<table>
<thead>
<tr>
<th>Title</th>
<th>Regular subrings of a polynomial ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Miyanishi, Masayoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 17(2) P.329–P.338</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1980</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12031</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12031</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
REGULAR SUBRING OF A POLYNOMIAL RING

MASAYOSHI MIYANISHI*

(Received April 17, 1979)

Introduction. The purpose of this article is to prove the following two theorems:

Theorem 1. Let k be an algebraically closed field of characteristic zero, and let A be a k-subalgebra of a polynomial ring $B := k[x, y]$ such that B is a flat A-module of finite type. Then A is a polynomial ring in two variables over k.

Theorem 2. Let k be an algebraically closed field of characteristic zero, and let $B := k[x, y, z]$ be a polynomial ring in three variables over k. Assume that there is given a nontrivial action of the additive group G_a on the affine 3-space $A^3 := \text{Spec}(B)$ over k. Let A be the subring of G_a-invariant elements in B. Assume that A is regular. Then A is a polynomial ring in two variables over k.

Theorem 1 was formerly proved in part under one of the following additional conditions (cf. [7; pp. 139-142]):

1. B is etale over A,
2. A is the invariant subring in B with respect to an action of a finite group.

In proofs of both theorems, substantial roles will be played by the following theorem, which is a consequence of the results obtained in Fujita [1], Miyanishi-Sugie [8] and Miyanishi [6]:

Theorem 0. Let k be an algebraically closed field of characteristic zero, and let $X = \text{Spec}(A)$ be a nonsingular affine surface defined over k. Then the following assertions hold true:

1. X contains a nonempty cylinderlike open set, i.e., there exists a dominant morphism $\rho: X \to C$ from X to a nonsingular curve C whose general fibers are isomorphic to the affine line A_1, if and only if X has the logarithmic Kodaira dimension $\kappa(X) = -\infty$.
2. X is isomorphic to the affine plane A_2 if and only if X has the logarithmic Kodaira dimension $\kappa(X) = -\infty$, A is a unique factorization domain, and $A^* = k^*$, where A^* is the set of invertible elements in A and $k^* = k - (0)$.

In this article, the ground field k is always assumed to be an algebraically

*) Supported by Grant-in-Aid for Scientific Research
closed field of characteristic zero. For the definition and relevant results on logarithmic pluri-genera and the logarithmic Kodaira dimension of an algebraic variety, we refer to Itaka [3]. An algebraic action of the additive group G_a on an affine scheme $\text{Spec}(B)$ over k can be interpreted in terms of a locally nilpotent k-derivation Δ on B. In particular, the subring A of G_a-invariant elements in B is identified with the set of elements b of B such that $\Delta(b) = 0$.

For results on G_a-actions necessary in the subsequent arguments, we refer to [7; pp. 14–24]. The Picard group, i.e., the divisor class group, of a nonsingular variety V over k is denoted by $\text{Pic}(V)$; for a k-algebra A, A^* denotes the multiplicative group of all invertible elements of A; the affine n-space over k is denoted by A^n_k; \mathbb{Q} (resp. \mathbb{Z}) denotes the field of rational numbers (resp. the ring of rational integers).

1. Proof of Theorem 1

1.1. We shall begin with

Lemma. Let Y be a nonsingular, rational, affine surface, and let $f: Y \to C$ be a surjective morphism from Y onto a nonsingular rational curve whose general fibers are isomorphic to the affine line $A^1_\mathbb{A}$. Then we have:

1. Let F be a fiber of f. If F is irreducible and reduced, then F is isomorphic to the affine line $A^1_\mathbb{A}$. If F is singular, i.e., $F \cong A^1_\mathbb{A}$, then F_{red} is a disjoint union of the affine lines.

