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1. Introduction

A well-known theorem of A. Tognoli [9] asserts that every compact
C® submanifold M of R" with 2 dim M+1<n, one can find a C®
imbedding e: M — R", arbitrarily close in the C*® topology to the inclusion
map M — R, such that e¢(M) is a nonsingular algebraic subset of R". In
particular, M admits an algebraic model. Here an algebraic model of
M means a nonsingular algebraic subset of some Euclidean space
diffeomorphic to M.]J. Bochnak and W. Kucharz showed in [4] that M
has a continuous family of birationally nonequivalent algebraic models
when M is a connected closed manifold with dim M>1. In this paper,
we consider algebraic models of a given affine Nash manifold and a given
compactifiable C* manifold. Here we say that a C* manifold M is
compactifiable if there exists a compact C® manifold Y with boundary
such that M is C*® diffeomorphic to the interior of Y. M. Shiota proved
in [8, Remark 6.2.11] that any affine Nash manifold admits an algebraic
model. We prove that either any Nash manifold or any compactifiable
C® manifold have an infinite family of birationally nonequivalent algebraic
models. More precisely, we prove the following.

Theorem 1. Each affine Nash manifold M with dim M>1 has an
infinite family of nonsingular algebraic subsets {X,},.y of some Euclibean
space such that each X, is Nash diffeomorphic to M and that X, is not
birationally equivalent to X,, for n#m.

Theorem 2. Every compactifiable C* manifold M with dim M>1
has an infinite family of nonsingular algebraic subsets {X,},.y of some
Euclidean space such that each X, is C* diffeomorphic to M and that X,
is not birationally equivalent to X,, for n#m.

Theorem 2 is a refinement of [3, Corollary 3.3]. We have next
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corollary because a nonsingular algebraic subset is an affine Nash
submanifold.

Corollary 3. Any nonsingular algebraic subset with dim M>1 has
infinitely many birationally nonequivalent algebraic models in some Euclidean
space.

2. Proof of Results

Recall the notation of [3]. For any two positive integers n and d,
let P(n,d) denote the projective space associated with the vector space of
all hamogeneous polynomials in R[T,,---,T,] of degree d. For H in
P(n,d) and its representative K, we set

V(H)={[x0 Dy xn]ERPIK(xo,"',xn)=O},
V(H,C)={[x0 : ,'",:xn]GCP”IK(xo,"',xn)=0},

We will identify H with K.

A subset X of P(n,d) is said to be thin if it is contained in the union
of countably many algebraic subsets of P(n,d) different from P(n,d). We
prepare next lemma to prove Theorem 1.

Lemma. Let X be a compact irreducible nonsingular algebraic
set. Let Y and Z; (1<i<s) be nonsingular algebraic hypersurfaces of X
satisfying the following seven conditions:

(1) The dimension of Y is greater than or equal to 2.

(2) Each W;:=YnZ; is nonsingular.

(3) Ewery Z; intersects Y transversally at any point of W;.

(4) Any W, intersects transversally in Y one another.

(5) There exist two C® submanifolds Y, and Y, of Y with same
boundary such that Y is the attaching space of Y| and Y, by
their boundaries.

(6) The union Uf=1 W, is contained in Y,.

(7) A C% smoothing of the C® manifold with cornered boundary
Yy={xe Y,|dist(x,| i, W) > ¢} for small ¢>0 is C* diffeomorphic
to the cartesian product of the boundary of Y, and [0,1].

Then, we can find an infinite family of nonsingular algebraic subsets {\S,,}men
of some Euclidean space such that each S,, is Nash diffeomorphic to
Y— U§=1Wi and that S,, is not birationally equivalent to S, for m#m'.

Proof. By [3, Proposition 2.5], there exists an algebraic imbedding
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f:X = RP" (for some n), such that the Zariski closure U of f(X) in CP"
is nonsingular. Then we identify X, Y and Z; (1 <i<s) with f(X), AY)
and f(Z;) (1<i<s), respectively. Let & be a homogeneous polynomial of
R[T,,---,T,] so that Y=XnNV(h). For each positive integer I, set

hy=(Té+--+T*h.

Observe that XnlV(h)=XnV(h)=Y.

By [6, Theorem 6.5 and Theorem 7.5], there exists a positive integer
lo such that for every integer [>1,, one can find a thin subset X, of
P(n,degh)) with the property that for every H,eP(n,degh,)—ZX, the
complex hypersurface V(H,,C) is nonsingular and transverse to U, and
that the variety U(l)=Un V(H,,C) is irreducible. If H, is sufficiently
close to h; then X(I) defined by

X()=XAV(H)=U()~RP"

is a nonsingular irreducible real algebraic hypersurface of X, and the
Zariski closure of X(I) in CP" is equal to U(l). Since the sequence of
the Hodge numbers A%~ 1%(U(l)), where d=dim X, diverges infinity as [
increases [cf 6, Proof of Lemma 1. p240], one can find an increasing
sequence {[,}.y of positive integers so that the sequence A?~°(U(l,))
is also increasing. In particular, the varieties U(/,) and U(l, ) are not
birationally equivalent for m#m’, because the Hodge numbers #7° are
birational invariants [5, p190 Exercise 8.8]. It follows that X(I,) and
X(l,,) are not birationally equivalent for m#m’. If the approximation
is sufficiently close, one can easily check that the triple (X,X(l,),
{X(,)NZ},) satisfies the conditions in the lemma. Put

S=X() — i1 (XU N Z))).

By the proof of [8, Remark 6.2.11], Y— UleW,- is Nash diffeomorphic
to S,,. On the other hand, X(l,) and X(l,.) are birationally equivalent
if and only if S,, and S,, are birationally equivalent. Therefore {S,,}men
is the required one. []

We are in a position to prove Theorem 1.

Proof of Theorem 1.

If M is compact then the theorem follows from [3](or [4]) and the
fact that two compact Nash manifolds are Nash diffeomorphic if and
only if they are C® diffeomorphic. We now suppose that M is not
compact. Using [7], we can assume that M is the interior of a compact
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C*® manifold with boundary L,. By [2], there exist a compact C*®
manifold with boundary L, in some R" and compact C® submanifolds
X; (1<i<s) of Int L, such that the following three conditions are satisfied:
(1)the boundary of L, is C* diffeomorphic to the boundary of L,, (2)each
X, intersects transversally one another, and (3)a C® smoothing of the
C® manifold with cornered boundary {x€ L,|dist(x,X)>¢} for small ¢>0
is C* diffeomorphic to the cartesian product of the boundary of L, and
[0,1]. Here X=|)i_ X,

Let L denote the attaching space of L; and L, by the above
diffeomorphism between their boundaries. We regard M,L,,L, and X;
as submanifolds of L.

On the other hand, if dim M =1 then, we can apply the method of
the proof of [4] to (L,X) becasuse X consists of finite points. Therefore
we have a continuous family of birationally nonequivalent algebraic models
of M. Butin general we do not know whether we are able to apply or not.

We return to the proof of Theorem 1. We may assume dim
M>2. According to a relative Nash theorem [1], one can imbed L in
some R' so that L is a nonsingular algebraic subset of R' and each X;
is nonsingular algebraic subset of L. Moreover, by blowing up all X,
we may suppose that every X; is of codimension 1 in L. By the proof
of [8, Remark 6.2.11], M is Nash diffeomorphic to L —X.

We now construct an irreducible algebraic model Y of L so that
each f(X,) is a nonsingular algebraic subset of Y, where f is a
diffeomorphism from L to Y. Fix an algebraic imbedding L — RP' and
we identify L, X and X, with its images, respectively. It follows from
the proof of [3, Corollary 3.3] that there exists an irreducible nonsingular
algebraic curve C in L satisfying the following three conditions: (1)C has
a trivial normal bundle in L, (2)C is a disjoint s C®curves Cy,---,C;, each
connected component of L containing precisely one C; and (3)C does not
intersect X. :

Consider the triple C =« L ¢ RP'. Since H"9RP',Z,)=H,(RP'Z,)
(RP' has totally algebraic homology), it follows from the proof of
[2, Theorem 3.1] that there exists a positive integer k and a Nash imbedding
e:Lx{0} > RP'x R* such that Y:=e(L) is a nonsingular algebraic subset
of RP'xR*, each Z;:=e(X;x{0}) is a nonsingular algebraic subset of
RP'xR*, and Cx{0} = Y. Since each connected component of Y
contains a connected component of C x {0}, Y is the required irreducible
algebraic model of L.

Applying Lemma to the triple (Y x RP!,Y x {a},Z; x RP')(for some
ac RP!), we have the desired family. ]

Proof of Theorem 2.
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It is known that any compactifiable C® manifold admits a nonaffine
Nash manifold structure [7]. To apply Theorem 1, we show that each
nonaffine Nash manifold M is C® imbeddable into some Euclidean space
as an affine Nash manifold. We may assume that M is connected. Using
[7], we have a compact C* manifold Y’ with boundary K so that M is
C* diffeomorphic to the interior of Y’. Let Y be the double of Y'. By
a relative Nash theorem [1], there exist nonsingular algebraic sets Z and
Z' such that (Y,K) is pairwise C® diffeomorphic to (Z,Z). Since Z—Z'
is an affine Nash manifold, M is C® diffeomorphic to a connected
component of Z'—Z. An application of Theorem 1 completes the proof.

O

References

[1] S. Akbulut and H.C. King, A relative Nash theorem, Trans. Amer. Math. Soc. 267,
No 2 (1981), 465-481.

[2] S. Akbulut and H.C. King, The topology of real algebraic sets with isolated
singularities, Ann. of Math. 113 (1981), 425-446.

[31 J. Bochnak and W. Kucharz, Algebraic models of smooth manifolds, Invent Math 97
(1989), 585-611.

[4] J. Bochnak and W. Kucharz, Nonisomorphic algebraic models of a smooth manifold,
Math. Ann. 290(1991), 1-2.

[5] R. Hartshone, Algebraic geometry, GTM 52, Berlin Heidelberg New York
Springer, 1977.

[6] B.G. Moishezon, Algebraic homology classes on algebraic varieties, Math U.S.S.R.
Izvestia 1 (1967), 209-251.

[71 M. Shiota, Abstract Nash manifolds, Proceedings of Amer. Math. Soc 69 (1986),
155-162.

[8] M. Shiota, Nash manifolds, Lecture Notes in Mathematics, vol. 1269, Springer,
1987.

[91 A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat
27 (1973), 169-185.

Department of Liberal Arts,
Osaka Prefectural College of
Technology,

Neyagawa Osaka 572,

Japan








