

Title	Regular subrings of a polynomial ring
Author(s)	Miyanishi, Masayoshi
Citation	Osaka Journal of Mathematics. 1980, 17(2), p. 329-338
Version Type	VoR
URL	https://doi.org/10.18910/12031
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

REGULAR SUBRING OF A POLYNOMIAL RING

MASAYOSHI MIYANISHI*)

(Received April 17, 1979)

Introduction. The purpose of this article is to prove the following two theorems:

Theorem 1. *Let k be an algebraically closed field of characteristic zero, and let A be a k -subalgebra of a polynomial ring $B:=k[x, y]$ such that B is a flat A -module of finite type. Then A is a polynomial ring in two variables over k .*

Theorem 2. *Let k be an algebraically closed field of characteristic zero, and let $B:=k[x, y, z]$ be a polynomial ring in three variables over k . Assume that there is given a nontrivial action of the additive group G_a on the affine 3-space $A_k^3:=\text{Spec}(B)$ over k . Let A be the subring of G_a -invariant elements in B . Assume that A is regular. Then A is a polynomial ring in two variables over k .*

Theorem 1 was formerly proved in part under one of the following additional conditions (cf. [7; pp. 139-142]):

- (1) B is etale over A ,
- (2) A is the invariant subring in B with respect to an action of a finite group.

In proofs of both theorems, substantial roles will be played by the following theorem, which is a consequence of the results obtained in Fujita [1], Miyanishi-Sugie [8] and Miyanishi [6]:

Theorem 0. *Let k be an algebraically closed field of characteristic zero, and let $X=\text{Spec}(A)$ be a nonsingular affine surface defined over k . Then the following assertions hold true:*

- (1) X contains a nonempty cylinderlike open set, i.e., there exists a dominant morphism $\rho: X \rightarrow C$ from X to a nonsingular curve C whose general fibers are isomorphic to the affine line A_k^1 , if and only if X has the logarithmic Kodaira dimension $\bar{\kappa}(X) = -\infty$.
- (2) X is isomorphic to the affine plane A_k^2 if and only if X has the logarithmic Kodaira dimension $\bar{\kappa}(X) = -\infty$, A is a unique factorization domain, and $A^* = k^*$, where A^* is the set of invertible elements in A and $k^* = k - (0)$.

In this article, the ground field k is always assumed to be an algebraically

*) Supported by Grant-in-Aid for Scientific Research

closed field of characteristic zero. For the definition and relevant results on logarithmic pluri-genera and the logarithmic Kodaira dimension of an algebraic variety, we refer to Iitaka [3]. An algebraic action of the additive group G_a on an affine scheme $\text{Spec}(B)$ over k can be interpreted in terms of a locally nilpotent k -derivation Δ on B . In particular, the subring A of G_a -invariant elements in B is identified with the set of elements b of B such that $\Delta(b)=0$. For results on G_a -actions necessary in the subsequent arguments, we refer to [7; pp. 14–24]. The Picard group, i.e., the divisor class group, of a nonsingular variety V over k is denoted by $\text{Pic}(V)$; for a k -algebra A , A^* denotes the multiplicative group of all invertible elements of A ; the affine n -space over k is denoted by A_k^n ; \mathbf{Q} (resp. \mathbf{Z}) denotes the field of rational numbers (resp. the ring of rational integers).

1. Proof of Theorem 1

1.1. We shall begin with

Lemma. *Let Y be a nonsingular, rational, affine surface, and let $f: Y \rightarrow C$ be a surjective morphism from Y onto a nonsingular rational curve whose general fibers are isomorphic to the affine line A_k^1 . Then we have:*

(1) *Let F be a fiber of f . If F is irreducible and reduced, then F is isomorphic to the affine line A_k^1 . If F is singular, i.e., $F \not\cong A_k^1$, then F_{red} is a disjoint union of the affine lines.*