2. For a point $P \in C$, we denote by μ_P the number of irreducible components of the fiber $f^{-1}(P)$. If C is isomorphic to the projective line $\mathbb{P}^1_\mathbb{A}$, we have

$$\text{rank}_\mathbb{Q} \text{Pic}(Y) \otimes \mathbb{Q} = 1 + \sum_{P \in C} (\mu_P - 1).$$

If C is isomorphic to the affine line $A^1_\mathbb{A}$, we have

$$\text{rank}_\mathbb{Q} \text{Pic}(Y) \otimes \mathbb{Q} = \sum_{P \in C} (\mu_P - 1).$$

Proof. There exists a nonsingular projective surface W such that W contains Y as a dense open set and that the boundary curve $E := W - Y$ has only normal crossings as singularities. The surjective morphism $f: Y \to C$ defines an irreducible linear pencil Λ on W. By eliminating base points of Λ by a succession of quadratic transformations, we may assume that Λ is free from base points. Then the general members of Λ are nonsingular rational curves, and the pencil Λ defines a surjective morphism $\varphi: W \to \mathbb{P}^1_\mathbb{A}$. The boundary curve E contains a unique irreducible component E_0 which is a cross-section of φ, and the other components of E are contained in the fibers of φ. We may assume that a fiber of φ lying outside of Y is irreducible. Let S be a fiber of φ such that $S \cap Y \neq \varnothing$. If S is irreducible then $S \cong \mathbb{P}^1_\mathbb{A}$ and $S \cap Y = S \setminus E_0 = A^1_\mathbb{A}$.

Suppose S is reducible. If $S \cap Y$ is irreducible and reduced, we may contract all irreducible components of S lying outside of Y without losing generalities (cf. [7; Lemma 2.2, p. 115]). Hence, $S \cap Y \approx A^1$. We may apply Lemma 1.3 of Kambayashi-Miyanishi [5] to obtain the same conclusion. Assume that $S \cap Y$ is singular. Then S_{red} has the following decomposition into irreducible components,

$$S_{\text{red}} = \sum T_i + \sum Z_j,$$

where $T_i \cap Y \neq \phi$ and $Z_j \cap Y = \phi$. By virtue of [7; ibid.], every component of S_{red} is a nonsingular rational curve, S_{red} is a connected curve, and the dual graph of S_{red} contains no circular chains. On the other hand, since Y is affine, Y does not contain any complete curve and E is connected, whence we know that if some T_i meets the cross-section E_0 then S_{red} has no components lying outside of Y. Suppose $S \cap Y$ is irreducible. Then $S_{\text{red}} \cap Y \approx A^1$, for, if otherwise, the dual graph of S_{red} would contain a circular chain. Suppose $S \cap Y$ is reducible. If either $T_i \cap Y \approx A^1$ for some component T_i or $T_i \cap T_j \cap Y \neq \phi$ for distinct components T_i and T_j, the dual graph of S_{red} would contain a circular chain. Therefore, every irreducible component of $S \cap Y$ is a connected component, and isomorphic to A^1. This proves the first assertion.

Next, we shall prove the second assertion. Let L be an irreducible fiber of ϕ. Then the Q-vector space $\text{Pic}(W) \otimes Q$ has a basis of the divisor classes of the following curves:

(i) E_0, (ii) L, (iii) all irreducible components of a singular fiber S of ϕ except one component meeting Y, where S ranges over all singular fibers of ϕ.

The Q-vector space $\text{Pic}(Y) \otimes Q$ is generated by a part of the above basis consisting of all classes of curves which meet Y; when $C \approx A^1$, we take L to be the unique irreducible fiber lying outside of Y. Then we obtain immediately the equalities in the second assertion. Q.E.D.

1.2. With the notations in Theorem 1, set $V := \text{Spec}(A)$ and $W := \text{Spec}(B)$. The inclusion $A \hookrightarrow B$ induces a finite flat morphism $\pi: W \rightarrow V$. Since π is finite, π is faithfully flat. Therefore, V is a nonsingular, rational affine surface. We have the following

Lemma. (1) V has the logarithmic Kodaira dimension $\kappa(V) = -\infty$. (2) $A^* = k^*$.

Proof. The second assertion is clear. As for the first assertion, note that $\pi: W \rightarrow V$ is a dominant morphism. Denote by $P_m(V)$ the logarithmic m-th genus of V for an integer $m \geq 0$. Then we have
We shall prove the following lemma. A is a polynomial ring in two variables over k.

Proof. Our proof consists of the paragraphs 1.3.1~1.3.5.

1.3.1. By virtue of Theorem 0 and Lemma 1.2, V contains a nonempty cylinder-like open set. Namely, there exists a dominant morphism \(\rho: V \to \mathbb{P}^1_k \) such that general fibers of \(\rho \) are isomorphic to \(\mathbb{A}^1_k \).

