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Dedicated to Professor Hisao Tominaga on his 60th birthday

Manasu HARADA®

(Received May 14, 1985)

In the previous papers [6] and [7], we gave several rings generalized from
Nakayama rings. We shall study the same problem, in this note, following
those methods.

In the first two sections, we shall consider some right artinian rings with
properties (¥, 1) and (*, 2), respectively (see §1), and we shall give the com-
plete types of US-4 algebras with J3=0 over an algebraically closed field in the
third section. In the final section, we shall give a structure of US-4 algebras
with (%, 1).

1. (%, 1). In this paper, we shall study a right artinian ring R with iden-
tity, and every R-module is assumed a unitary right R-module. We denote
the Jacobson radical and the socle of an R-module M by J(M) and Soc(M),
respectively. Occasionally, we write J=J(R). |M| means the length of a
composition series of M.

We have studied the following condition in [5]:

(*, n) Every maximal submodule of a direct sum of any n hollow modules is
also a direct sum of hollow modules.

In [7] we have given characterizations of a right artinian ring with (x, 3).
We shall study, in this section, a right artinian ring R with (%, 1). If R satis-
fies (*, 1), e/=A4,DA,D - DA, for each primitive idempotent e, where the 4;
are hollow. Since 4; is hollow, J(4;) is a unique maximal submodule of A4;

and J(4;)= lg @A4;, where the 4;, are hollow. Hence we obtain the diagram

(see [4] for the meaning of the diagram).

* Some parts of § § 3 and 4 were prepared in Panjab University, when the author visited the
above university under the exchange program between INSA in India and JSPS in Japan
in 1985. The author would like to express his hearty thanks for the kind hospitality of Pan-
jab University.
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and ¢J’ is a direct sum of hcllow modules. Let M be a hollow module. Then
M=~eR|A for some primitive idempotent e and some right ideal 4 in eR. If
R satisfies (*, 1), J(M)=~eJ/A is a direct sum of hollow modules. Hence we
have the following proposition:

Proposition 1. R satisfies (*, 1) if and only if eJ|A is a direct sum of hollow
modules for any primitive idempotent e and any right ideal A in e].

Following Proposition 1, we may study conditions under which eJ/4
is a direct sum of hollow modules. Assume that an R-module D is a direct
sum of two submodules E; and E,, i.e., D=E,@E, Let z;: D—F; be the
projection. For any submodule B of D we put B’ =z,(B) and By=BNE;
(=1, 2).

The following lemma is well known:
Lemma 2. B®/By<B®|B, and B={(e;+Bw)+(f(e)+Bw)|e,€BY}.

By B® (f)B® we denote the B in Lemma 2. If By=0, B® (f)B® is
nothing but the graph of B® with respect to f': B®/By—>B® and we denote
it by BO(f'). We call B a standard submodule of D provided B=B )@ B,).

Lemma 3. Assume that D=A®C, where C is semi-simple. Let B be a
submodule of D. Then D|B~A|B'®C’, where B’ is a submodule of A and C’
is semi-simple.

Proof. (D:)DI/(B(UGBBQ))%A/B(D@C/Bm Since C is semi-simple,
C=C®Bp. Hence D=A/By®C,DOB/(By®Bw) (=B). Put C,=C®
B®|B,. Since f: B?|By~B®|By, B=B®|Bg (f). Therefore D=A/B,®
B&C,, and so D/B~D|B=A/By,®C,.

ReEMARK. In order to study (*, 1), it is sufficient from Lemma 3 that we
find a direct decomposition of 4/B’ whose direct summands are hollow, when

D=e¢].

Theorem 4. Let R be a right artinian ring. Then R satisfies (*, 1) for
any hollow module if and only if the following two conditions are fulfiled :
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1) eJ= g@ﬂ;, where e is any primitive idempotent in R and the A; are
hollow.

2) Let C;DD; be two submodules of A; such that C;|D; is simple. If
[: Ci/D;~C;[D; for i=%j, f or f™' is extendible to an element in Homg(A;|D;,
A;/D;) or Homg(A;/D;, A;|D;).

Proof. Assume that (%, 1) is satisfied. Then e¢J= i @A4; as 1) by as-

sumption. Assume f: C,/D,~C,/D,. We shall consider eJ/C\(f) C;, and hence
we may assume that D,;=D,=0 and C,, C, are simple. Put C=C\(—f)P _2;369

A; and consider eJ/C~(A,PA4,)/Cy(f) C,. Then e]/C= Xt} @D; by assump-
i=1
tion, where the D; are hollow. 'We obtain the following exact sequence:
O%CI(—f)'_)AIGBAZ—iD]'@ b @D‘—)O

We may assume that C;#4; for i=1, 2. Then CCJ(4,P4,), and so t=2.
Let p;: ¢J/C—D; be the projection. We may assume that 4, and 4, are sub-
modules of ¢J/C. Since D; is hollow and A;d J(eJ/C), D;=pi(4,) or p;(4;)
and py(4;)=D, or py(4;))=D, for i=1, 2. Assume that |4,;|>|4,|. We
note that |eJ/C|=|4,|+|A4,|—1. We shall show that p;|4; is an isomor-
phism for some 7 and j. Contrarily assume that no-one of p;|4; is an iso-
morphism. Now we have the following two cases from the remark above:

1) py(A4z)=D; and

2) pi(A)*Dy, py(Ar)=D; and py(4;)=D; (cf. [8], Lemma 2.1).
1) Since p,[4;, is not an isomorphism, [D,|<|4,|—1. If py(4,)=D,,
|D,| < |4,|—1, and hence |D,|+|D,|<|A4;|+]|A4,|—2, a -contradiction.
Hence py)(4,)%D,, and so p,(4,)=D, Since p,|A4; is not an isomorphism,
|D;] <|A4;]—1, which is again a contradiction.
2) Since py(A4,)=D,, p)(A;)=D,, we have a contradiction as above. Hence
some p;|A4; is an isomorphism. If so is p,|A4;, eJ]/[C=A,PD,. Then ' is
extendible to g|4,, where g: ¢J/C—A4, is the projection (cf, [2], p. 771). We
obtain a similar result for the remainder. Conversely, let S be any simple

submodule of eJ= Ej_‘, @A4;. We shall show that ¢J/S= é @B; such that

{B;} -1 fulfils the same condition as {4;}7.;. We may assume that S is of the
form {s;4fo(s1)+ -+ +fi(51) | s;ESoc(4,) and f; € Homg(Soc(4,), Soc(4;))}. From
the assumption, there exists p (<) such that f, f;' is extendible to an element
gr in Homg(4,, 4,) for all k (<i). Put A,={g(a)+ - +g,-1(a)+a+gs(a)+
+tgi(a)|lasA,}t (cf. [1], p. 787). Then e¢J=A4,D--PA, DA, DAy DD
A, and 4,~A}DS. Hence ¢J/S has the desired direct decomposition. Let B
be any submodule of ¢/. Take a simple submodule S; in B. Then B[S, is a
submodule of ¢]/S; which has the same direct decomposition as eJ. Iterating

this procedure, we know that ¢J/B is a direct sum of hellow modules.
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ReMARK. We assume in 1) of Theorem 4 that all 4; are uniserial. Then,
since 4;/D; is uniform, we can show easily and similarly to the proof of Theo-
rem 4 that either 4, or 4, is a direct summand of ¢J/C without |C;/D;|=1.
Hence if 2) of Theorem 4 is satisfied, we have the same without |C;/D;|=1,
provided all 4; are uniserial.

Corollary 5. Assume that ¢]J= "(ﬁ BA; for each e, where the A; are hol-

low. Further assume that any sub-factor module of A; is not isomorphic to any
one of A; for any pair i, j (i=], i, j=1, 2, +--, n(e)) and for any e, then R satisfies
(*, 1).

Proposition 6. If J°=0, R satisfies (*, 2) and hence (*, 1).
Proof. This is clear from [4], Proposition 3.

EXAMPLE.

K K KK|K KK
K K K

0 K 0 0

R — K

K K K
0 0K O
00K

Put 4=(0, K, K, K, 0, 0, 0) and B=(0, 0, 0, 0, K, K, K). Then ¢J=A®B.
Any subfactor module of 4 is not isomorphic to any one of B. Hence R satis-
fies (*, 1) from Corollary 5, but R does not satisfy (%, 3) and R is not US-3
by [3], Theorem 1 and [5], Lemma 1, since J(4) is a direct sum of two simple
modules. Further we know from Theorem 18 in §4 that R does not satisfy

(*, 2).

2. (%, 2). We have shown in Proposition 6 that if J?>=0, R satisfies (¥, 2).
In this section, we shall give a relationship between rings with (¥, 2) and ones
with (*, 3).

If R is an algebra over an algebraically closed field K,. then eRe/eJe=Kge.
Hence R satisfies

ConbpitioN I1” [4]. eReleJe=eK' for each primitive idempotent e, where
K’ is a field contained in the center of R.

In this case every unit element ¥ in eRe is of the form
ek+j, (2)

where k€K' and j€efe. Further K'=A(A4) for any right ideal 4 in eJ (see
[4D-
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We always assume in this section that R satisfies Condition II”. If R
satisfies further (*, 3), then

e] = A/DB, suchthat A,/J(4,)*B\](B), 3)

where A4,, B, are hollow from [3], Proposition 26 and [4], Theorem 1. Next
assume that R satisfies (%, 2) and the above condition (3) for each e. Then
every proof given in [4], Lemmas 3~18 is valid under (3). Hence eR has the
structure given in [4], Theorem 1. Therefore R satisfies (%, ) for any 7 from
[7], Theorems 2 and 3. Thus we obtain

Theorem 7. Let R be an algebra over a field K with condition I1". Then
the following conditions are equivalent:

1) R satisfies (%, 2) and (3).

2) R satisfies (*, n) for all n.

Put

R

_(KKGBK
- \0 K

) and 4, = (0, KBO0), B, = (0, 0BK).

Then eJ=A4,®B,, A;~B,. Hence (3) is not fulfiled and R satisfies (¥, 2)
but not (*, 3) from Proposition 6 and Theorem 7.

3. US4 algebras with J*=0. We have studied US-3 rings with (%, 1)
or (%, 2) in [7]. We shall observe US-4 algebras over an algebraically closed
field. We have defined in [6]

(**, n) Every maximal submodule of a direct sum D of any n hollow modules
contains a non-trivial direct summand of D.

We call a ring R (right) US-n provided that (**, n) holds for any D [6].
Let K be a field, and put

K K K- K
R, — OKO(').---O
00- K

Then R, is a US-m algebra, but not US-(m—1) algebra from some 7 from [5],
Corollaries 1 and 2 of Theorem 2.

Proposition 8. Ler R be an algebra of finite dimension over a field. Then
the number of issmorphism classes of hollow modules is finite if and only if R is a
(right) US-n algebra for some integer n. Hence an algebra of finite representa-
tion type is a US-n algebra.

Proof. Assume that R is a US-n algebra. Let {4,, 4;, -+, 4.} be a set
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of R-modules in eR such that |eR/A;| =t for all 7, where ¢ is a fixed integer.
If m>n+1, from [5], Corollary 2 of Theorem 2 there exists a unit x in eRe
such that x4;CA; for some pair (7, 7). Since |eR/A;|=|eR[A;|, eR|A;~eR[A;.
Therefore there exist at most z pairwise non-isomorphic, hollow modules eR/B
with |eR/B|=t. Accordingly, R being artinian, the number of isomorphism
classes of hollow modules is finite. Conversely, we assume that R is as above.
Let m be the number of isomorphism classes of hollow modules eR/B for a fixed
primitive idempotent e. Since [R: K]=p<<oo, [A: A(B)]<p, where A=eRele]e
(see [4]). Let D be a direct sum of (p+1)m hollow modules eR/A4;. Then
there exists some direct summand eR/4;, which appears at least (p+1)-times
in D. Hence a direct sum of p-copies of eR/A; satisfies (%%, p41) by [5],
Corollary 1 of Theorem 2. Hence D satisfies (%%, (p-+1)m) by [5], Theorem 2.
Repeating this argument for each primitive idempotent e, we know that R is a
US-n algebra for some n.

From now on, we always assume, unless otherwise stated, that R is an
algebra over a field with Condition II”.

Employing the similar argument given in the proof of [6], Proposition 1,
we have

Lemma 9. If R is a US-n algebra, |e]'le] ™| <n—1 and every inter-
mediate submodules between e]' and e]'*' are characteristic for each primitive
idempoteni e.

The following proposition is an immediate consequence of [5], Corol-
laries 1 and 2 of Theorem 2 for any right artinian ring.

Proposition 10. Let R be a right artinian ring. Then R is a US-4 if
and only if for any set of four submodules {A;}i-1 of e], there exists a pair (i, j)
such that A;~A;. Further R is the algebra mentioned in the beginning, then
there exist at most three maximal submodules in e]' and they are characteristic.

First we shall give the lattices of submodules in ef, provided that R is
a US-4 algebra which satisfies Condition II".

Assume that |eJi/eJ***|=3 and eJ’je]'*'=D,®D,®D;, where the D; are
intermediate submodules between eJ' and eJ*** such that the D; are simple.
Since every maximal submodule in ¢/’ is characteristic by Proposition 10,
so is D; and D;xD; for i%j. Put C,=D,+D,, C,=D,+D; and Cy;=D,+D;.
Then the C; are characteristic, and CyxC; for i%j. The set {C;, D;}} ;.
is the set of all intermediate submodules between ¢J’ and ¢J**'. Assume that
no one of the D; is hollow. Let E; be a maximal submodule of D; not equal
to eJ'*'. If xE;=E, for some x in eRe, E,=xE;CD,ND;=eJ**". Hence
E,xE, for k=k’, a contradiction by Proposition 10. Therefore one of the D;
is hollow. Further, since the C; and the D; are characteristic and Dp¢D,nvD;,
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the C; contains exactly two maximal submodules D;. Thus we obtain the
following diagram of submodules:

/\

(4)

/\r/\

e]le

where each factor module given from connected modules is simple, (cf. [6]).
Next assume that |e]/¢J*'|=2. Consider a diagram:

E
oy
2 - \F/ N

Lemma 11. B, NF=*B,NB, in (5).
Proof. This is clear from the fact: |B,/(B,N F)|=1 and |B,/(B,NB,)| =2.
Lemma 12. [f |F|=1 in the above, either B, or B, does not exist.

(5)

2

Consider a diagram:
AN
F1 OO/ 2 ( 6 )

Similarly to Lemma 11, we have
Lemma 13. Assume that G is a waist. Then E, and E, are hollow.

We observe the following:

TN

D, D, (Da) -
N
ey
\\ /
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D, and C{ are characteristic from Proposition 10. Put D,=D,/C{=H,®
eJ’*'. We have two cases a) HaéJ**' and b) H,~é&]J"*! (see R; in Exam-
ple in [6]). There exists no H, in the case a). On the other hand, there exist
many H, in the case b). If all H, are characteristic, we have a contradiction
from Proposition 10. Hence we may assume that H, is not characteristic. If
¢JeH,C C1{, H, is characteristic by (2), and so there exists j in eJe such that
jH,&C{. Since H, is simple, H;=hK+C/{ for H,J=](H,)CC} (we may as-
sume that R is basic). Let jA—%k+ZX, where k€K and x€eJ+'. Since j
is nil, k=0. Hence jk is a generator of &Ji*'. Let %, be a generator of H,.
Then A,=hk,+jhk, and so hki'=(ki'k+j)h. Hence H,=(k:'k+j)H,,

since C{ is characteristic. Thus we obtain

Lemma 14. H,~H, if ¢]'*'|C{~H,|C}, and H, does not exist if e]'*'|C{=
H,/C.

Now we shall give all lattices of the submodules in eR for each primitive
idempotent e, provided R is a right US-4 algebra and J*=0 (J*30).

0
(Use Lemmas 11, 12 and 14) (Use Lemmas 11, 12 and 14).



GENERALIZATIONS OF Nakavama Ring 111 531

We shall give an example for each case. The types 1) and 2) are the cases of
US-1 and US-2. 4): eJ=A4,P4,, where the A; are uniserial such that any
sub-factor module of 4, is not isomorphic to one of A4,.

3): Let R be a vector space with basis {e;, 'x', 'y,%, 'y’ 'y, e, “w', €5, 327, €,}.
Define ¢; ¢;=8;;¢; and 'y* means e, 'y’ e,="7%, and so on. Put y,w= x, y;2=
x and other products are zero. Then

e.R

|

<f’ Yo Vo V3>

{x, yyy Vo | %, Yo Y5>

<x, Vi V3
2 > ~

-
- ~

{x, y1>/ {x, Y2 ~-Lx, y3>

v <xp

0

7): R=<Xe, 1}’12, 1}’2‘» 13’33, Y, Ml a6, 225 22, e, ‘w), ‘w), ey, *v), 0, v
is a vector space. Define y,2,= x,, y123=x3, 1,01="%; (V30,=2%3), V3V3=%3, VW=
X1, VaWy=2,, Y,w3=x3 and other products are zero. Then we have the following
lattice given in the next page.

4. US4 algebras with (%, n), n—=1, 2. We shall study, in this section,
a US-4 algebra R over an infinite field K, which satisfies Condition II” and

(%, 1).

Lemma 15. Let R be a US-n algebra over K as above. Assume that
efi= > ®A; with 4; hollow. Then, for any submodule B; of A;, A;|BiA<4,/B,,
provided i=+j and A;* B,.

Proof. Assume that f: 4,/B;~4,/B; and f4=0. We may assume |4,/B,|
=1. We shall show that there exist no units x in eRe such that A,(f)4,=
x2(A,(g)A4,) for any (f=+) g: A,/B,—A,/B,. Assume that there exists x as above.
Let a be a generator of 4, and x=k--j as (2). Since 4,(f)A4,=x(A4,(g)4,),

a+f(a) = (k+j) (a'+g(a')+b) (8)
where a'€4,, beB,®B, and f(a), g(a’) are fixed representative elements of

f(a+A4,) and g(a’'+A4,), respectively. Let z;: "E @A;—~A4; be the projection.
Then =
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&R
<3|’p Yoy Y3y X1y Xy XD
<,"1» Yoy ¥py Xy, X3 ! <y2’ Syt %
|

|

'<y1e Y3y X1y X, Xy
PN

—
- Yoy 21y Ky, 0™ -

Iy 3y 1 SOETC Y
~ ~N
~N
\ ~
<Y1y Xy X3 {avy,y &y, X3 (<y1sy Xy, X3)

\ //\ 7 -
I e
G, 5 | 2o 0
|
|

e N
\ 0
ﬁi@_ e;R R
! 1 ]

. .

a = m(a+f(a)) = ka'+m\(j(a'+g(a’)+b)+kbd)
f(@) = ma+f(a)) = kg(a")+-m:(kb-+j (g(a')+D)) - (9)
Hence, since 4, is hollow and jeJ' CeJ**,
a=ka' and f(a)= kg(a’)=g(a) (10)
where a is the class of @, which is a contradiction. Since K is infinite, there
exist infinitely many isomorphisms g=Fkf. However, R is US-n, and hence

we obtain a contradiction from [5], Corollaries 1 and 2 of Theorem 2 (cf. Pro-
position 10). Therefore 4,=B,.
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Now we assume that R is a US-4 algebra with (¥, 1). Then |eJi[eJ*+| <3
by Lemma 9, and so ¢/'=A4,PA,PA, from the diagram (1), where the 4,
are hollow. Assume that all 4; are non-zero. First we assume that J(4;)==0,
J(A4z)#0. Then {4,, 4, A, J(4,DA,)} gives a contradiction to Proposition
10, since every unit in eRe is of the form (2). Hence we may assume that 4,
and A; are simple. If A, is not uniserial, there exist two submodules B,, B,
with By¢B, from the fact: ¢J"*/=A4, ]’ and Lemma 9. Then {4,, 4;, B,, B;}
gives a contradiction to Proposition 10. Therefore A, is uniserial and 4,, 43
are simple, i.e.,

T
I 0 0
D,
| (11)
|
Dﬂ
|
0
We shall show
D;/D; A4, for i<n (12)

Assume contrarily that f: D;/D;.,~A4, Since eJed,CeJ"*'=A4,] and 4, is
simple, efed,CSoc(eJ™)=D,. Put g=kf (k=0€K), then f¥g. Assume
that there exists a unit x in eRe such that D,(f)=xD;(g). Using (2), we know
that j(g(a')+a")€D,+D;,=D;,, (i<n), and so (a+D;.,)=k(a’+D;;,) and
fla+D;)=g(ka’+D;;)=g(a+D;,,), which is a contradiction. Hence D,(f)¢
Dy(g), provided k+0. Since K is infinite, we obtain a contradiction from
Proposition 10.
Next assume

f: D,~A4,. (13)

Let g be a non-zero element in Homg(4,, D,) and assume A,(f)=xA,(g) for
some unit x in eRe. Since ¢JeD,=0 and eJ4,CD,, from (8) we have

a=ka and (f—g)(a)=ja (14)

where a, a’ are in 4;. Now AyxA, Assume A,(f)~A, Then f=j, (left
multiplication of j) by putting g=0 in (14). If A,(f)»¢4,, put g=kf (k=£0, 1).
Since A,(f)¢ A, from (2), A,(g) is related to one of {4,, 4,, A,(f)} with respect
to ~ by Proposition 10. If A,(g)~A, f=kg=(—kj), by replacing f with 0
in (14). Finally assume Ay(g)~A(f) (note A,(g)A4,). Then f—g=(1—k) f=
Ji from (14). Hence f=((1—k)"'j);. In any cases f is given by a left multi-
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plication of an element in ¢fe. Thus we obtain

Lemma 16. If R is a US-4 algebra with (*, 1) and |e]'|e]™| =3, then
e]'=A,DA,DA; such that

1) A, is uniserial, and A,, A, are simple and they are not isomorphic to
one another.

2) D;|D; A=A, (or A;) provided D;= Soc(A4,).

3) If D,=Scc(4,)=~A, (or As), this isomorphism is given by a left multi-
plication of an element in eJe.

Next assume |ef’leJ*'|=2 and e]'=A,PA4,. If A, is uniserial and 4,
is simple, we have the same property as in Lemma 16 for 4, and 4,. Assume
that neither A4, nor A4, is uniserial. Then there exist C{@C} in 4, and D/ D;
in A, such that {C{, Dj} are not related one another with respect to ~ from
the diagram (1) and (2). Hence either A, or A, is uniserial. First we assume
that both 4, and A4, are uniserial, i.e.,

f;ll /ilz e
D2 '?‘2 e]! +1
|

D, :

| |

-

D, 0 eJ”

|

0

We may assume n>m. Then any one of {4,, D.®E,, D;®E,,_,, -+, A} is not
related to another one with respect to ~ and hence m<2, i.e.,

Ilql fllz eJ’

?2 E2 e]i+1(

|

D, 0

g (15)
| .

D, eJ

|

0

In this case {4,, 4;, D,®DE,} are not related to one another with respect to ~.
If f: E,~D;/D;y,, f is extendible to f': A,—>A,/D;,; by Theorem 4. Hence
A,~D;_,|D;,,. Therefore, if a sub-factor module of 4, is isomorphic to one of
A;, we may assume f: A,/E,~D;/D;.,. Put B=A,(f)D;. Then A,~B by
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Lemma 15 and Proposition 10, i.e., x4,CB for a unit x=e-j in eRe: jEe]e.
Let A,=a,R and 7;: ¢J'—A; the projection. Then xa,=(e-+j)a,=ay+f(arx)+
dinte: rER, din €Dy, &€F, and f(ar+E,)=f(ar)+Diw; f(ar)ED..
Hence

a2+7fz(jaz) = ay+6
771(jaz) = f(azr)+di+l .

Since j4,c D, DE, (note |A4;|=2), a=a;r (mod E,) and f(ax)ED;,,, pro-
vided i+1<n—1. Hence i>n—1. Now assume 7=mn, and consider {4,,
D,®A, D,BE,, B}. Then D,PA,~B by Proposition 10. Since |D,PA4,| =
|Bl, x(Axf)D,)=D,DA, Similarly, we can show that every submodule in
eJ’ is isomorphic to a standard submodule in e via x,, We can express the
above situation as the form (14). For instance, assume f: A,/E,~D,. Then
Ay(f)=xA, as above, (x=k-+j). Hence for some a3 in 4,

@y = kar+my(jaz)
f(@) = m(jaz) = jaz—my(jaz)
= j(k" a;— k7" my(jaz))—my(jaz) (16)

On the other hand, for an element e, in E,
e = etf(e) = (k+j) a&t’; at’ €4, (17)

Hence a3’ €E,. Since jE,CD,, jai’=0 from (17). E,=a%'R implies jE,=0.
In (16), my(jat)EE,, and so f(a)=jk 'a,—m,(jas). Hence

f(@)=j'ay (mod E;) and j'E,=0 (18)

Next consider a diagram

A, A, e]i
| .
! ll?z e]' !
' 0
C,1 C2 e]i ik

Consider {4,, 4,, C\BE,, C,PE,}. Since R is US-4, C,PE,~C,DE,, and
hence C\@E,~C,DE,. Therefore C;~C,. However eJ **[eJ***! contains at
most three maximal submodules by Lemma 9 and Proposition 10. If C,~C,,
we can construct many submodules, which is a contradiction.

Further consider a diagram:
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A, A, eJ’
|
0

¢, G, efiti

If F,#0 and F,+0, {4,, C,, C,, F;®F;} gives a contradiction. Hence either
F, or F, is zero. Hence we obtain

G, G,
Considering {G,, G,, Cy, 4,}, we know G,=0. Therefore

4, 1]42
! 0
b
C, c, (19)
| |
| 0
D,
|
0

It is clear from the previous argument that 4, (resp. C,) is not isomorphic to
a sub-factor module of A4, except A,~C,, A,~D, (resp. C,~D,). Further
those isomorphisms are given by left multiplications of elements in e]e.

Conversely, we assume that the lattice of eR has the structure given in
(11), (15) and (19). Ifj is in efe, e+j gives an isomorphism, and hence every
submodule of ¢/ may be assumed standard except (15). Assume f :(4,—)4,/E,
~D, such that (18) holds. Then (e+;')4,CA,(f)+E,=Ax(f), since f(E,;)=0,
and so (e+j")4,=A4(f).

Summarizing the above we obtain

Theorem 17. Let R be an algebra over a field satisfying Condition II".
Then R is a US-4 algebra with (x, 1) if and only if, for each primitive idempotent
e, eR has one of the following structures:
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1) eR 2) ‘ eR
|
ef :
| |
l A, 4, 4, ef’
0 Lo
?2 0 0
l‘ n
D, o
|
0

D;|D; A& A; for i=1, -, n; j=2, 3 (D,=A,) and D, is isomorphic to A; via f
if and only if f=j;; jEe]e.

3 ) eR

T
o=
< g

o—5—
<

1) Any g: E,~D, is extendible to g': A,~D,_,. 2) Every submodule in
e]* is isomorphic to a standard submodule in e]’ via x,; x is a unit in eRe. In this
case no sub-factor modules of A, are isomorphic to any one of A,/D,_,.

4) [ eR
: eJ
14 4, o'
i 0
IC'I CIYZ e]m
: 0

|
1,3: eJ"
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A; (resp. Cy) is not isomorphic to any sub-factor module of A, except C, and E,
(resp. E)). If they are isomorphic, those isomorphisms are j,, where j, is the left
multiplication of an element j in ¢]e.

We give an example.

KKKKKKK
KKKKKK
Ko0oo0OOO

R= KKKK
KO0oO0
KK
K

is of the type 4).

Theorem 18. Let R be as in Theorem 17. Then R is a US-4 algebra
with (x, 2) if and only if, for each primitive idempotent e, eR has one of the structures
1)~3) replaced e]* with e] in Theorem 17.

Proof. Assume that R is a US-4 algebra with (%, 2). Then (%, 1) is ful-
filed. First assume that J°=0 and eR has the structure 4) replaced ¢ with
eJ in Theorem 17. Then C, and C, are simple. Since A4,/A4, Jax4,/A,]=A4,,
we can use the same argument in the first paragraph of [4], p. 87, and obtain
C,=0. Similary we can show that eR has one of the structures 1)~3)
replaced eJ* with ef, provided J°=0. In general case we assume that eR has
one of the structures 2)~4) with i%=1. Taking R/J**'=R, we know that there
exists an R-hcllow module of the following structure:

' or

They are also R/J*-hollow modules. However, there do not exist those hol-
low modules as shown in the beginning. Hence /=1 (cf. the proof of Lemma
12 in [4]). Conversely assume the above structute. Making use of Theorem
17, we can compute all types of maximal submodules of direct sum of two hol-
low modules, for example, non trivial maximal submodules of (eR/(D;DA,)D

eR/(D;P4,)) is isomorphic to eR/D;BA,/D;, where the 4; and D, are in the
structure 2) and i<<j. Hence (%, 2) is fulfiled.
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