

Title	Formation of Hercynite (FeAl ₂ O ₄) at Interface of Al ₂ O ₃ /Steel Joint
Author(s)	Okamoto, Ikuo; Naka, Masaaki; Asami, Katsuhiko et al.
Citation	Transactions of JWRI. 1982, 11(1), p. 131-133
Version Type	VoR
URL	https://doi.org/10.18910/12072
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Formation of Hercynite (FeAl_2O_4) at Interface of Al_2O_3 /Steel Joint[†]

Ikuo OKAMOTO*, Masaaki NAKA**, Katsuhiko ASAMI***
and Koji HASHIMOTO****

KEY WORDS: (Ceramics) (Joining) (Alumina) (Steel) (Hercynite) (X-ray Photoelectron Spectra)

The joining of ceramics to metals has received considerable interest in recent years in connection with the high strength of ceramics. Major methods reported are refractory-metal metallizing, active alloy sealing, oxide-soldering and metal-oxide eutectic

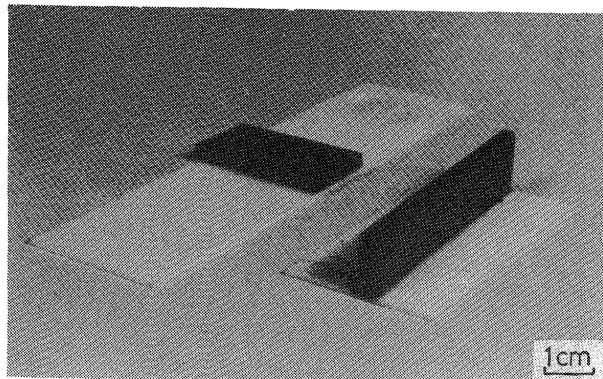


Fig. 1 Al_2O_3 /Steel brazed samples with copper filler metal:
(1) alumina butt joint strapped with steel, (2) alumina/steel tee joint.

utilizing¹⁾⁻³⁾. These methods, however, require the complicated process for joining. On the other hand, we succeeded in joining alumina to steel using copper-filler metal in a slightly oxidizing atmosphere. In this work, we will report the intermediary layer compound FeAl_2O_4 formed at a bonding interface between alumina and steel.

The materials used were high purity commercial alumina (95.4%), mild steel (SS41) and copper foil of 0.12 mm in thickness. The joining has been conducted in 10 torr at 1200°C for 30 min. The liquid copper during joining wetted both alumina and steel at 1200°C, and hence a strong bond was formed after cooling down. Various types of joining were produced by using steel and copper filler metals. Alumina butt joint strapped with steel and alumina/steel tee joint are shown in Fig. 1.

In order to characterize the intermediary layer of

Table 1 X-ray diffraction analysis of alumina surface joined in 10 torr at 1200°C for 30 min.

number	$d_{\text{obs.}} (\text{\AA})$	Intensity	$\alpha\text{-Al}_2\text{O}_3$ in ASTM card			FeAl_2O_4 in ASTM card		
			$d (\text{\AA})$	(hkl)	I/I_1	$d (\text{\AA})$	(hkl)	I/I_1
1	A 3.440	84	3.479	(012)	75			60
2	2.849	58				2.87	(220)	
3	A 2.529	76	2.552	(104)	90			
4	2.436	100				2.45	(311)	100
5	A 2.362	60	2.379	(110)	40			
6	2.071	100	2.085	(113)	100			
7	2.023	40				2.02	(400)	80
8	A 1.731	49	1.740	(024)	45			
9	1.656	34				1.64	(422)	16
10	A 1.593	68	1.601	(116)	80			
11	1.558	57				1.56	(511)	40
12	1.435	54				1.43	(440)	80
13	A 1.400	42	1.404	(124)	30			
14	A 1.370	68	1.374	(030)	50			

* Received on March 31, 1982

* Professor

** Associate Professor

*** Research Instructor, The Research Institute for Iron, Steel and Other Metals, Tohoku University, Sendai

**** Associate Professor, The Research Institute for Iron, Steel and Other Metals, Tohoku University, Sendai

Transactions of JWRI is published by Welding Research Institute of Osaka University, Ibaraki, Osaka, Japan

joint, steel and copper were dissolved from the alumina/steel joint in concentrated hot HNO_3 solution, and X-ray diffraction analysis with $\text{Cu}\cdot\text{K}_\alpha$ radiation and X-ray photo-electron spectroscopic examination with $\text{Mg}\cdot\text{K}_\alpha$ excitation were conducted to identify the intermediary compound. X-ray diffraction analysis demonstrates the formation of hercynite (FeAl_2O_4) at interface between copper and α -alumina as shown in Table 1. The X-ray reflections were assigned to alumina with rohmbohedral structure and hercynite with cubic structure ($a=8.119\text{\AA}$).

The formation of intermediary compound is also known in another system³⁾: CuAlO_2 has been found between copper oxide and alumina after reaction at 1150°C in air. In the refractory metal-joining process (moly-manganese), manganese oxide reacts with alumina and forms the intermediary compound $\text{MnO}\cdot\text{Al}_2\text{O}_3$.

Further examination of the intermediary layer compound was carried out by X-ray photoelectron spectrometry. The C1s spectrum (285.00 eV) from the contaminant carbon was used for the calibration of binding energies of electrons. The $\text{Fe}2\text{p}_{3/2}$, Al2p and O1s electron spectra are given in Figs. 2-4, respectively.

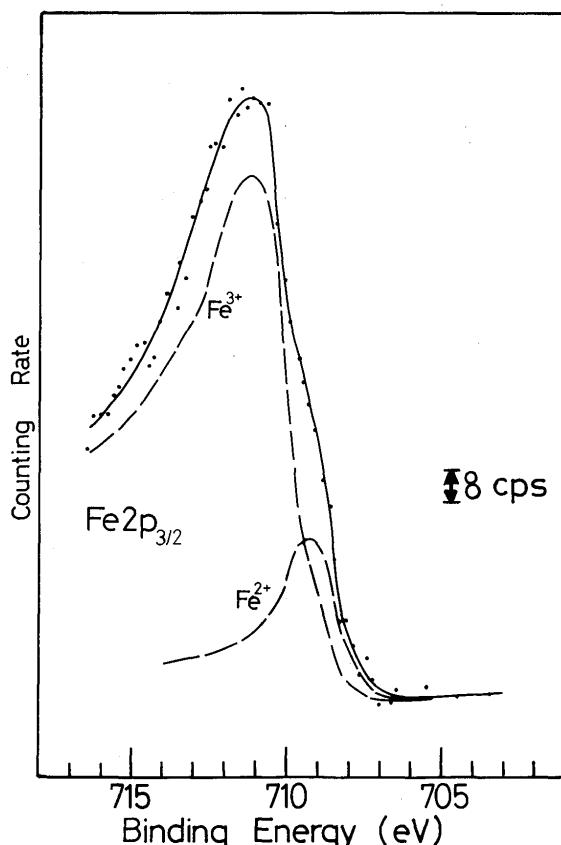


Fig. 2 Fe2p_{3/2} spectrum of revealed surface on alumina, after dissolution of steel and copper from a alumina/steel joint with copper filler.

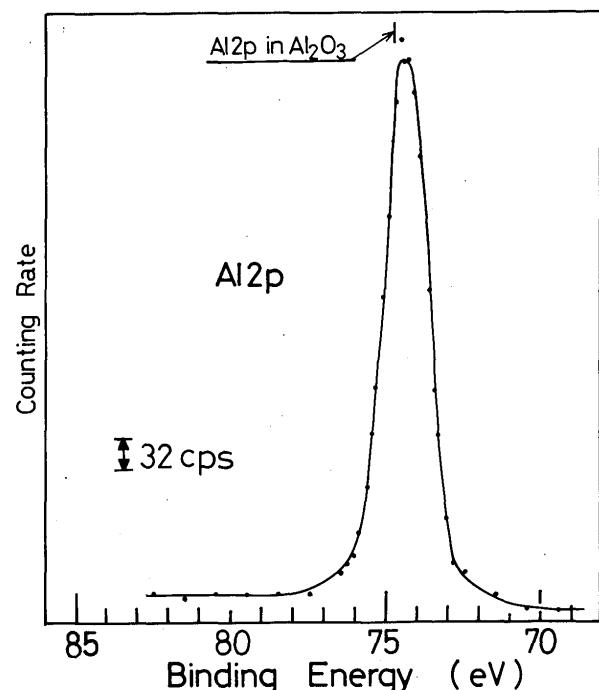


Fig. 3 Al2p spectrum of the revealed surface on alumina, after dissolution of steel and copper from a alumina/steel joint with copper filler.

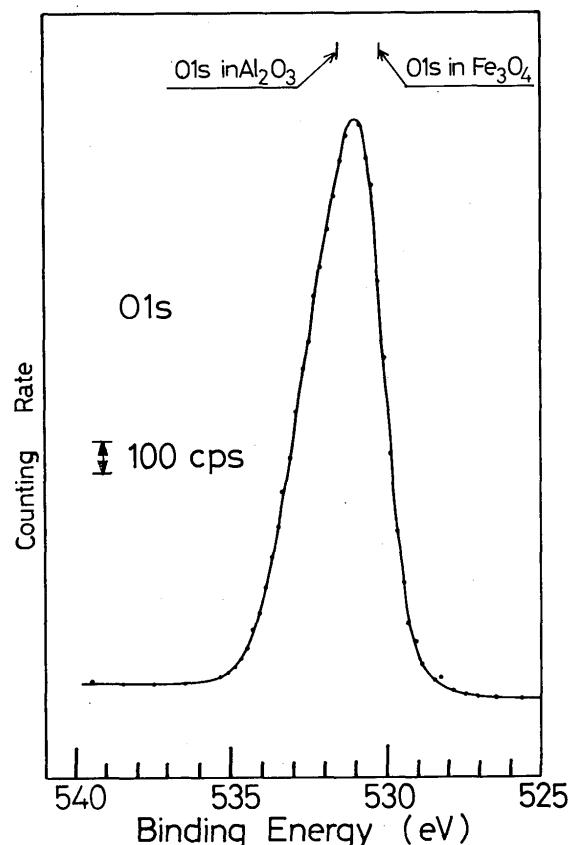


Fig. 4 O1s spectrum of the revealed surface on alumina, after dissolution of steel and copper from a alumina/steel joint with copper filler.

The $\text{Fe2p}_{3/2}$ consists of superposed spectra originating from Fe(III) and Fe(II) components⁴⁾. The binding energies of the Fe2p electrons are taken as 711.20 and 709.20 eV for Fe(III) and Fe(II), respectively. The spectrum of Fe(II) can be attributed to hercynite (FeAl_2O_4). The intense spectrum of Fe(III) suggests that the surface of FeAl_2O_4 has been oxidized during specimen preparation, particularly, during boiling in hot concentrated HNO_3 . The binding energy of Al2p (74.35 eV) measured is very close to that for Al_2O_3 (74.70 eV). The binding energy of the O1s electrons (531.00 eV) is different from those of Al_2O_3 (531.55 eV) and Fe_3O_4 (530.17 eV), since the binding energy of O1s electrons changes with coexisting cations in the specimen⁵⁾.

It can, therefore, be concluded that the intermediary layer compound FeAl_2O_4 is formed between Al_2O_3 and steel during joining using copper-filler with a consequent strong adhesion.

References

- 1) S.S. Cole, Jr. and G. Sommer; *J. Am. Ceram. Soc.*, 44 (1961), 265.
- 2) J.T. Klomp; *Ceramic Bul.*, 59 (1980), 794.
- 3) J.F. Burges, C.A. Neugerbaumer, G. Flanagan and R.E. Moore; "Advances in Joining Technology", Brook Hill Co. 1976, p. 185.
- 4) K. Asami, K. Hashimoto and S. Shimodaira; *Corros. Sci.*, 16 (1976), 71.
- 5) K. Asami, K. Hashimoto and S. Shimodaira, *Corros. Sci.*, 16 (1976), 35.