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Introduction. The purpose of this article is to prove the following two
theorems:

Theorem 1. Let k be an algebraically closed field of characteristic zero,
and let A be a k-subalgebra of a polynomial ring B:=R[x, y] such that B is a flat
A-module of finite type. Then A is a polynomial ring in two variables over k.

Theorem 2. Let k be an algebraically closed field of characteristic zero,
and let B:=Fk[x,y, 2] be a polynomial ring in three variables over k. Assume that
there is given a nontrivial action of the additive group G, on the affine 3-space
A}:=Spec(B) over k. Let A be the subring of G,invariant elements in B.
Assume that A is regular. Then A is a polynomial ring in two variables over k.

Theorem 1 was formerly proved in part under one of the following
additional conditions (cf. [7; pp. 139-142]):

(1) Bis etale over 4,

(2) A is the invariant subring in B with respect to an action of a finite
group.

In proofs of both theorems, substantial roles will be played by the following
theorem, which is a consequence of the results obtained in Fujita [1], Miyanishi-
Sugie [8] and Miyanishi [6]:

Theorem 0. Let k be an algebraically closed field of characteristic zero, and
let X=Spec(A) be a nonsingular affine surface defined over k. Then the following
assertions hold true:

(1) X contains a nonempty cylinderlike open set, i.e., there exists a dominant
morphism p: X—C from X to a nonsingular curve C whose general fibers are iso-
morphic to the affine line Ai, if and only if X has the logarithmic Kodaira dimen-
sion ®(X)=—oo.

(2) X is isomorphic to the affiine plane A} if and only if X has the logarithmic
Kodaira dimension #(X)=-—cc, A is a unique factorization domain, and A*=
k*, where A* is the set of invertible elements in A and k*=k—(0).

In this article, the ground field k is always assumed to be an algebraically
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330 M. MI1YANISHI

closed field of characteristic zero. For the definition and relevant results on
logarithmic pluri-genera and the logarithmic Kodaira dimension of an alge-
braic variety, we refer to Iitaka [3]. An algebraic action of the additive group
G, on an affine scheme Spec(B) over k can be interpreted in terms of a locally
nilpotent k-derivation A on B. In particular, the subring 4 of G,-invariant
elements in B is identified with the set of elements & of B such that A(b)=0.
For results on G,-actions necessary in the subsequent arguments, we refer to
[7; pp. 14-24]. The Picard group, i.e., the divisor class group, of a nonsin-
gular variety V over k is denoted by Pic(V); for a k-algebra 4, A* denotes
the multiplicative group of all invertible elements of 4; the affine #-space over
k is denoted by A}; @ (resp. Z) denotes the field of rational numbers (resp.
the ring of rational integers).

1. Proof of Theorem 1
1.1. We shall begin with

Lemma. Let Y be a nonsingular, rational, affine surface, and let f: Y —C
be a surjective morphism from Y onto a momsingular rational curve whose general
fibers are isomorphic to the affine line Ay. Then we have:

(1) Let F be a fiber of f. If F is irreducible and reduced, then F is isomorphic
to the affine line Ay. If F is singular, i.e., F2XX A}, then F,, is a disjoint union of
the affine lines.

(2) For a point P C, we denote by wp the number of irreducible components
of the fiber f~(P). If C is isomorphic to the projective line Py, we have

rankq Pic (Y)@Q = 1+ 3 (ur—1).
If C is isomorphic to the affine line A}, we have

rankq Pic (V)®Q = 3 (ur—1).

Proof. There exists a nonsingular projective surface W such that W
contains Y as a dense open set and that the boundary curve E:=W—Y has only
normal crossings as singularities. The surjective morphism f:Y —C defines
an irreducible linear pencil A on W. By eliminating base points of A by a suc-
cession of quadratic transformations, we may assume that A is free from base
points. Then the general members of A are nonsingular rational curves, and
the pencil A defines a surjective morphism ¢@: W—P;. The boundary curve
E contains a unique irreducible component E; which is a cross-section of @, and
the other components of E are contained in the fibers of @. We may assume
that a fiber of @ lying outside of Y is irreducible. Let S be a fiber of @ such
that SNY=¢. If S is irreducible then S=Pj and SN Y=S—SNE,=~A;.
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Suppose S is reducible. If SNY is irreducible and reduced, we may contract
all irreducible components of S lying outside of Y without losing generalities
(cf. [7; Lemma 2.2, p. 115]). Hence, SN Y=A};. We may apply Lemma
1.3 of Kambayashi-Miyanishi [5] to obtain the same conclusion. Assume
that SNY is singular. Then S, has the following decomposition into irre-
ducible components,

Sred= 2 Ti+;Zj)

where T;NY=*¢ and Z;NY=¢. By virtue of [7; ibid.], every component of
Siea is 2 nonsingular rational curve, S, is a connected curve, and the dual
graph of S, contains no circular chains. On the other hand, since Y is affine,
Y does not contain any complete curve and E is connected, whence we know
that if some 7; meets the cross-section E, then S,.4 has no components lying
outside of Y. Suppose SNY is irreducible. Then SN Y=A4;, for, if
otherwise, the dual graph of S, would contain a circular chain. Suppose
SNY is reducible. If either T;N Y2¢ A} for some component T; or T;NT,N
Y = ¢ for distinct components T'; and T, the dual graph of S, .4 would contain
a circular chain. Therefore, every irreducible component of SNY is a con-
nected component, and isomorphic to Ai. This proves the first assertion.

Next, we shall prove the second assertion. Let L be an irreducible fiber
of . Then the @-vector space Pic(W)®Q has a basis of the divisor classes of
the following curves: z

(i) E,, (i1) L, (iii) all irreducible components of a singular fiber S of @
except one component meeting Y, where S ranges over all singular fibers of .

The @Q-vector space Pic(Y)® Q is generated by a part of the above basis
z

consisting of all classes of curves which meet Y; when C= A}, we take L to be
the unique irreducible fiber lying outside of Y. Then we obtain immediately
the equalities in the second assertion. Q.E.D.

1.2. With the notations in Theorem 1, set V:= Spec(A) and W:= Spec(B).
The inclusion A< B induces a finite flat morphism z: W—V. Since # is finite,
m is faithfully flat. Therefore, V' is a nonsingular, rational affine surface.
We have the following

Lemma. (1) V has the logarithmic Kodaira dimension #(V)=—oco. (2)
A*=Fk*.

Proof. The second assertion is clear. As for the first assertion, note
that z: W—V is a dominant morphism. Denote by P,(V) the logarithmic m-th
genus of V for an integer m=0. Then we have
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0= P, (W)=P,(V) forevery m>0,
(cf. Iitaka [3]). Hence, &(V)=—oo. Q.E.D.
1.3. We shall prove the following

Lemma. A4 is a polynomial ring in two variables over k.
Proof. Our proof consists of the paragraphs 1.3.1~1.3.5.

1.3.1. By virtue of Theorem 0 and Lemma 1.2, ¥ contains a nonempty cylinder-
like open set. Namely, there exists a dominant morphism p: V—P; such
that general fibers of p are isomorphic to Aj.

1.3.2. Letn:=deg~. Then we claim:
For every divisor D on V, nD is linearly equivalent to 0, i.e., nD~A.

In effect, z*(D)~0 because Pic(W)=0. Since = is proper, we have
nyn*(D)=nD~0 by the projection formula.

1.3.3. We claim that:
(1) p(V)~ak;
(2) If p~(P) is a singular fiber of p, it is of the form p~'(P)=npCp, where
np=2, np|n and Cpo= A}.
Proof. (1) By 1.3.2, we have rankq Pic (V)®Q=0. Suppose p(V)==Pi.
z
Then, Lemma 1.1 implies that

rankg Pic (V)®@Q = 14+ 3 (up—1).
z Pep}

Since pp=1, we have rankyPic(V)®Q >0, which is a contradiction. Hence
Z .

p(V) is an affine open set of P}. Since A*=k*, p(V') must be isomorphic to
Aj.

(2) By Lemma 1.1, we have

ranke Pic (®Q = ) (up—1)=0.
z PEXY)
Hence pp=1 for all points PEp(V). This implies that a singular fiber of
p (if it exists at all) is of the form
pY(P)=npCp, where np=2 and Cp=A4;.

Let m be the order of Cj, i.e., m is the least positive integer such that mCp~0.
Since n,Cp~0, we have m|n,. Write n,=sm. Let ¢t be an inhomogeneous
coordinate of p(V). Then ¢ is everywhere defined on V; we may assume
that Pep(V) is defined by t=0. Since mCp~0 and n,Cp=(t) (=the divisor
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defined by t=0 on V), there exists an element ¢'€4 such that t=(¢')". If
s>1 then t—a=(¢')"—a has distinct s components for every a=k*. This
contradicts the irreducibility of general fibers of p. Hence s=1, i.e., m=mnp.
Since nCp~0, we have n,|n. Q.E.D.

1.3.4. Let ¢ be the same as defined in 1.3.3. Suppose p has a singular fiber
p~Y(P). Since z*Cp~0, there exists an element T€B such that t=7"s.

Let A'=AQ®k[7]. Since A is flat over k[t] (cf. [EGA (IV, 154.2)]), A" is

k(t)

identified with a k-subalgebra A[7] of B. Let 4 be the normalization of 4’
is B. Let V=Spec (4). Then the morphism z: W—V factors as

Let n,—=deg 7, and n,—=deg 7,. Then n=n,-n, and n,D~0 for every divisor
Don V. We claim that:

(1) V is a nonsingular, rational, affine surface endowed with a dominant
morphism p: V—> A}:=Spec (k[7]), which is induced by p. Hence, general fibers
of p are isomorphic to Aj.

(2) The fibration p has a singular fiber with two or more irreducible com-
ponents.

Proof. Let @ be a point on Cp. There exist local parameters &, » of V
at @ such that Cp is defined locally by £=0. Then t=u£"r for an invertible
element u of Oqy. Let §:=7/E. Then V is analytically isomorphic to a
hypersurface 8" =u in the (6, £, 7)-space in a neighborhood of #7'(Q), and V
is smooth at every point of #7z'(Q) by the Jacobian criterion. Since @ is
arbitrary on Cp, V is smooth along (p+7,)™(P). Let p~(P’) be another
fiber of p. Then p~}(P")=npC,, where ny=1 and Cp=A;. Let Q" be a
point on Cpr. Then there exist local parameters &', #’ such that C,s is defined
locally by &'=0 and t—a=u'(¢")"?" where a€k* and #' is an invertible
element of O’ . Then Vis analytically isomorphic to a hypersurface 7% —a=
u'(E')'7" in the (7, £’,7n’)-space. By the Jacobian criterion, V is smooth at
every point of z7!(Q’). Since Q' is arbitrary on C,, V is smooth along
(p-7)"}(P’). Thus we know that Vis smooth.

Let p: V— A}:=Spec(k[]) be the canonical morphism induced by p.
The generic fibers of p and p are isomorphic to Spec(4 ’%k(t)) and

Spec(4 ®] k(7)), respectively. Since Spec(4 Q‘Z)] k(t))== Ak, we know that
k(t kLt

Spec(4 ®] k(7)== A}y. Hence, general fibers of p are isomorphic to Aj.
klt

Let P be the point on Spec(k[7]) lying above P on Spec(k[t]). Then
the fiber p7'(P) has 7, analytic branches over any point  of C,, for p~(P) is
analytically defined by §”=u as shown in the proof of the first assertion.
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Hence, by Lemma 1.1, 57(P) has 7, connected components, each of which is
isomorphic to Aj. Q.E.D.

1.3.5. As remarked in 1.3.4, Pic(V)®Q=0. However, if p: V—A} has a
z .
singular fiber, Lemma 1.1 implies that rankyPic(V)®@Q>0. This is a con-
z

tradiction. Therefore, p has no singular fibers. Then, by virtue of [5; Th.
1], V is an A'-bundle over p(V)=A}. Hence, we know that V=Aj}. Namely,
A is a polynomial ring in two variables over k. This completes a proof of
Lemma 1.3 as well as a proof of Theorem 1.

1.4. Remark. Theorem 1 is a generalization of the following result in the case
of dimension 1:

Let k be a field, and let A be a normal, 1-dimensional k-subalgebra of a polyno-
mial ring over k. Then A is a polynomial ring over k.

2. Proof of Theorem 2

2.1. We retain the notations and the assumptions of Theorem 2. Let L:=
k(x,y, 2), and let K be the invariant subfield of L with respect to the induced
G,-action on L. Then, A=BNK. Since B is normal and trans.deg, K=2,
we know by Zariski’s Theorem (cf. Nagata [9; Th. 4, p. 52]) that 4 is finitely
generated over k. By assumption, 4 is regular. By virtue of [7; Lemma
1.3.1, p. 16], we know that A is a unique factorization domain and A*=Fk*.