(2) *For a point $P \in C$, we denote by μ_P the number of irreducible components of the fiber $f^{-1}(P)$. If C is isomorphic to the projective line P_k^1 , we have*

$$\text{rank}_{\mathbf{Q}} \text{Pic}(Y) \otimes_{\mathbf{Z}} \mathbf{Q} = 1 + \sum_{P \in C} (\mu_P - 1).$$

If C is isomorphic to the affine line A_k^1 , we have

$$\text{rank}_{\mathbf{Q}} \text{Pic}(Y) \otimes_{\mathbf{Z}} \mathbf{Q} = \sum_{P \in C} (\mu_P - 1).$$

Proof. There exists a nonsingular projective surface W such that W contains Y as a dense open set and that the boundary curve $E := W - Y$ has only normal crossings as singularities. The surjective morphism $f: Y \rightarrow C$ defines an irreducible linear pencil Λ on W . By eliminating base points of Λ by a succession of quadratic transformations, we may assume that Λ is free from base points. Then the general members of Λ are nonsingular rational curves, and the pencil Λ defines a surjective morphism $\varphi: W \rightarrow P_k^1$. The boundary curve E contains a unique irreducible component E_0 which is a cross-section of φ , and the other components of E are contained in the fibers of φ . We may assume that a fiber of φ lying outside of Y is irreducible. Let S be a fiber of φ such that $S \cap Y \neq \emptyset$. If S is irreducible then $S \cong P_k^1$ and $S \cap Y = S - S \cap E_0 \cong A_k^1$.

Suppose S is reducible. If $S \cap Y$ is irreducible and reduced, we may contract all irreducible components of S lying outside of Y without losing generalities (cf. [7; Lemma 2.2, p. 115]). Hence, $S \cap Y \cong \mathbf{A}_k^1$. We may apply Lemma 1.3 of Kambayashi-Miyanishi [5] to obtain the same conclusion. Assume that $S \cap Y$ is singular. Then S_{red} has the following decomposition into irreducible components,

$$S_{\text{red}} = \sum_i T_i + \sum_j Z_j,$$

where $T_i \cap Y \neq \emptyset$ and $Z_j \cap Y = \emptyset$. By virtue of [7; ibid.], every component of S_{red} is a nonsingular rational curve, S_{red} is a connected curve, and the dual graph of S_{red} contains no circular chains. On the other hand, since Y is affine, Y does not contain any complete curve and E is connected, whence we know that if some T_i meets the cross-section E_0 then S_{red} has no components lying outside of Y . Suppose $S \cap Y$ is irreducible. Then $S_{\text{red}} \cap Y \cong \mathbf{A}_k^1$, for, if otherwise, the dual graph of S_{red} would contain a circular chain. Suppose $S \cap Y$ is reducible. If either $T_i \cap Y \cong \mathbf{A}_k^1$ for some component T_i or $T_i \cap T_l \cap Y \neq \emptyset$ for distinct components T_i and T_l , the dual graph of S_{red} would contain a circular chain. Therefore, every irreducible component of $S \cap Y$ is a connected component, and isomorphic to \mathbf{A}_k^1 . This proves the first assertion.

Next, we shall prove the second assertion. Let L be an irreducible fiber of φ . Then the \mathbf{Q} -vector space $\text{Pic}(W) \otimes_{\mathbf{Z}} \mathbf{Q}$ has a basis of the divisor classes of the following curves:

(i) E_0 , (ii) L , (iii) all irreducible components of a singular fiber S of φ except one component meeting Y , where S ranges over all singular fibers of φ .

The \mathbf{Q} -vector space $\text{Pic}(Y) \otimes_{\mathbf{Z}} \mathbf{Q}$ is generated by a part of the above basis consisting of all classes of curves which meet Y ; when $C \cong \mathbf{A}_k^1$, we take L to be the unique irreducible fiber lying outside of Y . Then we obtain immediately the equalities in the second assertion. Q.E.D.

1.2. With the notations in Theorem 1, set $V := \text{Spec}(A)$ and $W := \text{Spec}(B)$. The inclusion $A \hookrightarrow B$ induces a finite flat morphism $\pi: W \rightarrow V$. Since π is finite, π is faithfully flat. Therefore, V is a nonsingular, rational affine surface. We have the following

Lemma. (1) V has the logarithmic Kodaira dimension $\kappa(V) = -\infty$. (2) $A^* = k^*$.

Proof. The second assertion is clear. As for the first assertion, note that $\pi: W \rightarrow V$ is a dominant morphism. Denote by $\bar{P}_m(V)$ the logarithmic m -th genus of V for an integer $m \geq 0$. Then we have

$$0 = \bar{P}_m(W) \geq \bar{P}_m(V) \quad \text{for every } m \gg 0,$$

(cf. Iitaka [3]). Hence, $\bar{\kappa}(V) = -\infty$.

Q.E.D.

1.3. We shall prove the following

Lemma. *A is a polynomial ring in two variables over k.*

Proof. Our proof consists of the paragraphs 1.3.1~1.3.5.

1.3.1. By virtue of Theorem 0 and Lemma 1.2, V contains a nonempty cylinder-like open set. Namely, there exists a dominant morphism $\rho: V \rightarrow \mathbf{P}_k^1$ such that general fibers of ρ are isomorphic to A_k^1 .

1.3.2. Let $n := \deg \pi$. Then we claim:

For every divisor D on V, nD is linearly equivalent to 0, i.e., $nD \sim 0$.

In effect, $\pi^*(D) \sim 0$ because $\text{Pic}(W) = 0$. Since π is proper, we have $\pi_*\pi^*(D) = nD \sim 0$ by the projection formula.

1.3.3. We claim that:

- (1) $\rho(V) \cong A_k^1$;
- (2) If $\rho^{-1}(P)$ is a singular fiber of ρ , it is of the form $\rho^{-1}(P) = n_p C_p$, where $n_p \geq 2$, $n_p | n$ and $C_p \cong A_k^1$.

Proof. (1) By 1.3.2, we have $\text{rank}_{\mathbf{Q}} \text{Pic}(V) \otimes_{\mathbf{Z}} \mathbf{Q} = 0$. Suppose $\rho(V) = \mathbf{P}_k^1$. Then, Lemma 1.1 implies that

$$\text{rank}_{\mathbf{Q}} \text{Pic}(V) \otimes_{\mathbf{Z}} \mathbf{Q} = 1 + \sum_{P \in \mathbf{P}_k^1} (\mu_P - 1).$$

Since $\mu_P \geq 1$, we have $\text{rank}_{\mathbf{Q}} \text{Pic}(V) \otimes_{\mathbf{Z}} \mathbf{Q} > 0$, which is a contradiction. Hence $\rho(V)$ is an affine open set of \mathbf{P}_k^1 . Since $A^* = k^*$, $\rho(V)$ must be isomorphic to A_k^1 .

(2) By Lemma 1.1, we have

$$\text{rank}_{\mathbf{Q}} \text{Pic}(V) \otimes_{\mathbf{Z}} \mathbf{Q} = \sum_{P \in \rho(V)} (\mu_P - 1) = 0.$$

Hence $\mu_P = 1$ for all points $P \in \rho(V)$. This implies that a singular fiber of ρ (if it exists at all) is of the form

$$\rho^{-1}(P) = n_p C_p, \quad \text{where } n_p \geq 2 \quad \text{and} \quad C_p \cong A_k^1.$$

Let m be the order of C_p , i.e., m is the least positive integer such that $mC_p \sim 0$. Since $n_p C_p \sim 0$, we have $m | n_p$. Write $n_p = sm$. Let t be an inhomogeneous coordinate of $\rho(V)$. Then t is everywhere defined on V ; we may assume that $P \in \rho(V)$ is defined by $t=0$. Since $mC_p \sim 0$ and $n_p C_p = (t)$ (=the divisor

defined by $t=0$ on V), there exists an element $t' \in A$ such that $t=(t')^s$. If $s>1$ then $t-\alpha=(t')^s-\alpha$ has distinct s components for every $\alpha \in k^*$. This contradicts the irreducibility of general fibers of ρ . Hence $s=1$, i.e., $m=n_p$. Since $nC_p \sim 0$, we have $n_p|n$. Q.E.D.

1.3.4. Let t be the same as defined in 1.3.3. Suppose ρ has a singular fiber $\rho^{-1}(P)$. Since $\pi^*C_p \sim 0$, there exists an element $\tau \in B$ such that $t=\tau^{n_p}$. Let $A' = A \otimes_{k[t]} k[\tau]$. Since A is flat over $k[t]$ (cf. [EGA (IV, 15.4.2)]), A' is identified with a k -subalgebra $A[\tau]$ of B . Let \tilde{A} be the normalization of A' in B . Let $\tilde{V} = \text{Spec}(\tilde{A})$. Then the morphism $\pi: W \rightarrow V$ factors as

$$\pi: W \xrightarrow{\pi_1} \tilde{V} \xrightarrow{\pi_2} V.$$

Let $n_1 = \deg \pi_1$ and $n_2 = \deg \pi_2$. Then $n = n_1 \cdot n_2$, and $n_1 \tilde{D} \sim 0$ for every divisor \tilde{D} on \tilde{V} . We claim that:

(1) \tilde{V} is a nonsingular, rational, affine surface endowed with a dominant morphism $\tilde{\rho}: \tilde{V} \rightarrow A_k^1 := \text{Spec}(k[\tau])$, which is induced by ρ . Hence, general fibers of $\tilde{\rho}$ are isomorphic to A_k^1 .

(2) The fibration $\tilde{\rho}$ has a singular fiber with two or more irreducible components.

Proof. Let Q be a point on C_p . There exist local parameters ξ, η of V at Q such that C_p is defined locally by $\xi=0$. Then $t=u\xi^{n_p}$ for an invertible element u of $\mathcal{O}_{Q,V}$. Let $\theta := \tau/\xi$. Then \tilde{V} is analytically isomorphic to a hypersurface $\theta^{n_p} = u$ in the (θ, ξ, η) -space in a neighborhood of $\pi_2^{-1}(Q)$, and \tilde{V} is smooth at every point of $\pi_2^{-1}(Q)$ by the Jacobian criterion. Since Q is arbitrary on C_p , \tilde{V} is smooth along $(\rho \cdot \pi_2)^{-1}(P)$. Let $\rho^{-1}(P')$ be another fiber of ρ . Then $\rho^{-1}(P') = n_{P'} C_{P'}$, where $n_{P'} \geq 1$ and $C_{P'} \cong A_k^1$. Let Q' be a point on $C_{P'}$. Then there exist local parameters ξ', η' such that $C_{P'}$ is defined locally by $\xi'=0$ and $t-\alpha=u'(\xi')^{n_{P'}}$ where $\alpha \in k^*$ and u' is an invertible element of $\mathcal{O}_{Q',V}$. Then \tilde{V} is analytically isomorphic to a hypersurface $\tau^{n_p} - \alpha = u'(\xi')^{n_{P'}}$ in the (τ, ξ', η') -space. By the Jacobian criterion, \tilde{V} is smooth at every point of $\pi_2^{-1}(Q')$. Since Q' is arbitrary on $C_{P'}$, \tilde{V} is smooth along $(\rho \cdot \pi_2)^{-1}(P')$. Thus we know that \tilde{V} is smooth.

Let $\tilde{\rho}: \tilde{V} \rightarrow A_k^1 := \text{Spec}(k[\tau])$ be the canonical morphism induced by ρ . The generic fibers of ρ and $\tilde{\rho}$ are isomorphic to $\text{Spec}(A \otimes_{k[t]} k(t))$ and $\text{Spec}(A \otimes_{k[t]} k(\tau))$, respectively. Since $\text{Spec}(A \otimes_{k[t]} k(t)) \cong A_{k(t)}^1$, we know that $\text{Spec}(A \otimes_{k[t]} k(\tau)) \cong A_{k(\tau)}^1$. Hence, general fibers of $\tilde{\rho}$ are isomorphic to A_k^1 .

Let P be the point on $\text{Spec}(k[\tau])$ lying above P on $\text{Spec}(k[t])$. Then the fiber $\tilde{\rho}^{-1}(\bar{P})$ has n_p analytic branches over any point Q of C_p , for $\tilde{\rho}^{-1}(\bar{P})$ is analytically defined by $\theta^{n_p} = u$ as shown in the proof of the first assertion.

Hence, by Lemma 1.1, $\tilde{\rho}^{-1}(\tilde{P})$ has n_p connected components, each of which is isomorphic to A_k^1 . Q.E.D.

1.3.5. As remarked in 1.3.4, $\text{Pic}(\tilde{V}) \otimes_{\mathbb{Z}} \mathbb{Q} = 0$. However, if $\rho: V \rightarrow A_k^1$ has a singular fiber, Lemma 1.1 implies that $\text{rank}_{\mathbb{Q}} \text{Pic}(\tilde{V}) \otimes_{\mathbb{Z}} \mathbb{Q} > 0$. This is a contradiction. Therefore, ρ has no singular fibers. Then, by virtue of [5; Th. 1], V is an A^1 -bundle over $\rho(V) = A_k^1$. Hence, we know that $V \cong A_k^2$. Namely, A is a polynomial ring in two variables over k . This completes a proof of Lemma 1.3 as well as a proof of Theorem 1.

1.4. REMARK. Theorem 1 is a generalization of the following result in the case of dimension 1:

Let k be a field, and let A be a normal, 1-dimensional k -subalgebra of a polynomial ring over k . Then A is a polynomial ring over k .

2. Proof of Theorem 2

2.1. We retain the notations and the assumptions of Theorem 2. Let $L := k(x, y, z)$, and let K be the invariant subfield of L with respect to the induced G_a -action on L . Then, $A = B \cap K$. Since B is normal and $\text{trans.deg}_k K = 2$, we know by Zariski's Theorem (cf. Nagata [9; Th. 4, p. 52]) that A is finitely generated over k . By assumption, A is regular. By virtue of [7; Lemma 1.3.1, p. 16], we know that A is a unique factorization domain and $A^* = k^*$.

2.2. Let $W = \text{Spec}(B)$, let $V = \text{Spec}(A)$, and let $\pi: W \rightarrow V$ be the dominant morphism induced by the injection $A \hookrightarrow B$. We shall prove

Lemma. *$\pi: W \rightarrow V$ is a faithfully flat, equi-dimensional morphism of dimension 1.*

Proof. (1) We shall show that B is flat over A . Let \mathfrak{q} be a prime ideal of B and let $\mathfrak{p} = \mathfrak{q} \cap A$. Then $B_{\mathfrak{q}}$ dominates $A_{\mathfrak{p}}$. Since $A_{\mathfrak{p}}$ is regular and $B_{\mathfrak{q}}$ is Cohen-Macaulay, $B_{\mathfrak{q}}$ is flat over $A_{\mathfrak{p}}$ by virtue of [EGA (IV, 15.4.2)]. Hence B is flat over A .

(2) We shall show that π is surjective. Suppose π is not surjective. Then there exists a maximal ideal \mathfrak{m} of A such that $\mathfrak{m}B = B$. Let $(\mathfrak{O}, t\mathfrak{O})$ be a discrete valuation ring of K such that \mathfrak{O} dominates $A_{\mathfrak{m}}$. Let $R := B \otimes_{\mathbb{A}} \mathfrak{O}$.

Since B is A -flat, R is identified with a subring of L . Let Δ be a locally nilpotent derivation on B associated to the given G_a -action. Then Δ extends to a locally nilpotent \mathfrak{O} -derivation, and \mathfrak{O} is the ring of Δ -invariants in R , i.e., $\mathfrak{O} = \{r \in R; \Delta(r) = 0\}$. By assumption, we have $tR = R$, where t is a uniformisant of \mathfrak{O} . Hence $tr = 1$ for some element $r \in R$. Then $t\Delta(r) = 0$, whence $r \in \mathfrak{O}$. This is a contradiction.

(3) Note that general fibers of π are isomorphic to \mathbf{A}_k^1 . Hence, each irreducible component has dimension ≥ 1 . Suppose that some component T of a fiber $\pi^{-1}(P)$ (with $P \in V$) has dimension 2. Since B is factorial, there exists an irreducible element $b \in B$ such that T is defined by $b=0$. Since T is invariant with respect to the G_a -action, we know that $b \in A$. Let $C = \text{Spec}(A/bA)$. Then C is an irreducible curve and $\pi^{-1}(C) = T \subset \pi^{-1}(P)$. This is a contradiction because π is surjective. Thus, π is a faithfully flat, equidimensional morphism of dimension 1. Q.E.D.

2.3. Let U be the subset of all points P of V such that $\pi^{-1}(P)$ is irreducible and reduced. Then U is a dense open set of V . By virtue of [5; Th. 1], $\pi^{-1}(U) := \underset{V}{W} \times U$ is an \mathbf{A}^1 -bundle over U .

2.4. We shall prove the following:

Lemma. *V has the logarithmic Kodaira dimension $\bar{\kappa}(V) = -\infty$.*

Proof. We follow the arguments of Iitaka-Fujita [4]. Let X be a hyperplane in $W \cong \mathbf{A}_k^3$ such that $X \cap \pi^{-1}(U) \neq \phi$. Suppose that $\bar{\kappa}(V) \geq 0$. Let C be a prime divisor in X . Consider a morphism:

$$\varphi: C \times \mathbf{A}_k^1 \hookrightarrow X \times \mathbf{A}_k^1 = W \xrightarrow{\pi} V,$$

and assume that φ is a dominant morphism. Since $\dim(C \times \mathbf{A}_k^1) = \dim V = 2$, we know by [3; Prop. 1] that

$$0 = \bar{P}_m(C \times \mathbf{A}_k^1) \geq \bar{P}_m(V) \geq 1 \quad \text{for every } m \gg 0.$$

This is a contradiction. Hence φ is not a dominant morphism. Let D be the closure of $\varphi(C \times \mathbf{A}_k^1)$ in V . Then $C \times \mathbf{A}_k^1 \subset \pi^{-1}(D)$. Suppose $C \cap \pi^{-1}(U) \neq \phi$. Then the general fibers of $\pi: \pi^{-1}(D) \rightarrow D$ are isomorphic to \mathbf{A}_k^1 . Hence $\pi^{-1}(D)$ is irreducible and reduced. Since $\dim(C \times \mathbf{A}_k^1) = \dim \pi^{-1}(D) = 2$, we have $C \times \mathbf{A}_k^1 = \pi^{-1}(D)$.

Let Q be a point on X , and let C_1, \dots, C_r be prime divisors of X such that $C_1 \cap \dots \cap C_r = \{Q\}$ and that $C_i \cap \pi^{-1}(U) \neq \phi$ for every $1 \leq i \leq r$. For any point Q of X , we can find such a set of prime divisors. In effect, X is the affine plane \mathbf{A}_k^2 and $X \cap (W - \pi^{-1}(U))$ has dimension ≤ 1 . Thus, we have only to take a set of suitably chosen lines on X passing through Q . Let D_i be the irreducible curve which is the closure of $\varphi(C_i \times \mathbf{A}_k^1)$ in V , where $1 \leq i \leq r$. Then $C_i \times \mathbf{A}_k^1 = \pi^{-1}(D_i)$ for $1 \leq i \leq r$. Since we have

$$\begin{aligned} (Q) \times \mathbf{A}_k^1 &= (C_1 \cap \dots \cap C_r) \times \mathbf{A}_k^1 = (C_1 \times \mathbf{A}_k^1) \cap \dots \cap (C_r \times \mathbf{A}_k^1) \\ &= \pi^{-1}(D_1) \cap \dots \cap \pi^{-1}(D_r) = \pi^{-1}(D_1 \cap \dots \cap D_r), \end{aligned}$$

we know that $D_1 \cap \dots \cap D_r = \{P\}$, a point in V . The correspondence $Q \mapsto P$ defines a morphism $\psi: X \rightarrow V$. If ψ is a dominant morphism, we have

$$0 = \bar{P}_m(X) \geq \bar{P}_m(V) \geq 1 \quad \text{for every } m \gg 0,$$

which is a contradiction. Hence ψ is not a dominant morphism. Let F be the closure of $\psi(X)$ in V . Then, for every point P of F , we have $\dim \psi^{-1}(P) \geq 1$, and $\pi(\psi^{-1}(P) \times \mathbf{A}_k^1) = \psi(\psi^{-1}(P)) = P$. This contradicts Lemma 2.2. Therefore, $\bar{\kappa}(V) = -\infty$. Q.E.D.

2.5. As observed in the above arguments, V is a nonsingular, rational, affine surface such that $\bar{\kappa}(V) = -\infty$, A is a unique factorization domain and $A^* = k^*$. Then, by virtue of Theorem 0, V is isomorphic to the affine plane \mathbf{A}_k^2 . Namely, A is a polynomial ring in two variables over k . This completes a proof of Theorem 2.

2.6. We do not know whether or not the regularity condition on A can be eliminated. As a view-point of practical use, the following result might be interesting:

Proposition. *Let the notations and the assumptions be the same as in Theorem 2. Instead of the regularity condition on A , we assume that A contains a coordinate, say z . Then A is a polynomial ring in two variables over k .*

Proof. (1) Let H_α be the hyperplane $z = \alpha$ in $W := \text{Spec}(B)$ for every $\alpha \in k$. Since z is G_α -invariant, the hyperplane H_α is G_α -invariant. Set $B_\alpha := B/(z - \alpha)B \cong k[x, y]$. Let R_α be the invariant subring of B_α with respect to the induced G_α -action on H_α . Then it is clear that we have the following inclusions:

$$A_\alpha := A/(z - \alpha)A \hookrightarrow R_\alpha \hookrightarrow B_\alpha.$$

For a general element $\alpha \in k$, the induced G_α -action on H_α is nontrivial. Hence R_α is a one-parameter polynomial ring over k (cf. [7; Lemma, p. 39]).

(2) Let $\mathfrak{k} = k(z)$, let $B_\mathfrak{k} := \mathfrak{k}[x, y]$ and let $R_\mathfrak{k}$ be the G_α -invariant subring of $B_\mathfrak{k}$ with respect to the induced G_α -action on $B_\mathfrak{k}$. Then it is not hard to show that $R_\mathfrak{k} = A \otimes_{k[z]} \mathfrak{k}$ and that $R_\mathfrak{k}$ is a one-parameter polynomial ring over \mathfrak{k} (cf.

Remark 1.4 and [7; ibid.]). Now, set $Y := \text{Spec}(A)$ and let $f: Y \rightarrow \mathbf{A}_k^1 = \text{Spec}(k[z])$ be the morphism associated to the inclusion $k[z] \hookrightarrow A$. Then the foregoing observations imply the following:

- (i) The generic fiber of f is $\text{Spec}(R_\mathfrak{k})$, which is isomorphic to $\mathbf{A}_\mathfrak{k}^1$;
- (ii) For every $\alpha \in k$, the fiber $f^{-1}(\alpha)$ is geometrically integral (cf. the inclusions $A_\alpha \hookrightarrow R_\alpha \hookrightarrow B_\alpha$ in the step (1)).

Since f is clearly faithfully flat morphism, we know by [5; Th.1] that $f: Y \rightarrow \mathbf{A}_k^1$ is an \mathbf{A}^1 -bundle over \mathbf{A}_k^1 . Hence Y is isomorphic to the affine plane \mathbf{A}_k^2 .

Namely, A is a polynomial ring in two variables over k .

Q.E.D.

2.7. Corollary. *Let the notations and the assumptions be the same as in Theorem 2. Instead of the regularity condition on A , assume that G_a acts linearly on A_k^3 via the canonical action of $GL(3, k)$ on the vector space $kx+ky+kz$. Then A is a polynomial ring in two variables over k .*

Proof. Since G_a is a unipotent group, we may assume, after a change of coordinates x, y, z , that G_a acts on A_k^3 via the subgroup of upper triangular matrices in $GL(3, k)$. Then, one of coordinates, say z , is G_a -invariant. Then Proposition 2.5 implies that our assertion holds true. Q.E.D.

2.8. In the case of an algebraic action of G_a on a polynomial ring $k[x, y]$ in two variables over k , $k[x, y]$ is a one-parameter polynomial ring over the subring of G_a -invariant elements (cf. [7; p. 39]). However, this does not hold in the case of an algebraic G_a -action on a polynomial ring of dimension ≥ 3 over k , as is shown by the following:

EXAMPLE. *Let Δ be a k -derivation on a polynomial ring $B:=k[x, y, z]$ defined by $\Delta(x)=y$, $\Delta(y)=z$ and $\Delta(z)=0$. Then Δ is locally nilpotent, whence Δ defines an algebraic G_a -action on B . The subring A of G_a -invariant elements is $A=k[z, zx-\frac{1}{2}y^2]$. However, B is not a one-parameter polynomial ring over A .*

Proof. We shall prove only the last assertion. Suppose that $B=A[t]$ for some element t of B . Set $W:=\text{Spec}(B)$ and $V:=\text{Spec}(A)$. Let $f: W \rightarrow V$ be the morphism defined by the inclusion $A \hookrightarrow B$. Let P be a point of V such that $z=\alpha$ and $zx-\frac{1}{2}y^2=\beta$, where $\alpha, \beta \in k$. If $\alpha \neq 0$, the fiber $f^{-1}(P)$ is isomorphic to A_k^1 . If $\alpha=0$ and $\beta \neq 0$, $f^{-1}(P)$ is a disjoint union of two irreducible components isomorphic to A_k^1 . If $\alpha=\beta=0$, $f^{-1}(P)$ is a non-reduced curve with only one irreducible component isomorphic to A_k^1 counted twice. But, if $B=A[t]$, all fibers of f should be isomorphic to A_k^1 . Therefore, we have a contradiction. Q.E.D.

References

- [1] T. Fujita: *On Zariski Problem*, Proc. Japan Acad. **55**, Ser. A (1979), 106–110.
- [2] A. Grothendieck et J. Dieudonné: *Eléments de géométrie algébrique*, Publ. Math. Inst. Hautes Etudes Sci., Vol. **4**, **8**, ..., referred to as (EGA).
- [3] S. Iitaka: *On logarithmic Kodaira dimension of algebraic varieties*, Complex analysis and algebraic geometry, 175–189, Iwanami Shoten and Cambridge Univ. Press, 1977.
- [4] S. Iitaka and T. Fujita: *Cancellation theorem for algebraic varieties*, J. Fac. Sci.

Univ. of Tokyo, Sec. IA, **24** (1977), 123–127.

- [5] T. Kambayashi and M. Miyanishi: *On flat fibrations by affine line*, Illinois J. Math. **22** (1978), 662–671.
- [6] M. Miyanishi: *An algebraic characterization of the affine plane*, J. Math. Kyoto Univ. **15** (1975), 169–184.
- [7] M. Miyanishi: Lectures on curves on rational and unirational surfaces, Tata Institute of Fundamental Research, Vol. 60, Berlin-Heidelberg-New York, Springer Verlag, 1978.
- [8] M. Miyanishi and T. Sugie: *Affine surfaces containing cylinderlike open sets*, J. Math. Kyoto Univ. **20** (1980), 11–42.
- [9] M. Nagata: Lectures on the fourteenth problem of Hilbert, Tata Institute of Fundamental Research, Vol. 31, Bombay, 1965.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan