
Title Nonisomorphic algebraic models of Nash manifolds
and compactifiable C^∞ manifolds

Author(s) Kawakami, Tomohiro

Citation Osaka Journal of Mathematics. 1994, 31(4), p.
831-835

Version Type VoR

URL https://doi.org/10.18910/12043

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Kawakami, T.
Osaka J. Math.
31 (1994), 831-835

NONISOMORPHIC ALGEBRAIC MODELS OF
NASH MANIFOLDS

AND COMPACTIFIABLE C°° MANIFOLDS

TOMOHIRO KAWAKAMI

(Received March 5, 1993)

1. Introduction

A well-known theorem of A. Tognoli [9] asserts that every compact
C0 0 submanifold M of Rn with 2 dim M+ί<ny one can find a C0 0

imbedding e: M —> Rn, arbitrarily close in the C0 0 topology to the inclusion
map M->/?, such that e(M) is a nonsingular algebraic subset of Rn. In
particular, M admits an algebraic model. Here an algebraic model of
M means a nonsingular algebraic subset of some Euclidean space
diffeomorphic to M.J. Bochnak and W. Kucharz showed in [4] that M
has a continuous family of birationally nonequivalent algebraic models
when M i s a connected closed manifold with dim M>\. In this paper,
we consider algebraic models of a given affine Nash manifold and a given
compactifiable C0 0 manifold. Here we say that a C0 0 manifold M is
compactifiable if there exists a compact C0 0 manifold Y with boundary
such that M is C0 0 diffeomorphic to the interior of F. M. Shiota proved
in [8, Remark 6.2.11] that any affine Nash manifold admits an algebraic
model. We prove that either any Nash manifold or any compactifiable
C0 0 manifold have an infinite family of birationally nonequivalent algebraic
models. More precisely, we prove the following.

Theorem 1. Each affine Nash manifold M with dim M>\ has an
infinite family of nonsingular algebraic subsets {Xn}neN of some Euclibean
space such that each Xn is Nash diffeomorphic to M and that Xn is not
birationally equivalent to Xm for nφm.

Theorem 2. Every compactifiable C00 manifold M with dim M>\
has an infinite family of nonsingular algebraic subsets {Xn}neN of some
Euclidean space such that each Xn is C0 0 diffeomorphic to M and that Xn

is not birationally equivalent to Xm for nφm.

Theorem 2 is a refinement of [3, Corollary 3.3]. We have next
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corollary because a nonsingular algebraic subset is an afϊine Nash
submanifold.

Corollary 3. Any nonsingular algebraic subset with dim M> 1 has
infinitely many birationally nonequivalent algebraic models in some Euclidean
space.

2. Proof of Results

Recall the notation of [3]. For any two positive integers n and d,
let P(nyd) denote the projective space associated with the vector space of
all hamogeneous polynomials in i?[T0, ,TJ of degree d. For H in
P(n,d) and its representative Ky we set

We will identify H with K.
A subset Σ of P(nyd) is said to be thin if it is contained in the union

of countably many algebraic subsets of P(n,d) different from P(n,d). We
prepare next lemma to prove Theorem 1.

L e m m a . Let X be a compact irreducible nonsingular algebraic
set. Let Y and Z{ (\<i<s) be nonsingular algebraic hypersurfaces of X
satisfying the following seven conditions:

(1) The dimension of Y is greater than or equal to 2.
(2) Each Wι\—Yr\Zι is nonsingular.
(3) Every Z{ intersects Y transversally at any point of W(.
(4) Any Wt intersects transversally in Y one another.
(5) There exist two C°° submanifolds Y1 and Y2 of Y with same

boundary such that Y is the attaching space of Yi and Y2 by
their boundaries.

(6) The union (J^iW^ ^ contained in Y2.
(7) A C0 0 smoothing of the C0 0 manifold with cornered boundary

Y3 = {xG Y2\dist(xy\Js

i = i W()>ε} for smallε>0is C0 0 diffeomorphic
to the cartesian product of the boundary of Y2 and [0,1]

Then, we can find an infinite family of nonsingular algebraic subsets {Sm}meN

of some Euclidean space such that each Sm is Nash diffeomorphic to
Y—[Js

i=iWi and that Sm is not birationally equivalent to Sm> for mφnί'.

Proof. By [3, Proposition 2.5], there exists an algebraic imbedding
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(for some «), such that the Zariski closure U of f(X) in CF1

is nonsingular. Then we identify Xy Y and Z t (1 <i<s) with /(X), /(Y)
and/(Z f) (\<i<s)y respectively. Let A be a homogeneous polynomial of
R[T0,- yTn] so that Y=XnV(h). For each positive integer /, set

Observe that Xn V(hι) = Xn V(h)=Y.
By [6, Theorem 6.5 and Theorem 7.5], there exists a positive integer

l0 such that for every integer / > / 0 , one can find a thin subset Σt of
P(nydeght) with the property that for every HjeP^degft j) —Σj, the
complex hypersurface V(HhC) is nonsingular and transverse to Uy and
that the variety U(l)=UnV(HlyC) is irreducible. If Hι is sufficiently
close to hx then J*f(/) defined by

X(l) = Xn V(HX) = U(l) n i?P"

is a nonsingular irreducible real algebraic hypersurface of X, and the
Zariski closure of X{ΐ) in CP" is equal to £/(/). Since the sequence of
the Hodge numbers hd~γ'°{U{ΐj)y where d = dim Xy diverges infinity as /
increases [cf 6, Proof of Lemma 1. p240], one can find an increasing
sequence {lm}meN of positive integers so that the sequence hd~ίi0(U(lm))
is also increasing. In particular, the varieties U(lm) and C/(/m) are not
birationally equivalent for mφnί', because the Hodge numbers hp'° are
birational invariants [5, pl90 Exercise 8.8]. It follows that X(lm) and
X(lm>) are not birationally equivalent for mφrrί'. If the approximation
is sufficiently close, one can easily check that the triple (XyX(lm)y

{X(/m)nZ ί} ί) satisfies the conditions in the lemma. Put

By the proof of [8, Remark 6.2.11], Y-\JUiWi ί s N a s h diffeomorphic
to Sm. On the other hand, X(lm) and X{lm>) are birationally equivalent
if and only if Sm and *Sm, are birationally equivalent. Therefore {Sm}mGN

is the required one. •

We are in a position to prove Theorem 1.

Proof of Theorem 1.
If M is compact then the theorem follows from [3](or [4]) and the

fact that two compact Nash manifolds are Nash diffeomorphic if and
only if they are C0 0 diffeomorphic. We now suppose that M is not
compact. Using [7], we can assume that M is the interior of a compact
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C00 manifold with boundary LA. By [2], there exist a compact C00

manifold with boundary L2 in some Rn and compact C00 submanifolds
X[ (1 <z<s) of Int L2 such that the following three conditions are satisfied:
(l)the boundary of L2 is C00 diffeomorphic to the boundary of Lly (2)each
Xt intersects transversally one another, and (3)a C00 smoothing of the
C00 manifold with cornered boundary {xeL2\dist(xyX)>ε} for small ε>0
is C00 difTeomorphic to the cartesian product of the boundary of L2 and
[0,1]. HereX=(J? = 1 X i .

Let L denote the attaching space of Lj and L2 by the above
diffeomorphism between their boundaries. We regard M)L1,L2 and X{

as submanifolds of L.
On the other hand, if dim M=l then, we can apply the method of

the proof of [4] to (LyX) becasuse X consists of finite points. Therefore
we have a continuous family of birationally nonequivalent algebraic models
of M. But in general we do not know whether we are able to apply or not.

We return to the proof of Theorem 1. We may assume dim
M>2. According to a relative Nash theorem [1], one can imbed L in
some R* so that L is a nonsingular algebraic subset of R* and each X{

is nonsingular algebraic subset of L. Moreover, by blowing up all Xh

we may suppose that every X{ is of codimension 1 in L. By the proof
of [8, Remark 6.2.11], M is Nash difTeomorphic to L — X.

We now construct an irreducible algebraic model Y of L so that
each f(Xι) is a nonsingular algebraic subset of F, where / is a
diffeomorphism from L to Y. Fix an algebraic imbedding L —• RPι and
we identify L, X and X{ with its images, respectively. It follows from
the proof of [3, Corollary 3.3] that there exists an irreducible nonsingular
algebraic curve C in L satisfying the following three conditions: (1)C has
a trivial normal bundle in L, (2)C is a disjoint s C00curves Cl9'~fCs, each
connected component of L containing precisely one C{ and (3)C does not
intersect X.

Consider the triple C c L c RP1. Since HaJ9(RPι

yZ2) = HχRPι

yZ2)
(RPι has totally algebraic homology), it follows from the proof of
[2, Theorem 3.1] that there exists a positive integer k and a Nash imbedding
e: L x {0} —• RP1 x Rh such that Y: = e(L) is a nonsingular algebraic subset
of RPιxRk, each Zi: = e(Xix {0}) is a nonsingular algebraic subset of
RPιxRk, and C x { 0 } c T , Since each connected component of Y
contains a connected component of Cx {0}, Y is the required irreducible
algebraic model of L.

Applying Lemma to the triple (Y x RP1

 yY x {a},Zι x RP^ifor some
aeRP1), we have the desired family. •

Proof of Theorem 2.
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It is known that any compactifiable C00 manifold admits a nonaffine
Nash manifold structure [7]. To apply Theorem 1, we show that each
nonaffine Nash manifold M is C00 imbeddable into some Euclidean space
as an affine Nash manifold. We may assume that M is connected. Using
[7], we have a compact C00 manifold Y' with boundary K so that M is
C00 diffeomorphic to the interior of Y'. Let Y be the double of Y\ By
a relative Nash theorem [1], there exist nonsingular algebraic sets Z and
Z such that (YyK) is pairwise C°° diffeomorphic to (ZyZ). Since Z—Z
is an affine Nash manifold, M is C00 diffeomorphic to a connected
component of Z — Z. An application of Theorem 1 completes the proof.

D
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