

Title	On the Abel-Jacobi map for non-compact varieties			
Author(s)	Arapura, Donu; Oh, Kyungho			
Citation	Osaka Journal of Mathematics. 1997, 34(4), p. 769-781			
Version Type	VoR			
URL	https://doi.org/10.18910/12047			
rights				
Note				

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ON THE ABEL-JACOBI MAP FOR NON-COMPACT VARIETIES

DONU ARAPURA and KYUNGHO OH

(Received July 10, 1996)

1. Introduction

Let X be a smooth projective variety over $\mathbb C$ of dimension n and S be a reduced normal crossing divisor on X. Then the generalized Jacobian J(X-S) is a group $H^{n-1}(X,\omega_X(S))\check{\ }/H_{2n-1}(X-S,\mathbb Z)$. When X is a curve, this fits into an exact sequence of algebraic groups:

$$1 \longrightarrow (\mathbb{C}^*)^{\sigma-1} \longrightarrow J(X-S) \longrightarrow J(X) \longrightarrow 0$$

where σ is the number of points in S and J(X) is the usual Jacobian of X. Let $\mathrm{Div}^0(X-S)$ be the set of divisors of degree 0 on X which does not intersect with S. Then integration determines the Abel-Jacobi homomorphism $\alpha:\mathrm{Div}^0(X-S)\to J(X-S)$. We will prove an analogue of Abel's theorem (due to Rosenlicht [8] for curves) that the kernel of α is the following subgroup $\mathrm{Prin}_S(X)$ of S-principal divisors:

$$\operatorname{Prin}_S(X) = \{(f) \in \operatorname{Div}(X - S) | f \in K(X) \text{ and } f = 1 \text{ on } S\}.$$

A proof is a variation of our previous work [1], which involves reinterpretation of the Abel-Jacobi map in the language of mixed Hodge structures and their extensions. As a further application of this technique, we prove a Torelli theorem for a noncompact curve, which states that if X is the complement of at least 2 points in a nonhyperelliptic curve, then it is determined by the graded polarized mixed Hodge structure on $H^1(X,\mathbb{Z})$.

We would like to thank the referee for thoughtful comments.

2. Hodge Structures

DEFINITION 2.1. A (pure) Hodge structure H of weight m consists of a finitely generated abelian group $H_{\mathbb{Z}}$ and a decreasing filtration F^{\bullet} of $H_{\mathbb{C}}:=H_{\mathbb{Z}}\otimes\mathbb{C}$ such that $H_{\mathbb{C}}=F^p\oplus\overline{F^{m-p+1}}$.

¹⁹⁹¹ Mathematics Subject Classification: 14H40, 14C30.

EXAMPLE 1. The Hodge structure of Tate $\mathbb{Z}(-1)$ is defined to be the Hodge structure of weight 2 with $H_{\mathbb{Z}} = \frac{1}{2\pi\sqrt{-1}}\mathbb{Z} \subset \mathbb{C} = F^1H_{\mathbb{C}}$.

The most natural example of Hodge structure of weight k is the k-th integral cohomology of a compact Kähler manifold. A differential form lies in F^p if in local coordinate it has at least p "dz's". To extend Hodge theory to any (singular or non-projective) complex algebraic varieties X, Deligne [3] introduced the notion of a mixed Hodge structure. He showed that the cohomology of any variety carries such a structure.

DEFINITION 2.2. A mixed Hodge structure (MHS) H consists of a triple $(H_{\mathbb{Z}}, W_{\bullet}, F^{\bullet})$, where

- (1) $H_{\mathbb{Z}}$ is a finitely generated abelian group. (In practice $H_{\mathbb{Z}}$ will be free and we will identify it with a lattice in $H_{\mathbb{Q}} := H_{\mathbb{Z}} \otimes \mathbb{Q}$.)
- (2) W_{\bullet} is an increasing filtration of $H_{\mathbb{Q}}$, called the weight filtration.
- (3) F^{\bullet} is a decreasing filtration of $H_{\mathbb{C}} := H_{\mathbb{Z}} \otimes \mathbb{C}$, called the *Hodge filtration*.

The Hodge filtration F^{\bullet} is required to induce a (pure) Hodge structure of weight m on each of the graded pieces

$$Gr_m^{W_{ullet}} = W_m/W_{m-1}$$

EXAMPLE 2. Let D be a divisor on a smooth projective variety X over $\mathbb C$. Set U=X-D. By Hironaka, there exists a birational map $\pi:\tilde X\to X$, with $\tilde X$ non-singular such that $\tilde D=\pi^{-1}(D)$ is a normal crossing divisor. Then $H^1(U,\mathbb Z)$ carries a mixed Hodge structure and the Hodge filtration is given by

$$F^0=H^1(U,\mathbb{C}), \quad F^1=H^0(\tilde{X},\Omega^1(\log \tilde{D})), \quad F^2=0.$$

We will denote $H^0(\tilde{X}, \Omega^1(\log \tilde{D}))$ by $H^0(X, \Omega^1(\log D))$. This group does not depend on the choice of \tilde{X} .

Given two mixed Hodge structures A and B, we write B > A if there exists m_0 such that $W_m A_{\mathbb{Q}} = A_{\mathbb{Q}}$ for all $m \ge m_0$ and $W_m B_{\mathbb{Q}} = 0$ for all $m < m_0$.

Finally, we define the p-th Jacobian of a mixed Hodge structure of H to be the generalized torus

$$J^p H = H_{\mathbb{Z}} \backslash H_{\mathbb{C}} / F^p H_{\mathbb{C}}.$$

The set of mixed Hodge structures forms an abelian category with an internal Hom. Thus one can form the abelian group of extension classes of two objects. Carlson [2] described the structure of this extension group in terms of the Jacobian.

Theorem 2.1 (Carlson). Let A and B be mixed Hodge structures with B > A and B torsion free. Then there is a natural isomorphism.

$$\operatorname{Ext}^1_{MHS}(B,A) \cong J^0 \operatorname{Hom}(B,A).$$

3. Homologically trivial divisors

Let X be a smooth projective variety over $\mathbb C$ of dimension n and S be a reduced normal crossing divisor on X. Let $\mathrm{Div}(X-S)$ be the group of divisors on X which do not intersect S. Moreover, we set

(1)
$$\operatorname{Prin}_{S}(X) = \{(f) \in \operatorname{Div}(X - S) | f \in K(X) \text{ and } f = 1 \text{ on } S\}$$

(2)
$$Cl_S(X) = Div(X - S)/Prin_S(X).$$

The kernel of the cycle map [5, §19.1]

$$cl: \operatorname{Div}(X-S) \to H_{2n-2}(X-S,\mathbb{Z})$$

will be called the group of homologically trivial divisors and it will be denoted by $\mathrm{Div}^0(X-S)$. Note that $\mathrm{Prin}_S(X)\subset\mathrm{Div}^0(X-S)$.

Let \mathcal{K}^* be the sheaf of invertible rational functions on X and $\mathcal{K}^*(-S)$ be the subsheaf of \mathcal{K}^* consisting of functions which are 1 on S. Similarly, we define $\mathcal{O}^*(-S)$ to be the subsheaf of \mathcal{O}^* consisting of functions which are 1 on S. Consider the following exact sequence

$$(3) 1 \longrightarrow \mathcal{O}^*(-S) \longrightarrow \mathcal{K}^*(-S) \longrightarrow \mathcal{Q} \longrightarrow 0$$

where Q is the quotient sheaf. Then one can prove that $H^0(X, \mathcal{K}^*(-S)) = \operatorname{Prin}_S(X)$ and $H^0(X, Q) = \operatorname{Div}(X - S)$ as in [7, II, 6.11]. Let

$$Cl_S^0(X) = Div^0(X - S)/Prin_S(X).$$

Consider the following diagram:

$$H^{0}(X,\mathcal{Q}) \xrightarrow{} H^{1}(X,\mathcal{O}^{*}(-S)) \xrightarrow{\frac{1}{2\pi i}d\log} H^{2}(X,j_{!}\mathbb{Z}) = H^{2}(X,S)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Div}(X-S) \xrightarrow{cl} H_{2n-2}(X-S,\mathbb{Z})$$

The map $1/2\pi id\log$ is the connecting homomorphism associated to the exponential sequence:

$$(4) 0 \longrightarrow j_! \mathbb{Z} \longrightarrow \mathcal{O}(-S) \stackrel{\exp(2\pi i)}{\longrightarrow} \mathcal{O}^*(-S) \longrightarrow 1$$

where j is the natural inclusion from X - S to X. By Lefschetz duality [9, Theorem 6.2.19], the right vertical arrow is an isomorphism. Moreover, the diagram is commutative since the cycle map is compatible with Chern class map. Therefore, $Cl_S^0(X)$ is isomorphic to a subgroup of the kernel of the connecting homomorphism

$$H^1(X, \mathcal{O}^*(-S)) \xrightarrow{\frac{1}{2\pi i} d \log} H^2(X, j_! \mathbb{Z}) = H^2(X, S).$$

So, $Cl_S^0(X)$ is isomorphic to a subgroup of $H^1(X,\mathcal{O}(-S))/H^1(X,S;\mathbb{Z})$. By duality, we can identify $H^1(X,\mathcal{O}(-S))/H^1(X,S;\mathbb{Z})$ with $H^{n-1}(X,\omega_X(S))^{\check{}}/H_{2n-1}(X-S;\mathbb{Z})$ where $\omega_X(S)=\wedge^n\Omega_X^1\otimes\mathcal{O}_X(S)$. Thus we obtain an injection

(5)
$$\beta: Cl_S^0(X) \to H^{n-1}(X, \omega_X(S)) / H_{2n-1}(X - S, \mathbb{Z}),$$

which will be identified with the Abel-Jacobi map later.

Lemma 3.1. In the diagram,

the kernel of the map cl_{X-S} is equal to the kernel of the map cl_X .

Proof. Clearly, we have $\ker cl_{X-S} \subset \ker cl_X$. We will prove the converse in dual form. Let $D \in \ker cl_X$. Consider a long exact sequence of Mixed Hodge structures, so called a "Thom-Gysin" sequence, associated to a triple $S \subset X - |D| \subset X$;

(6)
$$0 \longrightarrow H^1(X,S) \longrightarrow H^1(X-|D|,S) \longrightarrow H^2(X,X-|D|) \stackrel{Gysin}{\longrightarrow} H^2(X,S)$$

Note that $H^2(X,X-|D|)\cong H^2_D(X)$. By Fujiki [4], we have

$$H^{2}(X, X - |D|) = \text{Hom}(H^{2n-2}(D), \mathbb{Z}(-n))$$

as a mixed Hodge structure. Also observe that $H^{2n-2}(D)=\bigoplus \mathbb{Z}(-n+1)$ where the sum is over all irreducible components of D. Thus $H^2(X,X-|D|)$ has a pure Hodge structure of weight 2. On the other hand, it follows from the long exact sequence of cohomologies associated to the pair (X,S) that $Gr_2^{W\bullet}H^2(X,S)$ injects into $H^2(X)$. Hence if the class of D in $H^2(X)$ vanishes, then so does the class of D in $H^2(X,S)$.

4. Extensions of MHS

Let $D \in \mathrm{Div}^0(X-S)$ be a homologically trivial divisor. From the sequence (6), we get an extension of mixed Hodge structures

(7)
$$0 \longrightarrow H^1(X,S) \longrightarrow H^1(X-|D|,S) \longrightarrow K \longrightarrow 0$$

where $K = \ker[H^2(X, X - |D|) \xrightarrow{Gysin} H^2(X, S)]$. Let

$$\phi_D: \mathbb{Z}(-1) \longrightarrow \bigoplus \mathbb{Z}(-1) = H^2(X, X - |D|)$$

be a morphism of Hodge structures defined by $\phi_D(1/2\pi\sqrt{-1}) = \sum D_i$ where D_i are irreducible components of D. Since D is homologically trivial, ϕ_D factors through K. By pulling back the extension (7) along ϕ_D , we get a new extension of mixed Hodge structures:

(8)
$$0 \longrightarrow H^1(X,S) \longrightarrow E_D \longrightarrow \mathbb{Z}(-1) \longrightarrow 0.$$

Thus this corresponds to an element in $\operatorname{Ext}^1(\mathbb{Z}(-1), H^1(X, S))$. By a theorem of Carlson, $\operatorname{Ext}^1(\mathbb{Z}(-1), H^1(X, S))$ is isomorphic to

$$J^{0}\text{Hom}(\mathbb{Z}(-1), H^{1}(X, S)) = H^{1}(X, S; \mathbb{C})/H^{1}(X, S; \mathbb{Z}) + F^{1}H^{1}(X, S; \mathbb{C}),$$

which will be denoted by J(X-S). Note that J(X-S) is independent of the choice of a compactification of X-S.

Lemma 4.1. The Jacobian J(X - S) is naturally isomorphic to $H^1(X, \mathcal{O}(-S))/H^1(X, S; \mathbb{Z}).$

Proof. Consider an exact sequence of cohomologies on X.

$$\dots \longrightarrow H^0(X,\mathbb{C}_S) \longrightarrow H^1(X,j_!\mathbb{C}) \longrightarrow H^1(X,\mathbb{C}) \longrightarrow \dots$$

where j is the natural inclusion from X - S to X. Since this is an exact sequence of mixed Hodge structures and the Hodge filtrations are strictly preserved by the maps, this induces an exact sequence:

$$\ldots \longrightarrow Gr_{F^{\bullet}}^{0}H^{0}(X,\mathbb{C}_{S}) \longrightarrow Gr_{F^{\bullet}}^{0}H^{1}(X,j_{!}\mathbb{C}) \longrightarrow Gr_{F^{\bullet}}^{0}H^{1}(X,\mathbb{C}) \longrightarrow \ldots$$

Now consider the following diagram of cohomologies on X:

$$Gr_{F^{\bullet}}^{0}H^{0}(\mathbb{C}_{X}) \rightarrow Gr_{F^{\bullet}}^{0}H^{0}(\mathbb{C}_{S}) \rightarrow Gr_{F^{\bullet}}^{0}H^{1}(j_{!}\mathbb{C}) \rightarrow Gr_{F^{\bullet}}^{0}H^{1}(\mathbb{C}_{X}) \rightarrow Gr_{F^{\bullet}}^{0}H^{1}(\mathbb{C}_{S})$$

$$\downarrow \alpha_{0} \qquad \qquad \downarrow \beta_{0} \qquad \qquad \downarrow \gamma_{1} \qquad \qquad \downarrow \alpha_{1} \qquad \qquad \downarrow \beta_{1}$$

$$H^{0}(\mathcal{O}_{X}) \longrightarrow H^{0}(\mathcal{O}_{S}) \longrightarrow H^{1}(\mathcal{O}(-S)) \longrightarrow H^{1}(\mathcal{O}_{X}) \longrightarrow H^{1}(\mathcal{O}_{S})$$

The vertical arrows β_0 and β_1 are isomorphisms because the spectral sequence associated to the Hodge filtration on $H^*(S, \mathbb{Z}_S)$ degenerates at E_1 [10, (1.5)] [3, (8.2.1), (8.1.12), (8.1.9)]. The vertical arrows α_0 and α_1 are isomorphisms by the E_1 -degeneration of the usual Hodge to DeRham spectral sequence. Hence by 5-lemma, the map γ_1 is an isomorphism. It follows that the sequence

$$(9) 0 \longrightarrow H^0(d\mathcal{O}(-S)) \longrightarrow H^1(j_!\mathbb{C}) \longrightarrow H^1(\mathcal{O}(-S)) \longrightarrow 0$$

is exact. Note that $F^1H^1(j_!\mathbb{C}) = H^0(d\mathcal{O}(-S))$. This completes the proof.

Thus for a homologically trivial divisor $D \in \mathrm{Div}^0(X-S)$, we can associate an element in the Jacobian $H^1(X,\mathcal{O}(-S))/H^1(X,S;\mathbb{Z})$. By duality, the Jacobian can be identified with

$$H^{n-1}(X, \omega_X(S)) / H_{2n-1}(X - S; \mathbb{Z}).$$

The map

$$\alpha: \text{Div}^{0}(X-S) \to H^{n-1}(X, \omega_{X}(S)) / H_{2n-1}(X-S; \mathbb{Z})$$

obtained in this way will be called the *Abel-Jacobi* map. We will show that the Abel-Jacobi map α can be realized in the following way;

Theorem 4.2. Given a cohomology class in $H^{n-1}(X, \omega_X(S))$, choose a (n, n-1)-form ω representing this cohomology class. Then $\alpha(D)$ is given by

$$\omega \mapsto \int_{\Gamma_D} \omega$$

where Γ_D is a (2n-1)-chain in X-S whose boundary is D.

Proof. After a birational change of X, we may assume that the support of D is a reduced normal crossing divisor. To each homologically trivial divisor $D \in \operatorname{Div}^0(X-S)$, one can associate a form $\eta_D \in H^0(X,\Omega^1_X(\log |D|)) = F^1H^1(X-|D|,\mathbb{C})$ with $\operatorname{Res}\eta_D = D$ since the map in the sequence (8) strictly preserves the Hodge filtration F^\bullet and $F^1H^1(X-|D|,S;\mathbb{C}) \subset F^1H^1(X-|D|,\mathbb{C})$. To construct a retraction $r:E_D \to H^1(X,S;\mathbb{Z})$, choose a set $\{\xi_1,\cdots,\xi_m\}$ of differential (2n-1)-forms on X-S representing a basis of $H^{2n-1}(X-S,\mathbb{Z})$ such that ξ_i vanishes in a neighborhood N(D) of |D|. This is possible since we have a surjection $H^{2n-1}(X-S,D) \to H^{2n-1}(X-S)$. Let $\{\xi^1,\cdots,\xi^m\}$ be the dual basis of $H^1(X,S;\mathbb{Z})$. We now set

$$r(\eta) = \sum_{i} \int_{X} (\eta \wedge \xi_{i}) \xi^{i}.$$

Let B(D) be a small tubular neighborhood of |D| in X-S such that the closure of B(D) is contained in N(D). We can write

$$\omega = \sum_{i=1}^{m} c_i \xi_i + d\phi$$

where ϕ is a $C^{\infty}(2n-2)$ -form on X-S. Set $\eta=\eta_D$. Via the isomorphism given in Theorem 2.1 (cf. [1, Theorem 6.2]), $\alpha(D)$ is given by sending ω to

$$\begin{split} &\int_X r(\eta) \wedge \omega \\ &= \int_X r(\eta) \wedge \sum_i c_i \xi_i = \int_X \left(\sum_i \left(\int_X \eta \wedge \xi_i \right) \xi^i \right) \wedge \left(\sum_j c_j \xi_j \right) \\ &= \int_X \eta \wedge \sum_i c_i \xi_i = \int_{X-B(D)} \eta \wedge (\omega - d\phi) \\ &= \int_{X-B(D)} -\eta \wedge d\phi \\ & \text{(since } \eta \wedge \omega = 0 \text{ on } X - B(D)) \\ &= \int_{\partial B(D)} \eta \wedge \phi \quad \text{(by Stokes' Theorem.)} \\ &= \int_{\partial B(D)} \eta \wedge \int \omega \quad (\int \omega \text{ is a primitive of } \omega \text{ on } B(D)) \\ &= \int_D \int \omega \end{split}$$

Since D is also algebraically equivalent to zero [6, p. 462] it is enough to consider the following case: Let T be a non-singular curve and \mathcal{D} be an irreducible divisor on $X \times T$, flat over T. D is given by $p_{2*}(p_1^*(0) - p_1^*(1))$ for some points $0, 1 \in T$.

$$\mathcal{D} \subset X \times T \xrightarrow{p_2} X$$

$$p_1 \downarrow \qquad \qquad T$$

Let $\widetilde{\mathcal{D}}$ be a desingularization of \mathcal{D} and p_1' be the composition of $\widetilde{\mathcal{D}} \to \mathcal{D}$ and p_1 . Let

be the Stein factorization of $\widetilde{\mathcal{D}} \to X$. So f has connected fibers and g is a finite surjective map. Now choose a path γ from 0 to 1 in T such that p_1' is smooth over $\gamma - \partial \gamma$. Let $\widehat{\Gamma}_D = {p_1'}^{-1}(\gamma)$, $\Gamma_D' = f_* \widehat{\Gamma}_D$ and $\Gamma_D = g_* \Gamma_D'$. Take a division $\gamma = \Sigma_i \gamma_i$ of γ so that p_1' is trivial over γ_i . Set $(\widehat{\Gamma}_D)_i = {p_1'}^{-1}(\gamma_i)$, $(\Gamma_D')_i = f_*(\widehat{\Gamma}_D)_i$. Then each $(\widehat{\Gamma}_D)_i$ shrinks to a fiber, hence $H^{2n-1}((\widehat{\Gamma}_D)_i, \mathbb{C}) = 0$ and so $H^{2n-1}((\Gamma_D')_i, \mathbb{C}) = 0$. Therefore we have

$$\int_{D} \int \omega$$

$$= g_* \left(\int_{D'} g^* \left(\int \omega \right) \right) \quad \text{where } D' = f_*(p_1'^*(0) - p_1'^*(1))$$

$$= g_* \left(\sum_{i} \int_{\partial \left(\Gamma_D' \right)_i} g^* \left(\int \omega \right) \right)$$

$$= g_* \left(\sum_{i} \int_{\left(\Gamma_D' \right)_i} g^* \omega \right) \quad \text{by Stokes' theorem}$$

$$= g_* \left(\int_{\Gamma_D'} g^* \omega \right) = \int_{\Gamma_D} \omega$$

Note that $g^*(\int \omega)$ is extendable to Γ_D' since $H^{2n-1}(\Gamma_D', \mathbb{C}) = 0$.

Note that when $S=\emptyset$, our Abel-Jacobi map agrees with the classical Abel-Jacobi map. The initial step of the proof contains a useful method for calculating α . Under the original definition

$$J(X - S) = H^{1}(X, S; \mathbb{C}) / H^{1}(X, S; \mathbb{Z}) + F^{1}H^{1}(X, S; \mathbb{C})$$

 $\alpha(D)$ is represented by $r(\eta_D)$, where $\eta_D \in F^1H^1(X-D,S;\mathbb{C})$ is given by a logarithmic 1-form with $\mathrm{Res}\eta_D = D$ and r an integral retraction onto $H^1(X,S;\mathbb{C})$. Note that a form in $H^0(\Omega^1_X(\log |D|))$ defines a class in $H^1(X-D,S)$ if and only if it vanishes on S.

5. Abel's Theorem

We will establish Abel's Theorem by showing that the two definitions of the Abel-Jacobi map α and β (5) agree up to sign.

Theorem 5.1. α and β coincide up to sign.

Proof. First, we will give an explicit description of the map β in (5). By construction β is a composite of the injection

$$\beta': Cl_S^0(X) \longrightarrow H^1(O(-S))/H^1(X, S; \mathbb{Z})$$

and the duality map

$$H^1(O(-S))/H^1(X,S;\mathbb{Z}) \cong H^{n-1}(X,\omega_X(S))/H_{2n-1}(X-S,\mathbb{Z}).$$

Let D be a homologically trivial divisor on X-S. Choose a finite open covering $\{U_i\}_{i=0,\cdots,m}$ of X such that D is defined by $f_i=0$ on U_i and $U_0=X-|D|$. As S and D are disjoint, there is no loss in assuming that $f_i=1$ on S. Then the cohomology class [D] of D in $H^1(\mathcal{O}^*(-S))$ can be represented by $\{f_i/f_j\}$. Since D is homologically trivial, there is a cocycle $\phi_{ij}\in Z^1(\mathcal{O}(-S))$ such that $\exp(2\pi i\phi_{ij})=f_i/f_j$. Then $\beta'(D)$ is represented by ϕ_{ij} .

Next we calculate $\alpha(D)$. We make use of the identification

$$J(X - S) \cong H^1(O(-S))/H^1(X, S; \mathbb{Z})$$

to view $\alpha(D)$ as an element of the latter group. By degeneration of the Hodge to De Rham spectral sequence, there exists $\psi_i \in H^0(\Omega^1_X(U_i))$ such that $d\phi_{ij} = \psi_j - \psi_i$. Therefore $\eta = 1/2\pi i d \log f_i + \psi_i$ is a globally defined logarithmic 1-form satisfying $\operatorname{Res} \eta = D$ which also vanishes on S. As explained in the remarks at the end of the last section, $\alpha(D)$ is represented by $r(\eta)$, and in fact we are free to modify η by adding an element of $F^1H^1(X,S)$. Note that $H^1(X-D,S;\mathbb{C})$ is isomorphic to the first hypercohomology group of $\Omega_X^{\bullet}(\log D + S)(-S)$, and this can be described using Cech methods. In particular $(\phi_{ij}, d \log f_i)$ is a cocycle defining a class $\Phi \in$ $H^1(X-D,S;\mathbb{C})$. We claim that Φ can be decomposed as a sum $\Phi_1+\Phi_2$ where the first term lies in $L = H^1(X - D, S; \mathbb{Z})$ and the second in $F^1H^1(X - D, S)$. To see this, first observe that the quotient $H^1(X, O(-S))$ by the image of L is isomorphic to the quotient of J(X-S) by the subgroup of homologically trivial divisors with support in |D| (under β'). Therefore as the image of Φ in J(X-S) is D, it follows that modulo L, Φ can be represented by a form in $F^1H^0(X-D,S)$. As Φ has integral residues, it follows that after subtracting off an addition element of L, the difference lies in $F^1H^1(X,S)$. In other words, we have obtained the desired decomposition of Φ . Now set $\eta' = \eta - \Phi_2$. Let $E_D \subset H^1(X - D, S)$ be the extension defined in (8). Consider the unique retraction $\eta: E_D \to H^1(X,S;\mathbb{Z})$ with kernel $\mathbb{Z}\Phi_1$. Then $\eta'=a\Phi_1+r(\eta')$, and by matching residues, we see that a=1. Therefore $r(\eta') = \eta - \Phi = -(\phi_{ij}, \psi_i)$ represents $\alpha(D)$. But of course $\alpha(D)$ is the image of this class in J(X-S) and this is represented by $-\phi_{ij}$, or $-\beta'(D)$.

6. Hodge Theoretic Proof of Abel's Theorem

We give an alternative proof of Abel's theorem based on Carlson's theorem.

Theorem 6.1. A homologically trivial divisor $D \in \operatorname{Div}^0(X - S)$ is S-principal if and only if there exists $\eta \in H^0(X, \Omega^1_X(\log |D|))$ such that

- (1) $\operatorname{Res} n = D$
- (2) η has integral periods for any closed loop in X |D|.
- (3) $\int_{\gamma} \eta \in \mathbb{Z}$ where γ is a path in X S connecting points of S.

By the way, the statement (2) is included in (3).

Proof. Given η as above, set

$$f(z) = \exp\left(2\pi\sqrt{-1}\int_{z_0}^z \eta\right).$$

Conversely, if $D = (f) \in Prin_S(X)$, let

$$\eta = \frac{1}{2\pi\sqrt{-1}} \frac{df}{f}.$$

Corollary 6.2. $\alpha(D) = 0$ if and only if D is S-principal.

Proof. $\alpha(D)=0$ if and only if the extension (8) splits in the category of Mixed Hodge Structures. Hence $\alpha(D)=0$ if and only if η_D represents an integral class in $H^1(X-|D|,S)$. Thus $\alpha(D)=0$ if and only if η_D satisfies the conditions in Theorem 6.1.

7. Non-compact Curves

When X is a curve, J(X-S) is an extension of the classical Jacobian J(X) by the complex multiplicative group.

Lemma 7.1. Let X be a smooth projective curve and S be a set of distinct points. Then we have an exact sequence of algebraic groups:

$$1 \longrightarrow (\mathbb{C}^*)^{\sigma-1} \longrightarrow J(X-S) \longrightarrow J(X) \longrightarrow 0$$

where σ is the number of points in S and J(X) is the usual Jacobian of X.

Proof. Consider an exact sequence of cohomologies on X:

$$0 \to H^0(\Omega^1_X) \to H^0(\Omega^1_X(\log S)) \to H^0(\mathcal{O}_{\mathcal{S}}) \to \mathcal{H}^\infty(\otimes_{\mathcal{X}}^\infty) \to \mathcal{H}^\infty(\otimes_{\mathcal{X}}^\infty(\log \mathcal{S})) \to \mathcal{U}^\infty(\otimes_{\mathcal{X}}^\infty(\log \mathcal{S}))$$

By Serre duality, $H^1(X, \Omega^1_X(\log S)) = H^0(X, \mathcal{O}(-S)) = \ell$ and $h^1(X, \Omega^1_X) = 1$. This sequence fits into the following diagram:

$$0 \longrightarrow H_2(X, X - S)/H_2(X, \mathbb{Z}) \longrightarrow H_1(X - S, \mathbb{Z}) \longrightarrow H_1(X, \mathbb{Z}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathbb{C}^{\sigma - 1} \longrightarrow H^0(X, \Omega_X^1(\log S)) \longrightarrow H^0(X, \Omega_X^1) \longrightarrow 0$$

The cokernels of the vertical arrows will give the desired sequence. The cokernel of the leftmost arrow is identified with the multiplicative group $(\mathbb{C}^*)^{\sigma-1}$ via the exponential map $\exp(2\pi i(\))$.

EXAMPLE 3. Let $X=\mathbb{P}^1$ and $S=\{0,\infty\}$. Then $H^0(X,\omega_X(S))$ is generated by dz/z. By the above Lemma, we have $J(X-S)=\mathbb{C}^*$. By Theorem 4.2, the Abel-Jacobi map $\alpha: \operatorname{Div}^0(X-S) \to \mathbb{C}^*$ is the natural linear extension of

$$\alpha(x-1) = \exp \int_1^x \frac{dz}{z} = x, \quad \text{for } x \in X - S$$

if we choose $1 \in X - S$ as a base point. Thus $\ker \alpha = \{\sum n_p p - (\sum n_p) \cdot 1 \in \mathrm{Div}^0(X - S) | \Pi p^{n_p} = 1\}$ On the other hand, a rational function f on X is in $\mathrm{Prin}_S(X)$ iff

$$f(z) = \frac{\prod_{i=1}^{n} (z - a_i)}{\prod_{i=1}^{n} (z - b_i)}$$

with $\Pi a_i = \Pi b_i \neq 0, \infty$. As expected by our Abel-Jacobi theorem, $\ker \alpha = \operatorname{Prin}_S(X)$.

As an application, we give a version of Torelli theorem for noncompact curves. A similar result for complete singular curves was obtained by Carlson [2]. Let X be a smooth non-compact curve and \bar{X} its unique smooth compactification. Then the mixed Hodge structure on $H^1(X,\mathbb{Z})$ carries a natural graded polarization given as follows: The polarization on $Gr_1^{W\bullet}H^1(X,\mathbb{Z})$ is induced by the polarized Hodge structure on $H^1(\bar{X},\mathbb{Z})$, which is determined by the intersection product of one-cycles on \bar{X} . For $Gr_2^{W\bullet}H^1(X,\mathbb{Z})$, choose the unique symmetric bilinear form on $\bigoplus_{i=1}^n \mathbb{Z}(-1)$ so that $\{e_j\}$ forms an orthonormal basis. Then restrict this polarization to $Gr_2^{W\bullet}H^1(X,\mathbb{Z})$.

Theorem 7.2. Let X be a smooth non-compact curve and \bar{X} its unique smooth compactification. Suppose \bar{X} is non-hyperelliptic of genus > 1 and the number of points in $\bar{X} - X$ at least 2. Then X is determined by the graded polarized MHS on $H^1(X,\mathbb{Z})$.

Proof. Let $\bar{X} - X = \{p_1, \dots, p_n\}$. Consider the 'Thom-Gysin' sequence:

$$0 \longrightarrow H^1(\bar{X}, \mathbb{Z}) \longrightarrow H^1(X, \mathbb{Z}) \longrightarrow \bigoplus_{i=1}^n \mathbb{Z}(-1) \longrightarrow H^2(\bar{X}, \mathbb{Z}) = \mathbb{Z}(-1)$$

where each point p_j contributes to the j-th component vector $\{e_j\}$ of $\bigoplus_{i=1}^n \mathbb{Z}(-1)$. Note that $K = \ker(\bigoplus_{i=1}^n \mathbb{Z}(-1) \longrightarrow H^2(\bar{X}, \mathbb{Z}) = \mathbb{Z}(-1))$ is just $Gr_2^{W\bullet}H^1(X, \mathbb{Z})$ and $H^1(\bar{X}, \mathbb{Z}) = Gr_1^{W\bullet}H^1(X, \mathbb{Z})$. Now we provide a polarization on $H^1(X, \mathbb{Z})$.

First, by the classical Torelli theorem, the polarization on $Gr_1^{W_{\bullet}}H^1(X,\mathbb{Z})$ determines \bar{X} . Second, define a map $\phi_{ij}:\mathbb{Z}(-1)\to \bigoplus_{i=1}^n\mathbb{Z}(-1)$ sending $1/2\pi\sqrt{-1}$ to e_i-e_j . Then these maps are all possible maps from $\mathbb{Z}(-1)$ to $\bigoplus_{i=1}^n\mathbb{Z}(-1)$ which factors through K and minimizes the length of the image of the generator $1/2\pi\sqrt{-1}$. By pulling back along ϕ_{ij} , we get an element in $\mathrm{Ext}^1(\mathbb{Z}(-1), H^1(\bar{X},\mathbb{Z}))\cong J(\bar{X})$, which depends only on the polarized Hodge structure on $Gr_2^{W_{\bullet}}H^1(X,\mathbb{Z})$. This corresponds to $\alpha(p_i-p_j)\in J(\bar{X})$ under the Abel-Jacobi map α [1, Theorem 6.2]. As \bar{X} is not hyperelliptic, $\alpha(p_i-p_j)$ uniquely determines p_i and p_j . Otherwise, there exists a meromorphic function f on \bar{X} such that $(f)=p_i+p-p_j-q$ by the classical Abel's theorem. Therefore the graded polarized MHS on $H^1(X,\mathbb{Z})$ determines X.

References

- [1] D. Arapura and K. Oh: Abel's theorem for twisted Jacobians, Trans. of AMS. 342 (1994), 421-433.
- [2] J. Carlson: Extensions of mixed Hodge structures, Journées de géométrie algébrique d'Angers 1979, Sijthoff & Noordhoff International Publishers B.V., (1980), 107-127.
- [3] P. Deligne: *Théorie de Hodge II, III*, Publ. de l'Inst. des Hautes Études Scientifiques, **40** (1972), 5-57; **44** (1974), 5-77.
- [4] A. Fujiki: Duality of mixed Hodge structures of algebraic varieties, Publ. RIMS, Kyoto Univ. 16 (1980), 635-667.
- [5] W. Fulton: Intersection theory, Springer-Verlag, New York, (1984).
- [6] P.A. Griffiths and J. Harris: Principles of algebraic geometry, John Wiley and Sons, 1978.
- [7] R. Hartshorne: Algebraic geometry, Springer-Verlag, New York, 1977.
- [8] M. Rosenlicht: Generalized Jacobian varieties, Ann. of Math. 59 (1954), 505-530.
- [9] E.H. Spanier: Algebraic topology, McGraw-Hill, New York, (1966).
- [10] J.H.M. Steenbrink: *Mixed Hodge structures associated with isolated singularities*, Singularities (Proc. Symp. Pure Math. **40**), Amer. Math. Soc. Providence, **2** (1983), 513–536.

D. Arapura
Department of Mathematics
Purdue University
Indiana 47907
e-mail: dvb@math.purdue.edu

K. Oh
Department of Mathematics
and Computer Science
University of Missouri-St.
Louis, St. Lous, Missouri 63121
e-mail: oh@arch.umsl.edu