2.2. Let W=Spec(B), let V=Spec(A4), and let z: W—V be the dominant
morphism induced by the injection A<»B. We shall prove

Lemma. 7z:W—V is a faithfully flat, equi-dimensional morphism of
dimension 1.

Proof. (1) We shall show that B is flat over 4. Let q be a prime ideal
of B and let p=qNA4. Then By dominates A,. Since 4, is regular and Bq
is Cohen-Macaulay, By is flat over 4, by virtue of [EGA (IV, 15.4.2)]. Hence
B is flat over A.

(2) We shall show that # is surjective. Suppose z is not surjective.
Then there exists a maximal ideal m of A such that mB=B. Let (O, #0) bea
discrete valuation ring of K such that © dominates Ay. Let R:zB(?Q.

Since B is A-flat, R is identified with a subring of L. Let A be a locally
nilpotent derivation on B associated to the given G,-action. Then A extends
to a locally nilpotent ©-derivation, and £ is the ring of A-invariants in R, i.e.,
O={reR; A(r)=0}. By assumption, we have tR=R, where ¢ is a uniformisant
of O. Hence tr=1 for some element r&R. Then tA(r)=0, whence r&9.
This is a contradiction.
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(3) Note that general fibers of z are isomorphic to A}. Hence, each
irreducible component has dimension =1. Suppose that some component
T of a fiber #7'(P) (with PEV) has dimension 2. Since B is factorial, there
exists an irreducible element 6B such that T is defined by b=0. Since T
is invariant with respect to the G,-action, we know that be 4. Let C=Spec
(A/bA). Then C is an irreducible curve and 7 Y(C)=TcC=z %P). This is
a contradiction because = is surjective. Thus, = is a faithfully flat, equi-
dimensional morphism of dimension 1. Q.E.D.

2.3. Let U be the subset of all points P of V such that z"(P) is irreducible
and reduced. Then U is a dense open set of V. By virtue of [5; Th. 1],
= Y U):= W>§ U is an A'-bundle over U.

2.4. We shall prove the following:
Lemma. V has the logarithmic Kodaira dimension =(V)=—oo.

Proof. We follow the arguments of Iitaka-Fujita [4]. Let X be a hyper-
plane in W= A} such that XNz %U)+¢. Suppose that #(V)=0. Let
C be a prime divisor in X. Consider a morphism:

@ Cx Al Xx A= WSV,

and assume that @ is a dominant morphism. Since dim(C x A})=dim V=2,
we know by [3; Prop. 1] that

0= P, (CxA)=P,(V)=1 for for every m>0.

This is a contradiction. Hence @ is not a dominant morphism. Let D be
the closure of p(C X A})in V. Then C X AiCx™Y(D). Suppose CNz Y (U)=*¢.
Then the general fibers of #: z7}(D)—D are isomorphic to A;. Hence z7}(D)
is irreducible and reduced. Since dim(CXx Ai)=dimz " (D)=2, we have
CxX Ay=n"Y(D).

Let @ be a point on X, and let C,, -, C, be prime divisors of X such that
C.:N--NC,={Q} and that C;Nz " Y(U)=*¢ for every 1=<i<r. For any point
Q of X, we can find such a set of prime divisors. In effect, X is the affine plane
A} and XN(W—="YU)) has dimension <1. Thus, we have only to take
a set of suitably chosen lines on X passing through €. Let D; be the irre-
ducible curve which is the closure of @(C;Xx A})in V, where 1=i<r. Then
C:x Al=n"%D;) for 1<i<r. Since we have

(@)X A} = (C; N+ NC,)x Ak = (C:x AR) N - N(C, X Ak)
=z (D)N - Nz (D,) =z H(DyN - nb,),
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we know that D;N---ND,={P}, a point in V. The correspondence @+— P
defines a morphism +r: X—V. If 4 is a dominant morphism, we have

0= P, (X)=P,(V)=1 forevery m>0,

which is a contradiction. Hence 4 is not a dominant morphism. Let F be
the closure of y-(X) in V. Then, for every point P of F, we have dim+-"{(P)=1,
and z(\r"Y(P) X A})=+(y"(P))=P. This contradicts Lemma 2.2. Therefore,
®(V)=—-co. Q.E.D.

2.5. As observed in the above arguments, V is a nonsingular, rational, affine
surface such that #(V)=—oco, A4 is a unique factorization domain and A*=~k*.
Then, by virtue of Theorem 0, ¥ is isomorphic to the affine plane A;. Namely,
A is a polynomial ring in two variables over k. 'This completes a proof of
Theorem 2.

2.6. We do not know whether or not the regularity condition on A4 can be
eliminated. As a view-point of practical use, the following result might be
interesting:

Proposition. Let the notations and the assumptions be the same as in
Theorem 2. Instead of the regularity condition on A, we assume that A contains
a coordinate, say z. Then A is a polynomial ring in two variables over k.

Proof. (1) Let H, be the hyperplane 2=« in W:=Spec(B) for every
ack. Since z is G,-invariant, the hyperplane H, is G,-invariant. Set By:=
B/(z—a)B=k[x,y]. Let R, be the invariant subring of B, with respect to
the induced G,-action on H,. Then it is clear that we have the following in-
clusions:

A= A/(z—a)A — Ry B,

For a general element ok, the induced G,-action on H, is nontrivial. Hence
R, is a one-parameter polynomial ring over k (cf. [7; Lemma, p. 39]).

(2) Let t=k(z), let By:=¥[x,y] and let Ry be the G,-invariant subring
of By with respect to the induced G,-action on By. Then it is not hard to show
that RTZA,,@,f and that Ry is a one-parameter polynomial ring over f (cf.

Remark 1.4 and [7; ibid.]). Now, set Y:=Spec(4) and let f: Y —A}=Spec
(k[2]) be the morphism associated to the inclusion k[z]<~4. Then the foregoing
observations imply the following:

(i) The generic fiber of f is Spec(Ry), which is isomorphic to At;

(i) For every a €k, the fiber f~)(a) is geometrically integral (cf. the in-
clusions A,~R,B, in the step (1)).
Since f is clearly faithfully flat morphism, we know by [5; Th.1] that f: Y — A}
is an A'-bundle over A;. Hence Y is isomorphic to the affine plane Aj.
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Namely, 4 is a polynomial ring in two variables over k. Q.E.D.

2.7. Corollary. Let the notations and the assumptions be the same as in Theorem
2. Instead of the regularity condition on A, assume that G, acts linearly on A} via
the canonical action of GL(3, k) on the vector space kx+ky+kz. Then A is a
polynomial ring in two variables over k.

Proof. Since G, is a unipotent group, we may assume, after a change
of coordinates x, y, 2, that G, acts on A} via the subgroup of upper triangular
matrices in GL(3, k). Then, one of coordinates, say 2, is G,-invariant. Then
Proposition 2.5 implies that our assertion holds true. Q.E.D.

2.8. In the case of an algebraic action of G, on a polynomial ring k[x, ] in two
variables over R, k[x,y] is a one-parameter polynomial ring over the subring
of G,-invariant elements (cf. [7; p. 39]). However, this does not hold in the
case of an algebraic G,-action on a polynomial ring of dimension =3 over &, as
is shown by the following:

ExamMPLE. Let A be a k-derivation on a polynomial ring B:=k[x,y, 3]
defined by A(x)=y, A(y)==z and A(2)=0. Then A is locally nilpotent, whence A
defines an algebraic G,-action on B. The subring A of G,-invariant elements is

A=Fk[z, zx—%yz]. However, B is not a one-parameter polynomial ring over A.

Proof. We shall prove only the last assertion. Suppose that B=A[¢]
for some element ¢ of B. Set W:=Spec(B) and V:=Spec(4). Letf: WV
be the morphism defined by the inclusion 4<~B. Let P be a point of V such

that s=q« and zx—%yzzﬁ, where a, B€k. If a=0, the fiber f'(P) is iso-

morphic to A;. If a=0and B0, f'(P) is a disjoint union of two irreducible
components isomorphic to Aji. If a=B=0, f7)(P) is a non-reduced curve
with only one irreducible component isomorphic to A} counted twice. But,
if B=A[t], all fibers of f should be isomorphic to A;. Therefore, we have a
contradiction. Q.E.D.
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