

Title	Growth properties of p -th means of biharmonic Green potentials in the unit ball
Author(s)	Futamura, Toshihide; Mizuta, Yoshihiro
Citation	Osaka Journal of Mathematics. 2005, 42(1), p. 85-99
Version Type	VoR
URL	https://doi.org/10.18910/12070
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Futamura, T. and Mizuta, Y.
 Osaka J. Math.
42 (2005), 85–99

GROWTH PROPERTIES OF p -TH MEANS OF BIHARMONIC GREEN POTENTIALS IN THE UNIT BALL

Dedicated to Professor Masakazu Shiba on the occasion of his sixtieth birthday

TOSHIHIDE FUTAMURA and YOSHIHIRO MIZUTA

(Received July 22, 2003)

Abstract

Let u be a biharmonic Green potential on the unit ball \mathbf{B} of \mathbf{R}^n . We show that

$$\lim_{r \rightarrow 1} (1-r)^{n-2-(n-1)/p} \mathcal{M}_p(u, r) = 0$$

for p such that $1 \leq p < (n-1)/(n-4)$ in case $n \geq 5$ and $1 \leq p < \infty$ in case $n \leq 4$. Further, if $n \geq 5$ and $(n-1)/(n-4) \leq p < (n-1)/(n-5)$, then it is shown that

$$\liminf_{r \rightarrow 1} (1-r)^{n-2-(n-1)/p} \mathcal{M}_p(u, r) = 0.$$

Finally we show that these limits characterize biharmonic Green potentials among super-biharmonic functions on \mathbf{B} .

1. Introduction and statement of results

A function u on an open set $\Omega \subset \mathbf{R}^n$ ($n \geq 2$) is called biharmonic if $u \in C^4(\Omega)$ and $\Delta^2 u = 0$ on Ω , where Δ denotes the Laplacian and $\Delta^2 u = \Delta(\Delta u)$. We say that a lower semicontinuous and locally integrable function u on Ω is super-biharmonic in Ω if every point of Ω is a Lebesgue point of u and $\Delta^2 u$ is a nonnegative measure on Ω in the weak sense, that is,

$$\int_{\Omega} u(x) \Delta^2 \varphi(x) dx \geq 0 \quad \text{for all nonnegative } \varphi \in C_0^{\infty}(\Omega).$$

The open ball and the sphere centered at x with radius r are denoted by $B(x, r)$ and $S(x, r)$. We write $B(r) = B(0, r)$ and $S(r) = S(0, r)$. We also denote by \mathbf{B} and \mathbf{S} the unit ball $B(1)$ and the unit sphere $S(1)$. We write $x^* = |x|^{-2}x$, so that x^* is the inverse point of x relative to the unit sphere \mathbf{S} .

Let $G_2(x, y)$ denote the biharmonic Green function in the unit ball \mathbf{B} (cf. [8]), that

is,

$$G_2(x, y) = \begin{cases} \alpha_n \left(|x-y|^{4-n} - (|y||x-y^*|)^{4-n} - \frac{n-4}{2} (1-|x|^2)(1-|y|^2) (|y||x-y^*|)^{2-n} \right) & \text{in case } n \neq 2, 4, \\ \alpha_n \left(|x-y|^{4-n} \log \left(\frac{|x-y|}{|y||x-y^*|} \right)^2 + (1-|x|^2)(1-|y|^2) (|y||x-y^*|)^{2-n} \right) & \text{in case } n = 2, 4, \end{cases}$$

where $\alpha_n^{-1} = 2(4-n)(2-n)\sigma_n$ for $n \neq 2, 4$ and $\alpha_n^{-1} = (-1)^{n/2+1}8\sigma_n$ for $n = 2, 4$. Here σ_n denotes the surface measure of the unit sphere \mathbf{S} . For a nonnegative measure μ on \mathbf{B} , we define

$$G_2\mu(x) = \int_{\mathbf{B}} G_2(x, y) d\mu(y).$$

If μ has a density $f \in L^1_{\text{loc}}(\mathbf{B})$, then we write G_2f instead of $G_2\mu$. The function $G_2\mu$ is called a biharmonic Green potential if $G_2\mu \not\equiv \infty$.

For a Borel measurable function u on $S(r)$, we define the average integral over $S(r)$ by

$$\mathcal{M}(u, r) = \fint_{S(r)} u dS = \frac{1}{|S(r)|} \int_{S(r)} u dS,$$

where $|S(r)|$ denotes the surface measure of $S(r)$. For $p > 0$ and a Borel measurable function u on $S(r)$, define $\mathcal{M}_p(u, r) = \{\mathcal{M}(|u|^p, r)\}^{1/p}$.

Gardiner [5] and the second author [9] studied the limiting behavior of $\mathcal{M}_p(v, r)$ for (harmonic) Green potentials on \mathbf{B} . We also refer to Stoll [13, 14] for invariant potentials in the unit ball of \mathbf{C}^n .

In this paper we are concerned with biharmonic Green potentials on \mathbf{B} .

Theorem 1.1. *Let $G_2\mu$ be a biharmonic Green potential on \mathbf{B} . If $1 \leq p < (n-1)/(n-4)$ in case $n \geq 5$ and $1 \leq p < \infty$ in case $n \leq 4$, then*

$$\lim_{r \rightarrow 1} (1-r)^{n-2-(n-1)/p} \mathcal{M}_p(G_2\mu, r) = 0.$$

Theorem 1.2. *Let $G_2\mu$ be a biharmonic Green potential on \mathbf{B} . If $n \geq 5$ and $(n-1)/(n-4) \leq p < (n-1)/(n-5)$, then*

$$\liminf_{r \rightarrow 1} (1-r)^{n-2-(n-1)/p} \mathcal{M}_p(G_2\mu, r) = 0.$$

Finally we give a characterization for a super-biharmonic function to be a biharmonic Green potential on \mathbf{B} .

Theorem 1.3. *Let u be a super-biharmonic function on \mathbf{B} . If u satisfies*

$$\liminf_{r \rightarrow 1} (1-r)^{-1} \mathcal{M}_1(u, r) = 0,$$

then it is a biharmonic Green potential on \mathbf{B} .

2. p -th means of biharmonic Green potentials

Throughout this paper, let M denote various constants independent of the variables in question.

We need the following fundamental estimates for the biharmonic Green function on the unit ball \mathbf{B} (cf. [1] and [7]).

Lemma 2.1. *There exist positive constants C_i , $1 \leq i \leq 4$, satisfying the following conditions:*

(1) *If $n \geq 5$, then for every $(x, y) \in \mathbf{B} \times \mathbf{B}$*

$$0 < C_1 \frac{(1-|x|^2)^2(1-|y|^2)^2}{|x-y|^{n-4}(|y||x-y^*|)^4} \leq G_2(x, y) \leq C_2 \frac{(1-|x|^2)^2(1-|y|^2)^2}{|x-y|^{n-4}(|y||x-y^*|)^4}.$$

(2) *If $n = 4$, then for every $(x, y) \in \mathbf{B} \times \mathbf{B}$*

$$\begin{aligned} 0 &< C_1 \frac{(1-|x|^2)^2(1-|y|^2)^2}{(|y||x-y^*|)^4} \log \left(\frac{2|y||x-y^*|}{|x-y|} \right) \\ &\leq G_2(x, y) \leq C_2 \frac{(1-|x|^2)^2(1-|y|^2)^2}{(|y||x-y^*|)^4} \log \left(\frac{2|y||x-y^*|}{|x-y|} \right). \end{aligned}$$

(3) *If $n = 2, 3$, then for every $(x, y) \in \mathbf{B} \times \mathbf{B}$*

$$C_1 \frac{(1-|x|^2)^2(1-|y|^2)^2}{(|y||x-y^*|)^n} \leq G_2(x, y) \leq C_2 \frac{(1-|x|^2)^2(1-|y|^2)^2}{(|y||x-y^*|)^n}.$$

Further, in all cases,

$$C_3 \frac{(1-|x|^2)^2(1-|y|^2)^2}{(|y||x-y^*|)^n} \leq G_2(x, y) \leq C_4 \frac{(1-|x|^2)^2(1-|y|^2)^2}{|x-y|^n}.$$

By Lemma 2.1, we have the following result; see [7] and [10].

Corollary 2.2. *Let μ be a nonnegative measure on \mathbf{B} . Then $G_2\mu$ is a biharmonic Green potential if and only if*

$$(2.1) \quad \int_{\mathbf{B}} (1-|y|)^2 d\mu(y) < \infty.$$

Lemma 2.3. *If $(n-1)/n < p < \infty$ and $1/2 < r < 1$, then*

$$\mathcal{M}_p(G_2(\cdot, y), r) \leq M(1-r)^{2-n+(n-1)/p} \left(\frac{1-r}{|r-|y||} \right)^{n-(n-1)/p} (1-|y|)^2.$$

In particular, if $n = 2, 3$ and $(n-1)/n < p < \infty$, then

$$\mathcal{M}_p(G_2(\cdot, y), r) \leq M(1-r)^{2-n+(n-1)/p} \left(\frac{1-r}{1-r|y|} \right)^{n-(n-1)/p} (1-|y|)^2.$$

This follows from Lemma 2.1 and the fact that, if $\beta < 1-n$, then

$$(2.2) \quad \int_{S(r)} |x-y|^\beta dS(x) \leq M(r+|y|)^{1-n} |r-|y||^{\beta+n-1},$$

where M is a positive constant depending only on n and β .

Set $A(r) = \{y \in \mathbf{B} : (5r-1)/4 < |y| < (3r+1)/4\}$ for $0 < r < 1$.

Lemma 2.4. *Let μ be a nonnegative measure on \mathbf{B} satisfying (2.1). If $(n-1)/n < p < \infty$, then*

$$\lim_{r \rightarrow 1} (1-r)^{n-2-(n-1)/p} \int_{\mathbf{B} \setminus A(r)} \mathcal{M}_p(G_2(\cdot, y), r) d\mu(y) = 0.$$

Proof. By Lemma 2.3, we obtain

$$\begin{aligned} & (1-r)^{n-2-(n-1)/p} \int_{\mathbf{B} \setminus A(r)} \mathcal{M}_p(G_2(\cdot, y), r) d\mu(y) \\ & \leq M \int_{\mathbf{B} \setminus A(r)} \left(\frac{1-r}{|r-|y||} \right)^{n-(n-1)/p} (1-|y|)^2 d\mu(y). \end{aligned}$$

Since $(1-r)/|r-|y|| \leq 4$ for $y \in \mathbf{B} \setminus A(r)$, Lebesgue's dominated convergence theorem implies that

$$\lim_{r \rightarrow 1} (1-r)^{n-2-(n-1)/p} \int_{\mathbf{B} \setminus A(r)} \mathcal{M}_p(G_2(\cdot, y), r) d\mu(y) = 0.$$

In case $n = 2$ and 3 , we can show by Lemma 2.3 that

$$\lim_{r \rightarrow 1} (1-r)^{n-2-(n-1)/p} \int_{\mathbf{B}} \mathcal{M}_p(G_2(\cdot, y), r) d\mu(y) = 0. \quad \square$$

Lemma 2.5. *Let $1/2 < r < 1$ and $y \in A(r)$. If $n \geq 5$, then*

$$\mathcal{M}_p(G_2(\cdot, y), r) \leq M(1-r)^{2-n+(n-1)/p}(1-|y|)^2$$

$$\times \begin{cases} 1 & \text{if } \frac{n-1}{n} < p < \frac{n-1}{n-4}, \\ \left(\log \frac{1-r}{|r-|y||} \right)^{1/p} & \text{if } p = \frac{n-1}{n-4}, \\ \left(\frac{1-r}{|r-|y||} \right)^{n-4-(n-1)/p} & \text{if } p > \frac{n-1}{n-4}. \end{cases}$$

If $n = 4$, then

$$\mathcal{M}_p(G_2(\cdot, y), r) \leq M(1-r)^{2-n+(n-1)/p}(1-|y|)^2.$$

Proof. For $y \in A(r)$ and $r > 1/2$, setting

$$I_1(y, r) = S(r) \setminus B\left(y, \frac{1-r}{2}\right) \quad \text{and} \quad I_2(y, r) = S(r) \cap B\left(y, \frac{1-r}{2}\right),$$

we write

$$\begin{aligned} \mathcal{M}_p(G_2(\cdot, y), r)^p &= \frac{1}{\sigma_n r^{n-1}} \left(\int_{I_1(y, r)} G_2(x, y)^p dS(x) + \int_{I_2(y, r)} G_2(x, y)^p dS(x) \right) \\ &= u_1(y) + u_2(y). \end{aligned}$$

Since $-np + n - 1 < 0$, we have

$$\begin{aligned} u_1(y) &\leq M(1-r)^{2p}(1-|y|)^{2p} \int_{I_1(y, r)} |x-y|^{-np} dS(x) \\ &\leq M(1-r)^{2p+n-1-np}(1-|y|)^{2p}. \end{aligned}$$

On the other hand, if $x \in I_2(y, r)$, then $1-r \leq |y| |x-y^*| \leq 3(1-r)$. In case $n \geq 5$ we see that

$$G_2(x, y) \leq M(1-r)^{-2}(1-|y|)^2 |x-y|^{4-n},$$

so that

$$\begin{aligned}
u_2(y) &\leq M(1-r)^{-2p}(1-|y|)^{2p} \int_{I_2(y,r)} |x-y|^{(4-n)p} dS(x) \\
&\leq M(1-r)^{-2p}(1-|y|)^{2p} |y-r|^{(4-n)p+n-1} \\
&\times \begin{cases} \left(\frac{1-r}{|r-|y||}\right)^{n-1+(4-n)p} & \text{if } \frac{n-1}{n} < p < \frac{n-1}{n-4}, \\ \log \frac{1-r}{|r-|y||} & \text{if } p = \frac{n-1}{n-4}, \\ 1 & \text{if } p > \frac{n-1}{n-4}. \end{cases}
\end{aligned}$$

Since $(1-r)/|y-r| > 4$ on $A(r)$, we obtain the required inequality.

Similarly, in case $n=4$, we find

$$\begin{aligned}
u_2(y) &\leq M(1-r)^{(2-n)p}(1-|y|)^{2p} \int_{I_2(y,r)} \left(\log \frac{2(1-r)}{|x-y|}\right)^p dS(x) \\
&\leq M(1-r)^{(2-n)p}(1-|y|)^{2p}(1-r)^{n-1}.
\end{aligned}$$

Hence it follows that

$$\mathcal{M}_p(G_2(\cdot, y), r) \leq M(1-r)^{2-n+(n-1)/p}(1-|y|)^2. \quad \square$$

3. Proofs of Theorems 1.1 and 1.2

In this section, we give proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let $1 \leq p < (n-1)/(n-4)$ when $n \geq 5$ and $1 \leq p < \infty$ when $n \leq 4$. By applying Minkowski's inequality for integrals, we have

$$\begin{aligned}
(3.1) \quad \mathcal{M}_p(G_2\mu, r) &\leq \int_{\mathbf{B}} \mathcal{M}_p(G_2(\cdot, y), r) d\mu(y) \\
&= \int_{\mathbf{B} \setminus A(r)} \mathcal{M}_p(G_2(\cdot, y), r) d\mu(y) + \int_{A(r)} \mathcal{M}_p(G_2(\cdot, y), r) d\mu(y).
\end{aligned}$$

Thus Theorem 1.1 follows from Lemmas 2.4 and 2.5. \square

Proof of Theorem 1.2. First, we give a proof in case $(n-1)/(n-4) < p < (n-1)/(n-5)$. Set $\beta = n-4 - (n-1)/p$ and $d\nu(x) = (1-|x|^2) d\mu(x)$. Here note that $0 < \beta < 1$. By Lemmas 2.3, 2.5 and (3.1), we see that

$$(3.2) \quad (1-r)^{n-2-(n-1)/p} \mathcal{M}_p(G_2\mu, r) \leq o(1) + M(1-r)^\beta \int_{A(r)} |y-r|^{-\beta} d\nu(y).$$

Hence it suffices to show that

$$(3.3) \quad \liminf_{r \rightarrow 1} (1-r)^\beta \int_{A(r)} | |y| - r |^{-\beta} d\nu(y) = 0.$$

For this purpose, we see that

$$\int_{1-2^{-j+1}}^{1-2^{-j}} | |y| - r |^{-\beta} dr \leq M 2^{-j(1-\beta)}.$$

Hence it follows that

$$\begin{aligned} & \int_{1-2^{-j+1}}^{1-2^{-j}} \left((1-r)^\beta \int_{A(r)} | |y| - r |^{-\beta} d\nu(y) \right) \frac{dr}{1-r} \\ & \leq 2^{-j(\beta-1)} \int_{\{y: 2^{-j-1} < 1-|y| < 2^{-j+2}\}} \left(\int_{1-2^{-j+1}}^{1-2^{-j}} | |y| - r |^{-\beta} dr \right) d\nu(y) \\ & \leq M \nu(\{y: 2^{-j-1} < 1-|y| < 2^{-j+2}\}). \end{aligned}$$

Since $\nu(\mathbf{B}) < \infty$, we can find a sequence $\{r_j\}$ such that $2^{-j} < 1-r_j < 2^{-j+1}$ and

$$\lim_{j \rightarrow \infty} (1-r_j)^\beta \int_{A(r_j)} | |y| - r_j |^{-\beta} d\nu(y) = 0,$$

which implies (3.3). Thus the case $(n-1)/(n-4) < p < (n-1)/(n-5)$ now follows from (3.2) and (3.3).

Next, we deal with the case $p = (n-1)/(n-4)$. We see that

$$(1-r)^{n-2-(n-1)/p} \mathcal{M}_p(G_2\mu, r) \leq o(1) + M \int_{A(r)} \left(\log \frac{1-r}{| |y| - r |} \right)^{1/p} d\nu(y).$$

In the same way as above, we have

$$\begin{aligned} & \int_{1-2^{-j+1}}^{1-2^{-j}} \left(\int_{A(r)} \left(\log \frac{1-r}{| |y| - r |} \right)^{1/p} d\nu(y) \right) \frac{dr}{1-r} \\ & \leq 2^j \int_{\{y: 2^{-j-1} < 1-|y| < 2^{-j+2}\}} \left(\int_{1-2^{-j+1}}^{1-2^{-j}} \left(\log \frac{1-r}{| |y| - r |} \right)^{1/p} dr \right) d\nu(y) \\ & \leq M \nu(\{y: 2^{-j-1} < 1-|y| < 2^{-j+2}\}), \end{aligned}$$

which implies that the left hand-side is zero by letting $j \rightarrow \infty$. Thus the theorem is established. \square

REMARK 3.1. Our theorems are best possible as to the power of $1-r$.

To show this, for $p \geq 1$ and $\delta > 0$, we give an example of biharmonic Green potential v satisfying

$$(3.4) \quad \lim_{r \rightarrow 1} (1-r)^{n-2-(n-1)/p-\delta} \mathcal{M}_p(v, r) = \infty.$$

Letting

$$f(x) = (1-|x|)^{-3+\delta/2} |x - e_1|^{1-n},$$

where $e_1 = (1, 0, \dots, 0)$, we consider the potential

$$v(x) = \int_{\mathbf{B}} G_2(x, y) f(y) dy.$$

Then $\int_{\mathbf{B}} (1-|x|)^2 f(x) dx < \infty$. Further, in case $n \geq 5$, we have

$$\begin{aligned} v(x) &\geq \int_{B(x, (1-|x|)/2)} G_2(x, y) f(y) dy \\ &\geq M(1-|x|)^{-3+\delta/2} |x - e_1|^{1-n} \int_{B(x, (1-|x|)/2)} |x - y|^{4-n} dy \\ &= M(1-|x|)^{1+\delta/2} |x - e_1|^{1-n}, \end{aligned}$$

so that

$$\begin{aligned} \mathcal{M}_p(v, r) &\geq M(1-r)^{1+\delta/2} \left(\int_{S(r)} |x - e_1|^{p(1-n)} dS(x) \right)^{1/p} \\ &\geq M(1-r)^{1+\delta/2+1-n+(n-1)/p} \\ &= M(1-r)^{2-n+(n-1)/p+\delta/2}. \end{aligned}$$

Thus (3.4) follows. We can show the remaining case in the same manner.

4. Proof of Theorem 1.3

First we study the spherical means of super-biharmonic functions.

Lemma 4.1 (cf. [6]). *Let u be a super-biharmonic function on \mathbf{B} . Then*

$$u(x) \geq \frac{1}{r_2^2 - r_1^2} \left(r_2^2 \int_{S(x, r_1)} u dS - r_1^2 \int_{S(x, r_2)} u dS \right)$$

whenever $x \in \mathbf{B}$ and $0 < r_1 < r_2 < 1 - |x|$.

Proof. Denote by K_2 the fundamental solution for the operator Δ^2 in \mathbf{R}^n , that is,

$$K_2(x) = \begin{cases} \alpha_n |x|^{4-n} & \text{in case } n \neq 2, 4, \\ 2\alpha_n |x|^{4-n} \log |x| & \text{in case } n = 2, 4. \end{cases}$$

For $x \in \mathbf{B}$ and $0 < r < 1 - |x|$, we can find a biharmonic function h in $B(x, r)$ such that

$$u(y) = \int_{B(x, r)} K_2(z - y) d\mu(z) + h(y)$$

for every $y \in B(x, r)$, where $\mu = \Delta^2 u$. By the Almansi expansion, we have

$$h(x) = \frac{r_2^2}{r_2^2 - r_1^2} \int_{S(x, r_1)} h(y) dS(y) - \frac{r_1^2}{r_2^2 - r_1^2} \int_{S(x, r_2)} h(y) dS(y)$$

for every $0 < r_1 < r_2 < r$. Hence we have only to show that

$$(4.1) \quad K_2(x) \geq \frac{r_2^2}{r_2^2 - r_1^2} \int_{S(r_1)} K_2(x - y) dS(y) - \frac{r_1^2}{r_2^2 - r_1^2} \int_{S(r_2)} K_2(x - y) dS(y)$$

for every $x \in \mathbf{R}^n$ and $0 < r_1 < r_2$. We define

$$g_2(x) = K_2(x) - \frac{r_2^2}{r_2^2 - r_1^2} \int_{S(r_1)} K_2(x - y) dS(y) + \frac{r_1^2}{r_2^2 - r_1^2} \int_{S(r_2)} K_2(x - y) dS(y)$$

and

$$g_1(x) = -\Delta g_2(x).$$

We see that

$$g_1(x) = K_1(x) - \frac{r_2^2}{r_2^2 - r_1^2} \int_{S(r_1)} K_1(x - y) dS(y) + \frac{r_1^2}{r_2^2 - r_1^2} \int_{S(r_2)} K_1(x - y) dS(y)$$

where $K_1(x) = (n - 2)^{-1} \sigma_n^{-1} |x|^{2-n}$ if $n > 2$ and $K_1(x) = \sigma_2^{-1} \log(1/|x|)$ if $n = 2$. Note that $g_i(x) = g_i(x')$ for $|x| = |x'|$ and $g_i \in C^{2(i-1)}(\mathbf{R}^n \setminus \{0\})$. Further we see that $g_i(x) = 0$ for $|x| \geq r_2$, $g_2(0) = \infty$ if $n \geq 4$ and $g_2(0) > 0$ if $n = 2, 3$. Setting $t = K_1(x)$, we define $f_i(t) = g_i(x)$. Then

$$f_1(t) = \begin{cases} 0 & \text{if } K_1(\infty) < t \leq K_1(r_2), \\ -\frac{r_1^2}{r_2^2 - r_1^2}(t - K_1(r_2)) & \text{if } K_1(r_2) < t \leq K_1(r_1), \\ t - t_0 & \text{if } t > K_1(r_1), \end{cases}$$

where $t_0 = (r_2^2 K_1(r_1) - r_1^2 K_1(r_2))/(r_2^2 - r_1^2)$ and $K_1(r) = K_1(x)$ with $|x| = r$. Hence we see that $f_1(t) < 0$ on $K_1(r_2) < t < t_0$ and $f_1(t) > 0$ on $t > t_0$. Since $f_2''(t) = -c(t)f_1(t)$ with $c(t) > 0$ and $\lim_{t \rightarrow \infty} f_2(t) > 0$, we obtain $f_2(t) > 0$ for $t > K_1(r_2)$. Thus (4.1) follows. \square

Lemma 4.2. *Let u be a super-biharmonic function on \mathbf{B} . Then*

$$\lim_{r \rightarrow 1} \mathcal{M}(u, r) \text{ exists in } (-\infty, \infty].$$

In particular, if $\liminf_{r \rightarrow 1} \mathcal{M}(u^+, r) = 0$, then

$$\mathcal{M}(u, r) \leq M(1 - r^2) \text{ for } r_0 < r < 1.$$

Proof. Let u be a super-biharmonic function on \mathbf{B} and $\mu = \Delta^2 u$. For $0 < t < 1$, there exists a biharmonic function h_t on $B(t)$ such that

$$u(x) = \int_{\overline{B}(t)} G_2(x, y) d\mu(y) + h_t(x) \quad (x \in B(t)).$$

Set

$$v_t(x) = \begin{cases} h_{(1+t)/2}(x) + \int_{\overline{B}((1+t)/2) \setminus \overline{B}(t)} G_2(x, y) d\mu(y) & \text{if } x \in B((1+t)/2), \\ u(x) - \int_{\overline{B}(t)} G_2(x, y) d\mu(y) & \text{if } x \in \mathbf{B} \setminus \overline{B}(t). \end{cases}$$

Then v_t is well defined. Further v_t is biharmonic on $B(t)$, super-biharmonic on \mathbf{B} , $v_t(0) < \infty$ and

$$(4.2) \quad u(x) = v_t(x) + \int_{\overline{B}(t)} G_2(x, y) d\mu(y) \quad (x \in \mathbf{B}).$$

In view of Lemma 2.3, we see that

$$(4.3) \quad \int_{S(r)} \left(\int_{\overline{B}(t)} G_2(x, y) d\mu(y) \right) dS(x) \leq M(1 - r)^2 \frac{\mu(\overline{B}(t))}{r - t} \\ \text{for } t < r < 1,$$

where M is a positive constant independent of t and r . By Lemma 4.1, we have

$$\mathcal{M}(v_t, r_2) \geq \frac{r_2^2}{r_1^2} \mathcal{M}(v_t, r_1) - \frac{r_2^2 - r_1^2}{r_1^2} v_t(0)$$

for $0 < r_1 < r_2 < 1$, which implies that

$$(4.4) \quad \liminf_{r_2 \rightarrow 1} \mathcal{M}(v_t, r_2) \geq \frac{1}{r_1^2} \mathcal{M}(v_t, r_1) - \frac{1 - r_1^2}{r_1^2} v_t(0) > -\infty$$

for $0 < r_1 < 1$. Hence we have

$$\liminf_{r_2 \rightarrow 1} \mathcal{M}(v_t, r_2) \geq \limsup_{r_1 \rightarrow 1} \mathcal{M}(v_t, r_1).$$

In view of (4.4), we see that $\lim_{r \rightarrow 1} \mathcal{M}(v_t, r)$ exists in $(-\infty, \infty]$, and so $\lim_{r \rightarrow 1} \mathcal{M}(u, r)$ exists in $(-\infty, \infty]$.

Moreover, assume that $\liminf_{r \rightarrow 1} \mathcal{M}(u^+, r) = 0$. By Lemma 4.1, we have

$$(r_2^2 - r_1^2)v_t(0) \geq r_2^2 \mathcal{M}(v_t, r_1) - r_1^2 \mathcal{M}(v_t, r_2) \geq r_2^2 \mathcal{M}(v_t, r_1) - r_1^2 \mathcal{M}((v_t)^+, r_2)$$

for $0 < r_1 < r_2 < 1$. Since $(v_t)^+ \leq u^+$ and $\liminf_{r_2 \rightarrow 1} \mathcal{M}(u^+, r_2) = 0$, we have $\liminf_{r_2 \rightarrow 1} \mathcal{M}((v_t)^+, r_2) = 0$. Hence we obtain

$$(4.5) \quad \mathcal{M}(v_t, r_1) \leq v_t(0)(1 - r_1^2).$$

Combining (4.3) and (4.5) we conclude that

$$\mathcal{M}(u, r) \leq M(1 - r)^2 \quad \text{for } t < r < 1,$$

where M is independent of r . The claim follows. \square

REMARK 4.3. Let u be a super-biharmonic function on \mathbf{B} satisfying $u(0) < \infty$ and $\liminf_{r \rightarrow 1} \mathcal{M}(u^+, r) = 0$. Then

$$\mathcal{M}(u, r) \leq u(0)(1 - r^2) \quad \text{for } 0 < r < 1.$$

Corollary 4.4. Let u be a super-biharmonic function on \mathbf{B} satisfying

$$(4.6) \quad \liminf_{r \rightarrow 1} \mathcal{M}(u^+, r) = 0.$$

Then the following are equivalent.

- (1) $\liminf_{r \rightarrow 1} (1 - r)^{-1} \mathcal{M}_1(u, r) = 0$ (resp. $< \infty$).
- (2) $\liminf_{r \rightarrow 1} (1 - r)^{-1} \mathcal{M}(u^-, r) = 0$ (resp. $< \infty$).

Lemma 4.5. Let u be a super-biharmonic function on \mathbf{B} and $\mu = \Delta^2 u$. Suppose u satisfies

$$\liminf_{r \rightarrow 1} (1 - r)^{-1} \mathcal{M}_1(u, r) < \infty.$$

Then (2.1) is satisfied and u is of the form

$$u(x) = G_2 \mu(x) + (1 - |x|^2)h(x),$$

where h is harmonic on \mathbf{B} satisfying

$$\sup_{r < 1} \mathcal{M}_1(h, r) < \infty.$$

Proof. By considering the function $v_{1/2}$ in the proof of Lemma 4.2, we may assume that $u(0) < \infty$. Take a function v_t as in the proof of Lemma 4.2. First we show that

$$(4.7) \quad \inf_{0 < t < 1} v_t(0) > -\infty.$$

By Corollary 4.4, we see that $\liminf_{r \rightarrow 1} \mathcal{M}(u^+, r) = 0$, and so (4.5) holds. Using (4.3) and (4.5), we establish

$$\begin{aligned} v_t(0) &\geq \frac{1}{1-r^2} \mathcal{M}(v_t, r) \\ &\geq -\frac{1}{1-r^2} \left(\mathcal{M}_1(u, r) + \int_{S(r)} \left(\int_{B(t)} G_2(x, y) d\mu(y) \right) dS(x) \right) \\ &\geq -\frac{1}{1-r^2} \left(\mathcal{M}_1(u, r) + M(1-r)^2 \frac{\mu(\overline{B}(t))}{r-t} \right) \\ &= -\frac{1}{1+r} \left((1-r)^{-1} \mathcal{M}_1(u, r) + M(1-r) \frac{\mu(\overline{B}(t))}{r-t} \right) \end{aligned}$$

for $t < r < 1$. Letting $r \rightarrow 1$, we obtain

$$v_t(0) \geq -\frac{1}{2} \liminf_{r \rightarrow 1} (1-r)^{-1} \mathcal{M}_1(u, r),$$

which implies (4.7).

By Lemma 2.1, we have

$$\begin{aligned} C_3 \int_{\overline{B}(t)} (1-|y|^2)^2 d\mu(y) &\leq \int_{\overline{B}(t)} G_2(0, y) d\mu(y) \\ &= u(0) - v_t(0) \\ &\leq u(0) - \inf_{0 < t < 1} v_t(0) < \infty \end{aligned}$$

with the positive constant C_3 in Lemma 2.1. Hence (2.1) follows. In view of Corollary 2.2, $G_2\mu$ is a biharmonic Green potential, and hence there exists a biharmonic function v on \mathbf{B} such that $u = G_2\mu + v$ on \mathbf{B} . By Theorem 1.1, we see that

$$(4.8) \quad \liminf_{r \rightarrow 1} (1-r)^{-1} \mathcal{M}_1(v, r) < \infty.$$

We note that v has an Almansi representation (see [3] and [11]):

$$v(x) = g(x) + (1-|x|^2)h(x)$$

where g and h are harmonic on \mathbf{B} . If $|x| < r < 1$, then we apply the Poisson integrals of both sides and find that

$$\liminf_{r \rightarrow 1} (1-r)^{-1} |g(x) + (1-r^2)h(x)| < \infty.$$

This shows that g is identically zero in \mathbf{B} . \square

The above proof also gives the following.

Lemma 4.6. *If u is a biharmonic function on \mathbf{B} satisfying*

$$\liminf_{r \rightarrow 1} (1-r)^{-1} \mathcal{M}_1(u, r) = 0,$$

then $u \equiv 0$ on \mathbf{B} .

Proof of Theorem 1.3. By Lemma 4.5, we see that u is of the form

$$u(x) = G_2\mu(x) + v(x),$$

where v is biharmonic on \mathbf{B} and

$$\int_{\mathbf{B}} (1 - |y|)^2 d\mu(y) < \infty.$$

By Theorem 1.1 we find

$$\liminf_{r \rightarrow 1} (1-r)^{-1} \mathcal{M}_1(v, r) = 0.$$

Hence we see from Lemma 4.6 that $v \equiv 0$. \square

5. Remarks

Suppose u is super-biharmonic on \mathbf{B} , and set $\mu = \Delta^2 u \geq 0$. Further, suppose there exists a sequence $\{r_j\}$, $0 < r_1 < r_2 < \dots < s < 1$, tending to 1 such that $\{u(r_j \cdot) dS\}$ converges weak-star to some finite Borel measure ν on \mathbf{S} and

$$\liminf_{r \rightarrow 1} (1-r)^{-1} \mathcal{M}((u - F[\nu])^-, r) < \infty.$$

Here $F[\nu](x) = \int_{\mathbf{S}} F(x, y) d\nu(y)$ with $F(x, y) = D_{\mathbf{n}(y)}(\Delta_y G_2(x, y))$, where $D_{\mathbf{n}(y)}$ denotes differentiation with respect to the outward unit normal. Then, as in Abkar and Hedenmalm [1], u can be represented as

$$u(x) = G_2\mu(x) + F[\nu](x) + (1 - |x|^2)P[\lambda](x),$$

where $P[\lambda]$ denotes the Poisson integral of some finite Borel measure λ on \mathbf{S} and

$$\int_{\mathbf{B}} (1 - |x|^2)^2 d\mu(x) < \infty.$$

References

- [1] A. Abkar and H. Hedenmalm: *A Riesz representation formula for super-biharmonic functions*, Ann. Acad. Sci. Fenn. Math. **26** (2001), 305–324.
- [2] D.H. Armitage and S.J. Gardiner: *Classical Potential Theory*, Springer-Verlag London, 2001.
- [3] N. Aronszajn, T.M. Creese and L.J. Lipkin: *Polyharmonic functions*, Clarendon Press, 1983.
- [4] T. Futamura and Y. Mizuta: *Isolated singularities of super-polyharmonic functions*, Hokkaido Math. J. **33** (2004), 675–695.
- [5] S.J. Gardiner: *Growth properties of p -th means of potentials in the unit ball*, Proc. Amer. Math. Soc. **103** (1988), 861–869.
- [6] W. Haußmann and O. Kounchev: *Definiteness of the Peano kernel associated with the polyharmonic mean value property*, J. London Math. Soc. **62** (2000), 149–160.
- [7] W.K. Hayman and P.B. Kennedy: *Subharmonic functions*, Academic Press, London-New York, 1976.
- [8] W.K. Hayman and B. Korenblum: *Representation and uniqueness theorems for polyharmonic functions*, J. Anal. Math. **60** (1993), 113–133.
- [9] Y. Mizuta: *Growth properties of p -th hyperplane means of Green potentials in a half space*, J. Math. Soc. Japan, **44** (1992), 1–12.
- [10] Y. Mizuta: *Potential theory in Euclidean spaces*, Gakkōtoso, Tokyo, 1996.
- [11] M. Nicolesco: *Recherches sur les fonctions polyharmoniques*, Ann. Sci. École Norm. Sup. **52** (1935), 183–220.
- [12] P. Pizetti: *Sulla media deivalori che una funzione dei punti dello spazio assume alla superficie di una sfera*, Rend. Lincei **5** (1909), 309–316.
- [13] M. Stoll: *Rate of growth of p th means of invariant potentials in the unit ball of \mathbf{C}^n* , J. Math. Anal. Appl. **143** (1989), 480–499.
- [14] M. Stoll: *Rate of growth of p th means of invariant potentials in the unit ball of \mathbf{C}^n , II*, J. Math. Anal. Appl. **165** (1992), 374–398.

Toshihide FUTAMURA
Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima 739-8526, Japan
e-mail: toshi@mis.hiroshima-u.ac.jp

Current address:
Department of Mathematics
Daido Institute of Technology
Nagoya 457-8530, Japan
e-mail: futamura@daido-it.ac.jp

Yoshihiro Mizuta
The Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739-8521, Japan
e-mail: mizuta@mis.hiroshima-u.ac.jp