x, £) = d(t, x, £)
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are real diagonal. Let
s(t, x, &) = {n(¢, x, E)*n(t, x, E)} 2
be positive definite Hermitian symbols, then
sas™! = s7'n*dns™!

are Hermitian. Hence Theorem 5.1 can be applied to this case provided that
n is Lipschitz continuous in ¢.

Finally, we give an elementary example which is neither symmetric nor
regularly hyperbolic.

ExampLE 5.4. In (5.1) let m=2, n=1 and
_@mw () (x, 2

a,(x, 1) =
B(t)‘l"(x) t) ¢2(x’ t)

where ¢,, ¢, and +r are real valued functions in B(Rx [0, T7), and a, B are
Lipschitz continuous functions on [0, 7] such that

), (x, )eRX[0, T],

a(®)B()>0,0<:<T. (5.5)
Then the symbols

|1B@I7 0 )

swxo=s0=(" )|

satisfy the assumptions of Theorem 5.1. In fact

b alB| (aB)“”\Ir) 3

-1 __
= 2”(locl BlaB) b2 H

are Hermitian, because
la(?)| B(®) = a(t)| BX)|, 0<t<T,
follows from (5.5).
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