1.3.2. Let \(n := \deg \pi \). Then we claim:

For every divisor \(D \) on \(V \), \(nD \) is linearly equivalent to 0, i.e., \(nD \sim 0 \).

In effect, \(\pi^*(D) \sim 0 \) because \(\text{Pic}(W) = 0 \). Since \(\pi \) is proper, we have \(\pi_\ast \pi^*(D) = nD \sim 0 \) by the projection formula.

1.3.3. We claim that:

1. \(\rho(V) \cong \mathbb{A}^1_k \);
2. If \(\rho^{-1}(P) \) is a singular fiber of \(\rho \), it is of the form \(\rho^{-1}(P) = n_p C_p \), where \(n_p \geq 2 \), \(n_p \mid n \) and \(C_p \cong \mathbb{A}^1_k \).

Proof. (1) By 1.3.2, we have \(\text{rank}_q \text{Pic}(V) \otimes \mathbb{Q} = 0 \). Suppose \(\rho(V) = \mathbb{P}^1_k \). Then, Lemma 1.1 implies that

\[
\text{rank}_q \text{Pic}(V) \otimes \mathbb{Q} = 1 + \sum_{P \in \mathbb{P}^1_k} (\mu_p - 1).
\]

Since \(\mu_p \geq 1 \), we have \(\text{rank}_q \text{Pic}(V) \otimes \mathbb{Q} > 0 \), which is a contradiction. Hence \(\rho(V) \) is an affine open set of \(\mathbb{P}^1_k \). Since \(\mathbb{A}^* = k^* \), \(\rho(V) \) must be isomorphic to \(\mathbb{A}^1_k \).

(2) By Lemma 1.1, we have

\[
\text{rank}_q \text{Pic}(V) \otimes \mathbb{Q} = \sum_{P \in \rho(V)} (\mu_p - 1) = 0.
\]

Hence \(\mu_p = 1 \) for all points \(P \in \rho(V) \). This implies that a singular fiber of \(\rho \) (if it exists at all) is of the form

\(\rho^{-1}(P) = n_p C_p \), where \(n_p \geq 2 \) and \(C_p \cong \mathbb{A}^1_k \).

Let \(m \) be the order of \(C_p \), i.e., \(m \) is the least positive integer such that \(mC_p \sim 0 \). Since \(n_p C_p \sim 0 \), we have \(m \mid n_p \). Write \(n_p = sm \). Let \(t \) be an inhomogeneous coordinate of \(\rho(V) \). Then \(t \) is everywhere defined on \(V \); we may assume that \(P \in \rho(V) \) is defined by \(t = 0 \). Since \(mC_p \sim 0 \) and \(n_p C_p = (t) \) (= the divisor...
Regularity of Regular Subrings \(R_0 \) of a Polynomial Ring

Defined by \(t = 0 \) on \(V \), there exists an element \(t' \in A \) such that \(t = (t')' \). If \(s > 1 \) then \(t - \alpha = (t')' - \alpha \) has distinct \(s \) components for every \(\alpha \in k^* \). This contradicts the irreducibility of general fibers of \(\rho \). Hence \(s = 1 \), i.e., \(m = n_p \).

Therefore, \(n C_p \cong 0 \), we have \(n_p | n \).

\section{1.3.4.}
Let \(t \) be the same as defined in 1.3.3. Suppose \(\rho \) has a singular fiber \(\rho^{-1}(P) \). Since \(\pi^* C_p \cong 0 \), there exists an element \(\tau \in B \) such that \(t = \tau^p \).

Let \(A' = A \otimes k[\tau] \). Since \(A \) is flat over \(k[t] \) (cf. [EGA (IV, 15.4.2)]) \(A' \) is identified with a \(k \)-subalgebra \(A[\tau] \) of \(B \). Let \(\bar{A} \) be the normalization of \(A' \) is \(B \). Let \(\bar{V} = \text{Spec}(\bar{A}) \). Then the morphism \(\pi: W \rightarrow V \) factors as

\[\pi: W \xrightarrow{\pi_1} \bar{V} \xrightarrow{\pi_2} V. \]

Let \(n_1 = \deg \pi_1 \) and \(n_2 = \deg \pi_2 \). Then \(n = n_1 \cdot n_2 \), and \(n_D \cong 0 \) for every divisor \(D \) on \(V \).

We claim that:

1. \(\bar{V} \) is a nonsingular, rational, affine surface endowed with a dominant morphism \(\bar{\rho}: \bar{V} \rightarrow A_1 := \text{Spec}(k[\tau]) \), which is induced by \(\rho \). Hence, general fibers of \(\bar{\rho} \) are isomorphic to \(A_1 \).

2. The fibration \(\bar{\rho} \) has a singular fiber with two or more irreducible components.

Proof. Let \(Q \) be a point on \(C_p \). There exist local parameters \(\xi, \eta \) of \(V \) at \(Q \) such that \(C_p \) is defined locally by \(\xi = 0 \). Then \(t = u \xi \eta^p \) for an invertible element \(u \) of \(O_{Q, Y} \). Let \(\theta := \tau | \xi \). Then \(\bar{V} \) is analytically isomorphic to a hypersurface \(\theta^p = u \) in the \((\theta, \xi, \eta)\)-space in a neighborhood of \(\pi^{-1}(Q) \), and \(\bar{V} \) is smooth at every point of \(\pi^{-1}(Q) \) by the Jacobian criterion. Since \(Q \) is arbitrary on \(C_p \), \(\bar{V} \) is smooth along \((\rho \pi_2)^{-1}(P) \). Let \(\rho^{-1}(P') \) be another fiber of \(\rho \). Then \(\rho^{-1}(P') = n_p C_p' \), where \(n_p \geq 1 \) and \(C_p' \cong A_1 \). Let \(Q' \) be a point on \(C_p' \). Then there exist local parameters \(\xi', \eta' \) such that \(C_p' \) is defined locally by \(\xi' = 0 \) and \(t - \alpha = u'(\xi')^{n_p'} - \alpha \in k^* \) and \(u' \) is an invertible element of \(O_{Q', Y} \). Then \(\bar{V} \) is analytically isomorphic to a hypersurface \(\theta^{n_p'} - \alpha = u'(\xi')^{n_p'} \) in the \((\tau, \xi', \eta')\)-space. By the Jacobian criterion, \(\bar{V} \) is smooth at every point of \(\pi^{-1}(Q') \). Since \(Q' \) is arbitrary on \(C_p' \), \(\bar{V} \) is smooth along \((\rho \pi_2)^{-1}(P') \). Thus we know that \(\bar{V} \) is smooth.

Let \(\bar{\rho}: \bar{V} \rightarrow A_1 : = \text{Spec}(k[\tau]) \) be the canonical morphism induced by \(\rho \). The generic fibers of \(\rho \) and \(\bar{\rho} \) are isomorphic to \(\text{Spec}(A \otimes k(t)) \) and \(\text{Spec}(A \otimes k(\tau)) \), respectively. Since \(\text{Spec}(A \otimes k(\tau)) \cong A_{k(\tau)} \), we know that \(\text{Spec}(A \otimes k(\tau)) \cong A_{k(t)} \). Hence, general fibers of \(\bar{\rho} \) are isomorphic to \(A_1 \).

Let \(P \) be the point on \(\text{Spec}(k[\tau]) \) lying above \(P \) on \(\text{Spec}(k[t]) \). Then the fiber \(\bar{\rho}^{-1}(P) \) has \(n_p \) analytic branches over any point \(Q \) of \(C_p \), for \(\bar{\rho}^{-1}(P) \) is analytically defined by \(\theta^{n_p} = u \) as shown in the proof of the first assertion.
Hence, by Lemma 1.1, \tilde{P} has n_F connected components, each of which is isomorphic to A^1_k. Q.E.D.

1.3.5. As remarked in 1.3.4, $\text{Pic}(\tilde{V})\otimes \mathbb{Q} = 0$. However, if $\rho: V \to A^1_k$ has a singular fiber, Lemma 1.1 implies that $\text{rank}_\mathbb{Q} \text{Pic}(\tilde{V}) \otimes \mathbb{Q} > 0$. This is a contradiction. Therefore, ρ has no singular fibers. Then, by virtue of [5; Th. 1], V is an A^1-bundle over $\rho(V) = A^1_k$. Hence, we know that $V \cong A^1_k$. Namely, A is a polynomial ring in two variables over k. This completes a proof of Lemma 1.3 as well as a proof of Theorem 1.

1.4. Remark. Theorem 1 is a generalization of the following result in the case of dimension 1:

Let k be a field, and let A be a normal, 1-dimensional k-subalgebra of a polynomial ring over k. Then A is a polynomial ring over k.

2. Proof of Theorem 2

2.1. We retain the notations and the assumptions of Theorem 2. Let $L := k(x, y, z)$, and let K be the invariant subfield of L with respect to the induced G_2-action on L. Then, $A = B \cap K$. Since B is normal and trans.deg$_k K = 2$, we know by Zariski's Theorem (cf. Nagata [9; Th. 4, p. 52]) that A is finitely generated over k. By assumption, A is regular. By virtue of [7; Lemma 1.3.1, p. 16], we know that A is a unique factorization domain and $A^* = k^*$.

2.2. Let $W = \text{Spec}(B)$, let $V = \text{Spec}(A)$, and let $\pi: W \to V$ be the dominant morphism induced by the injection $A \hookrightarrow B$. We shall prove

Lemma. $\pi: W \to V$ is a faithfully flat, equi-dimensional morphism of dimension 1.

Proof. (1) We shall show that B is flat over A. Let q be a prime ideal of B and let $\mathfrak{p} = q \cap A$. Then B_q dominates A_p. Since A_p is regular and B_q is Cohen-Macaulay, B_q is flat over A_p by virtue of [EGA (IV, 15.4.2)]. Hence B is flat over A.

(2) We shall show that π is surjective. Suppose π is not surjective. Then there exists a maximal ideal m_A of A such that $m_B = B$. Let $(\mathcal{O}, t\mathcal{O})$ be a discrete valuation ring of K such that \mathcal{O} dominates A_m. Let $R := B \otimes A^\mathcal{O}$. Since B is A-flat, R is identified with a subring of L. Let Δ be a locally nilpotent derivation on B associated to the given G_2-action. Then Δ extends to a locally nilpotent \mathcal{O}-derivation, and \mathcal{O} is the ring of Δ-invariants in R, i.e., $\mathcal{O} = \{r \in R; \Delta(r) = 0\}$. By assumption, we have $tR = R$, where t is a uniformisant of \mathcal{O}. Hence $tr = 1$ for some element $r \in R$. Then $t\Delta(r) = 0$, whence $r \in \mathcal{O}$. This is a contradiction.
(3) Note that general fibers of \(\pi \) are isomorphic to \(A_i \). Hence, each irreducible component has dimension \(\geq 1 \). Suppose that some component \(T \) of a fiber \(\pi^{-1}(P) \) (with \(P \in V \)) has dimension 2. Since \(B \) is factorial, there exists an irreducible element \(b \in B \) such that \(T \) is defined by \(b = 0 \). Since \(T \) is invariant with respect to the \(G_x \)-action, we know that \(b \in A \). Let \(C = \text{Spec} (A/bA) \). Then \(C \) is an irreducible curve and \(\pi^{-1}(C) = T \subseteq \pi^{-1}(P) \). This is a contradiction because \(\pi \) is surjective. Thus, \(\pi \) is a faithfully flat, equi-dimensional morphism of dimension 1. Q.E.D.

2.3. Let \(U \) be the subset of all points \(P \) of \(V \) such that \(\pi^{-1}(P) \) is irreducible and reduced. Then \(U \) is a dense open set of \(V \). By virtue of [5; Th. 1], \(\pi^{-1}(U) = W \times U \) is an \(A^1 \)-bundle over \(U \).

2.4. We shall prove the following:

Lemma. \(V \) has the logarithmic Kodaira dimension \(\kappa(V) = -\infty \).

Proof. We follow the arguments of Iitaka-Fujita [4]. Let \(X \) be a hyperplane in \(W \cong A_i^3 \) such that \(X \cap \pi^{-1}(U) \neq \emptyset \). Suppose that \(\kappa(V) \geq 0 \). Let \(C \) be a prime divisor in \(X \). Consider a morphism:

\[\varphi: C \times A_i^1 \hookrightarrow X \times A_i^1 = W \xrightarrow{\pi} V, \]

and assume that \(\varphi \) is a dominant morphism. Since \(\dim(C \times A_i^1) = \dim V = 2 \), we know by [3; Prop. 1] that

\[0 = P_m(C \times A_i) \supseteq P_m(V) \supseteq 1 \quad \text{for every} \quad m \gg 0. \]

This is a contradiction. Hence \(\varphi \) is not a dominant morphism. Let \(D \) be the closure of \(\varphi(C \times A_i^1) \) in \(V \). Then \(C \times A_i^1 \subseteq \pi^{-1}(D) \). Suppose \(C \cap \pi^{-1}(U) = \emptyset \). Then the general fibers of \(\pi: \pi^{-1}(D) \to D \) are isomorphic to \(A_i^1 \). Hence \(\pi^{-1}(D) \) is irreducible and reduced. Since \(\dim(C \times A_i^1) = \dim \pi^{-1}(D) = 2 \), we have \(C \times A_i^1 = \pi^{-1}(D) \).

Let \(Q \) be a point on \(X \), and let \(C_1, \cdots, C_r \) be prime divisors of \(X \) such that \(C_1 \cap \cdots \cap C_r = \{Q\} \) and that \(C_i \cap \pi^{-1}(U) \neq \emptyset \) for every \(1 \leq i \leq r \). For any point \(Q \) of \(X \), we can find such a set of prime divisors. In effect, \(X \) is the affine plane \(A_i^2 \) and \(X \cap (W - \pi^{-1}(U)) \) has dimension \(\leq 1 \). Thus, we have only to take a set of suitably chosen lines on \(X \) passing through \(Q \). Let \(D_i \) be the irreducible curve which is the closure of \(\varphi(C_i \times A_i^1) \) in \(V \), where \(1 \leq i \leq r \). Then \(C_i \times A_i^1 = \pi^{-1}(D_i) \) for \(1 \leq i \leq r \). Since we have

\[(Q) \times A_i^1 = (C_1 \cap \cdots \cap C_r) \times A_i^1 = (C_1 \times A_i^1) \cap \cdots \cap (C_r \times A_i^1) \]

\[= \pi^{-1}(D_1) \cap \cdots \cap \pi^{-1}(D_r) = \pi^{-1}(D_1 \cap \cdots \cap D_r), \]

\[\boxdot \]
we know that \(D_1 \cap \cdots \cap D_r = \{ P \} \), a point in \(V \). The correspondence \(Q_i \mapsto P \) defines a morphism \(\psi : X \to V \). If \(\psi \) is a dominant morphism, we have

\[
0 = \tilde{P}_m(X) \supseteq \tilde{P}_m(V) \supseteq 1 \quad \text{for every } m \geq 0,
\]
which is a contradiction. Hence \(\psi \) is not a dominant morphism. Let \(F \) be the closure of \(\psi(X) \) in \(V \). Then, for every point \(P \) of \(F \), we have \(\dim \psi^{-1}(P) \geq 1 \), and \(\pi(\psi^{-1}(P) \times \mathbb{A}_k^1) = \psi(\psi^{-1}(P)) = P \). This contradicts Lemma 2.2. Therefore, \(\kappa(V) = -\infty \). Q.E.D.

2.5. As observed in the above arguments, \(V \) is a nonsingular, rational, affine surface such that \(\kappa(V) = -\infty \), \(A \) is a unique factorization domain and \(A^* = k^* \). Then, by virtue of Theorem 0, \(V \) is isomorphic to the affine plane \(\mathbb{A}_k^2 \). Namely, \(A \) is a polynomial ring in two variables over \(k \). This completes a proof of Theorem 2.

2.6. We do not know whether or not the regularity condition on \(A \) can be eliminated. As a view-point of practical use, the following result might be interesting:

Proposition. Let the notations and the assumptions be the same as in Theorem 2. Instead of the regularity condition on \(A \), we assume that \(A \) contains a coordinate, say \(z \). Then \(A \) is a polynomial ring in two variables over \(k \).

Proof. (1) Let \(H_\alpha \) be the hyperplane \(z=\alpha \) in \(W := \text{Spec}(B) \) for every \(\alpha \in k \). Since \(z \) is \(G_\alpha \)-invariant, the hyperplane \(H_\alpha \) is \(G_\alpha \)-invariant. Set \(B_\alpha := B/(z-\alpha)B \approx k[x,y] \). Let \(R_\alpha \) be the invariant subring of \(B_\alpha \) with respect to the induced \(G_\alpha \)-action on \(H_\alpha \). Then it is clear that we have the following inclusions:

\[
A_\alpha := A/(z-\alpha)A \hookrightarrow R_\alpha \hookrightarrow B_\alpha.
\]
For a general element \(\alpha \in k \), the induced \(G_\alpha \)-action on \(H_\alpha \) is nontrivial. Hence \(R_\alpha \) is a one-parameter polynomial ring over \(k \) (cf. [7; Lemma, p. 39]).

(2) Let \(\mathfrak{t} = k(z) \), let \(B_\mathfrak{t} := \mathfrak{t}[x,y] \) and let \(R_\mathfrak{t} \) be the \(G_\mathfrak{t} \)-invariant subring of \(B_\mathfrak{t} \) with respect to the induced \(G_\mathfrak{t} \)-action on \(B_\mathfrak{t} \). Then it is not hard to show that \(R_\mathfrak{t} := A \otimes_{k[z]} \mathfrak{t} \) and that \(R_\mathfrak{t} \) is a one-parameter polynomial ring over \(\mathfrak{t} \) (cf. Remark 1.4 and [7; ibid.]). Now, set \(Y := \text{Spec}(A) \) and let \(f : Y \to \mathbb{A}_k^1 = \text{Spec}(k[z]) \) be the morphism associated to the inclusion \(k[z] \hookrightarrow A \). Then the foregoing observations imply the following:

(i) The generic fiber of \(f \) is \(\text{Spec}(R_\mathfrak{t}) \), which is isomorphic to \(\mathbb{A}_k^1 \);

(ii) For every \(\alpha \in k \), the fiber \(f^{-1}(\alpha) \) is geometrically integral (cf. the inclusions \(A_\alpha \hookrightarrow R_\alpha \hookrightarrow B_\alpha \) in the step (1)).

Since \(f \) is clearly faithfully flat morphism, we know by [5; Th.1] that \(f : Y \to \mathbb{A}_k^1 \) is an \(\mathbb{A}_k^1 \)-bundle over \(\mathbb{A}_k^1 \). Hence \(Y \) is isomorphic to the affine plane \(\mathbb{A}_k^2 \).
Namely, A is a polynomial ring in two variables over k. Q.E.D.

2.7. Corollary. Let the notations and the assumptions be the same as in Theorem 2. Instead of the regularity condition on A, assume that G_α acts linearly on A^1_k via the canonical action of $GL(3, k)$ on the vector space $kx + ky + kz$. Then A is a polynomial ring in two variables over k.

Proof. Since G_α is a unipotent group, we may assume, after a change of coordinates x, y, z, that G_α acts on A^1_k via the subgroup of upper triangular matrices in $GL(3, k)$. Then, one of coordinates, say z, is G_α-invariant. Then Proposition 2.5 implies that our assertion holds true. Q.E.D.

2.8. In the case of an algebraic action of G_α on a polynomial ring $k[x, y]$ in two variables over k, $k[x, y]$ is a one-parameter polynomial ring over the subring of G_α-invariant elements (cf. [7; p. 39]). However, this does not hold in the case of an algebraic G_α-action on a polynomial ring of dimension ≥ 3 over k, as is shown by the following:

Example. Let Δ be a k-derivation on a polynomial ring $B := k[x, y, z]$ defined by $\Delta(x) = y, \Delta(y) = z$ and $\Delta(z) = 0$. Then Δ is locally nilpotent, whence Δ defines an algebraic G_α-action on B. The subring A of G_α-invariant elements is $A = k[z, zx - \frac{1}{2} y^2]$. However, B is not a one-parameter polynomial ring over A.

Proof. We shall prove only the last assertion. Suppose that $B = A[t]$ for some element t of B. Set $W := \text{Spec}(B)$ and $V := \text{Spec}(A)$. Let $f: W \to V$ be the morphism defined by the inclusion $A \to B$. Let P be a point of V such that $z = \alpha$ and $zx - \frac{1}{2} y^2 = \beta$, where $\alpha, \beta \in k$. If $\alpha \neq 0$, the fiber $f^{-1}(P)$ is isomorphic to A^1_k. If $\alpha = 0$ and $\beta \neq 0$, $f^{-1}(P)$ is a disjoint union of two irreducible components isomorphic to A^1_k. If $\alpha = \beta = 0$, $f^{-1}(P)$ is a non-reduced curve with only one irreducible component isomorphic to A^1_k counted twice. But, if $B = A[t]$, all fibers of f should be isomorphic to A^1_k. Therefore, we have a contradiction. Q.E.D.

References
Univ. of Tokyo, Sec. IA, 24 (1977), 123–127.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan