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0. Introduction

In this note we give two generalisations, (Proposition 1.2 & Theorem 1.3),
of Stasheff's criterion for homotopy commutativity of //-spaces, [11, Theorem
1.9], and apply them to produce examples of nilpotent 7/-spaces and to demon-
strate the vanishing of certain Samelson-Whitehead products.

In §1.2 we give a necessary and sufficient condition for the vanishing of the
Samelson-Whitehead product of f:SA-*Y and g:SB-^Y. In Theorem 1.3 a
criterion for the vanishing of the j-th iterated commutator map in an ίί-space,
X, is given in terms of a space, X(j). As a corollary it is shown that if the pro-
jective plane of X, (resp. the space X), has a finite Postnikov system then X,
(resp. ΓLXΓ), is nilpotent. In §2 the nilpotency of loop spaces of spheres and
projective spaces is discussed. Many of the results of §2 are known to other
authors and I am grateful to GJ. Porter for drawing my attention to the results
of T. Ganea, [3]. However, for completeness, the results of [3] have been in-
cluded here, as corollaries of Proposition 1.2. The nilpotency of Ω*S2Λ and
ΩCP2n do not appear in [3] although the former was previously known to M.G.
Barratt, I. Berstein and T. Ganea. Since our estimate of the nilpotency of
ΩCP2n is large we include a corollary of Theorem 1.3 on the vanishing of a
family of triple Samelson-Whitehead products on CP2n.

I am grateful to Peter Jupp for helpful conversations about homotopy opera-
tions.

In this paper we work in the category of based, countable CW complexes.
A connected complex in this category is called special. The following notation
is used:—

X/\ Y= smash product of X and F.,

VX, /\ X and Xj are respectively the^'-fold wedge, smash and product of X,

/=[0, 1] with basepoint, *=0,
SX=S1/\X, ΩX=the space of loops on X,

and (eval: SΩX-*X)=the evaluation map.
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1. Let X be a homotopy associative ίf-space and let φ2: XxX->X be the
cummutator map.

DEFINITION 1.1. For (n>2) put φrt: X
n=Xn~1χX^X be φXφ^X 1),

then the nilpotency of X is the least integer, n, such that φn+1 is nullhomotopic.
Nilpotency of X is denoted by nil (X).

Proposition 1.2. Lei/: A-+ΩY andg: B-*Ω Y fe maps. Then φ2°(fxg)'
AxB-*ΩY is nullhomotopic if and only if adj(f)V adj(g): SA VSB^Y (adj=
adjoint) extends to a map SA X SB-* Y.

Theorem 1.3. For (j>2) there exist complexes, X(j), and inclusions ίy:

\/SX-^X(j) satisfying the following properties.

(i) X(2)=SXxSX.

(ii) X(j)/(ΨSX)^S*Λ(AX).

(iii) If (fold).: "VSX-*J\/SX is the map which folds the j-th factor onto the
(j-l)-st factor there is a commutative diagram

X(j) — > X(j-l)

-i 0>2)'

(fold).

(iv) r*(i/*(^(;-l), 5JΓ; τr))=0, 0>2).
(v) There exists a map Δy: (Xx Y)(j)-*X(j)x Y(j), (;>2), such that the

k-th factor S(Xx Y) is mapped to (k-th SX)x(k-th SY) by

Δyoίy([ί, x,y]) = (i.[t, xl i.[t,y]) ,

, x<=X, y^ Y).

(vi) If X is an H-space let XP(2) be the projective plane of X and w\X->
ΩXP(2) be the H-map of [11, Proposition 3.5.]. If φy is nullhomotopic then

Vadj(w):\/SX->XP(2) extends over X(j). The converse is true if X is homotopy
associative and right translation is a homotopy equivalence.

(vii) The commutator φy : (ΩY)j-+ΩY is nullhomotopic if and only if

extends over (ΩY)(j).

REMARK 1.4. Proposition 1.2 and Theorem 1.3 are generalisations of
StashefFs criterion for homotopy commutativity, [11, Theorem 1.9], which is
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Theorem 1.3 withy=2. The proof of Proposition 1.2 will be omitted. It may
be proved by the same method as [11, Theorem 1.9] or deduced from [13,
Theorem 7] and [11, Propositions 3.5, 4.2] and is closely related to [14, Theorem
3]. The proof of Theorem 1.3 is postponed to §3. Of course, Theorem 1.3 has

n n

a minor generalisation to give a criterion for maps φn°(Π /*•)•* Π Ai-
:>Xn-^X to

be nullhomotopic.

Corollary 1.5. ( i ) If right translation is a homotopy equivalence in X and
XP(2) has only n non-trivial homotopy groups then nil(X)<n.

(ii) If Y has only n non-trivial groups then nil(ΩY)<n.

Proof. ( i ) Since w : X->ΩXP(2) is an #-map, if/: XP(2)-^E1 is the map
to the first space in the Postnikov system, Proposition 1.2 implies an extension
of

Vadj(Ωf)°w: VSX-*E1

to (SX)2. Hence the result follows, by induction up the Postnikov system, using
composition with Γy to kill the obstructions.

Part (ii) is proved similarly.

2. In this section we consider ίί-spaces, ΩX. The commutator φ2: (ΩX)2

2

-*ΩX induces a map, also denoted by φ2, φ2: /\ΩX^ΩX. The Samelson-
Whitehead operation derived from φ2, [2, §4.2], will be denoted by

[_, _] : [A, ΩX] X [J5, ΩX] -^[A/\B, ΩX] .

An element of [SA, X] and its adjoint in [A, ΩX] will be denoted by the same
symbol.

Proposition 2.1 [15; 16, Example 1.3].

If X is a special complex then SΩSX^ V S( Λ X).
k = ι

Proof. From [8, §5] we have a homotopy equivalence, ΩSX—Xn, where
Xoo is the reduced product of X. In the notation of [8, § 1] if Xm is the w-fold

m

product of X let Xm denote its image in X^. The canonical map Xm-*/\X fac-
tors through Xm and sends Xm-^ to the basepoint, inducing a homeomorphism

Xm\Xm_^f\X. The map Xm-*(/\X)=(/(X)ί<^(/(X)oo has a continuous

combinatorial extension, [8, §1.4], π: X00-*(/\X)oo. Define πm as the composi-
tion

SX — > S((ΛX)-)=*SfίS(/(X) — »
o (π) eval
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Now define a:S(XJ

(π2».t
a\t, x\ =

It is clear that a respects the obvious filtrations and induces homotopy equi-

REMARK 2.2. Using the work of May, [9], a similar proof shows that stably
S"ΩnSnX is homotopy equivalent to a wedge of w-fold suspensions of equivariant
half-smash products.

For classes

let {tfι{α2{ {tf£_ι, #*}} •"} ^7tn-k+i(S9) be the class of the composition

A similar operation is defined on classes in π#(SΩX).

Lemma 2.3. For (q> 1) feί a, e τrmι(5^), α, e πmi(SΩS*), (i=2, 3, 4),
3 4

r=(2mί)~2, ί=(Σmί)— 3. T/" q is odd the Whίtehead product [aϊy {α2, oc3\]
1 1

^πr(Sg) is zero and if q is even [al9 {α2{α3, a4}}]^πs(Sg) is zero.

Proof.

Case ( i ): q even.

Let Sly SI be the wedge of two coipes of S* and let it: S
g^

(t=l, 2), be the inclusions. The class

i1oa3y SΩi2°a4}}

maps to fα2{α3, α4}} under the folding map Sl\/S%-+Sg. Collapsing 5?,

(f=l, 2), kills ,2: and by [4, Theorems A and 6.6] there exist classes ~
and τ^πt(S39~2), where t= m2-\-m2-[-m^— 2, such that

Hence, by [2, §4.3 et seq; 4, Theorem 6.10; 12, §§3.2, 3.3],

Now consider z^πt(Sl VSJ). Since the composition
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-τ-> Ω(Sί V 58) - * Ω(Sϊ X SI)
2°(Ω*ιΛΩf2)

is nullhomotopic the factorisation of

extends to a factorisation

^ΛS^ΛS^Λ/^ SΩ(SΪXSS) — > six si.
eval

Hence, if φ2: Λ Ω(*S? X 5§)-^Ω(*SJ X 5§) is the three-fold commutator and q:
(SlxSϊ, SiV*SS)->(SiASS, *) is the collapsing map, then the map of pairs,

?0φ3°(lΛ/)°(α2Λl) is nullhomotpic. In the notation of [4, §6; 5, Lemma 3]
this represents % (d~*)(z). Hence, as in [4, Theorem 6.10, and Lemma 6.11]

[#ι> [*>> *]°0"] has two-primary order. However, by [4, Theorem 6.10], 3. [al9

[*,*]oσ]=0.
Case (ii): q odd. This follows from [4, Theorem 6.10; 12, §§3.2, 3.3] and

the fact that {α2, α3} — |/, ι]°σ.

Corollary 2.4.
(a)
(b)
(c) ιw/(ΩS")=l if and only if n=l,3or7.
(d) nil(Ω,S2)=2.

Proof. Parts (a) and (b) are proved using Lemma 2.3 and Proposition 1.2.
For (b) it suffices to extend the map

(eval)V(eval)oφ3: 5ΩS2ΛV5((Ω52n)3)->S2rt over SΩS2ΛxS((ΩS2")3) .

Since S(AxB)— SA V SB\/ S(A/\B\ Proposition 2.1 implies that both factors
are wedges of spheres. Hence the obstructions to the extension are Whitehead
products. These obstructions are clearly of the form [al9 {a2{cc2j α4}}]. Parts
(c) and (d) follow from well-known properties of Whitehead products.

Let F denote the real field, (72), the complex field, (C), or the quaternions,
(H). Let d be the real dimension of F. If FPn is the projective w-space over
F, (n>l), let β: S^-^aFP" be the adjoint of the inclusion of FP1 and let
π: Sd ^n+Ό~1^FPn be the canonical projection, then

μ(F, n) = β Λπ: Sd

is a homotopy equivalence, [11, Proposition 14].

Proposition 2.5. If F=R or C, μ(Fy n) is an H-equivalence if and only if
n>3 and n is odd. Also μ(H, 24k — 1) is an H-equivalence, (k> 1).
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Proof. The map, μ(F, ri), is an ίf-map if and only if β and Ωπ have zero

"commutator".

By Proposition 1.2, to demonstrate this we need only extend adj(/3)V

adj(Ωπ): SdySΩSd'^n+l^1->FPn in the cases indicated. The obstructions to

this are all Whitehead products of the third kind which are zero by [1, §4; 6,
Theorem 2.1]. The converses follow from the behaviour of Whitehead products

of the third kind, [1, §4].

Corollary 2.6.
( i ) nil (ΩRP2n)=°o, (n> 1).

(<2 (n>0)
( •• \ •] ff\ Γ>D2«+1\ J ^ 'i i ϊ mi \±LJ\JΓ /^^l

( = 1 if and only if n=v,l or 3.

(iii) nil(ΩCP2n+1) = \-2' . ̂  \
v J v ' ( = 1 if and only if n=l

(iv)

Proof, (i) By [1, §4.1] there are arbitrarily long, non-zero iterated
Whitehead products in π*(RP2n).

Parts (ii)-(iv) follow from Proposition 2.5, the behaviour of Whitehead
products and the fact that nil(S3)=3, [10].

For the rest of this section we concentrate on Ω.CP2". Let μ: S1 X ΩS4w+1->

ΩCP2n be the homotopy equivalence of [11, Proposition 1.14] and let v be an
inverse equivalence. Let β and Ωπ be as above and let τr, (z—1, 2) be the pro-

jections from SlxΩS4n+1. Also denote by β and Ωπ the compositions β°π^°v

and Ωπ°π2°v respectively. In the group [ΩCP2n, ΩCP2n] the homotopy class

of the identity is the product β Ωπ. The rc-fold commutator, φΛ, for ΩCP2n is

nullhomotopic if the w-fold iterated Samelson-Whitehead product of 1QCP2» is

zero. Before proving that ΩCP2n is nilpotent we derive some preliminary results
about Samelson-Whitehead products in [ΩCP2Λ, ΩCP2"], (w>0).

Proposition 2.7. The class, [!ΩCp2w> lαcF2"]* & represented by a map which
factors through Ωπ: ΩS*n+l-*ΩCP2n.

Proof. We have to show that

(^XS4**1)2 >(ΩCP2")2 > S1

μXμ π1ovoφ2

is nullhomotopic. It is nullhomotopic on S1 X S1, since S1 is abelian. However,

further obstructions to extending the nullhomotopy from S1 X S1 to (S1 X ΩS4n+l)2

lie in zero groups, by Proposition 2.1.

Corollary 2.8. [[[!QCp2«, lΩCP2n]Ωπ]Ωπ]=0.

Proof. By Proposition. 2.7 and Corollary 2.4(a).
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Proposition 2.9. [[n?r, Ωπ]β]=Q.

Proof. By Proposition 1.2 this is so if /3V(φ2°(Ωτr)2) extends over S2χS

((ΩS4n+1)2). Since S((ΩS4*+1)2) is a wedge of spheres the obstructions are

Whitehead products of the form [β, π°x] e π*(CP2n). However, by the argument

of Lemma 2.3 (proof), x^π*(S4n+l) is a Whitehead product of the form [σί9 σj

= [L, ι]°σ. Since [β[πy π]]=Q, by the Jacobi identity, [4, Theorem B]; then

[/3, πoχ]=Q by [6, Theorem 2.1].

Let a: A-+ΩCP2", i, : 5-*ΩCP2*, (i=l, 2), be maps and define Δ^ -4Λ B-*

B/\A/\B, Δ2:BΛA^AΛBΛBby\(aΛb)=b/\a/\bzndΔ2(b/\a
The commutator identity in a group,

0>3>> *] = [x>y] [y> [*> ^]]'[*i ]̂ implies, (c.f. [2, §4]) ,

[β, ViJ - [α, *J. {[*,[«, iJloΔj -[β, ftj
and (2.10)

[*ι *2, «J ̂  R, «]•{[[«, iJiJoΔj -[A,, α]

Notice that if A=B=ΩCP2n then

[[Λ, 62]^]oΔ2 = [[α, ό

and

since the diagonal S1-*S1xS1 deforms onto S1VS1.

Using (2.10) and β Ωlπ=lΩCp2n it is straightforward to deduce the following

result from Corollary 2.8 and Proposition 2.9.

Proposition 2.11. Let XM be the m-fold iterated Samelson- Whitehead product,

andym be the (m+2)-fold product,

yM = [β[β[-[β[lΩCp*», IΩCP-]] -]]. Then

xm+2 = [ΩTΓ, ym. J ym, (m>2) .

Proposition 2.12. In the notation of (2.11), yδ=0.

Proof. By Proposition 2.7, yl factors through a map 5Ώ*Sf4Λ+1->ΩCP2Λ.

However, SΩS*n+1 is a wedge of spheres, by Proposition 2.1. Hence it suffices

to show that [β[β[β[β,a]]]]=Q, where a: S4fcn+2-*CP2n and a=πoξ. From

[1, §4.2],

[β[β[β[β, *]]]] = π^oS-ηoS^oS^ (Oφiye^^S4^1)) ,

which is zero by [7, pp. 328-331]. Now if itj (ί=l, 2) are the inclusions of the
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factors in the wedge S2 VS4Λ+1 then [β[β[β[βy πoξJl^^βyπ^i^i^ i
It is now straightforward to show [β[β[β[βy a]]]]=0y using [1, §4.2; 12, §§3.2

and 3.3].

Corollary 2.13. 3<m7(ΩCP2M)<7, (/*>!).

Since the upper bound in Corollary 2.13 is large we prove the vanishing
of another triple product.

Proposition 2.14. Let n1} n2 be integers and let n±\ S1-^>S1

y n2: S
4n+l^>s4n+1

be maps of those degrees. Let x be represented by the composition

ΩCP2n > S1 X ΩS4n+1 > (ΩCP2Λ)2 > ΩCP2* ,
v (βon,)XΩ(π°nzY

 J m

where m is the multiplication, and (n>l).

If nλ n2=ΞQ(mod 2) then 0=[[x9 φ]<EΞ[Λ(ΩCP2Λ), ΩCP2"]. In particular

Proof. By Theorem 1.3 (iii) and (vi) we have a map 7: Sl(3)-*SlP(2)=

CP2C CP2Λ extending V(/8oWl) on ( V*S2). Consider the problem of extending

γ \/π°n2 over S\3) X S4n+l. This map extends over E=(VS) X 524W+1 (J S\3) V
S4n+1, since the obstructions are Whitehead products, [β°n19 π°n2], which are
zero by [1, §4.2]. By Theorem 1.3 (ii), the only other obstruction lies in

H*»+«(S\3)xS4"+1

y £; τr4Λ+ς(CP2M)) = 0 .

If δ: S1(3)xS4Λ+ί-^CP2Λ is the extension, consider δo(lχ/)oΔ3 where Δ3 is as
in Theorem 1.3 (v) and /is derived from Theorem 1.3(vii) and Corollary 2. 4 (a).
Since the map g: S(S1xΩlS

4n+*)-*S2xS4n+1 given by g([t, (z, h)])=([t, *], h(t))
is homotopic to the map, gί9 given by

then (So(/χ/)oΔ2| V S(S1 x Ω,Sta+1)) is homotopic to V(/8oβl). (Ω,(πon2)).
Hence, by Theorem 1.3 (vii) and Remark 1.4, [[#, x], x]=0.

3. The spaces, X(j)

Let {mj,j>\} be the sequence of integers m1^\, mJ.+1=2.(mj-\-l). Let
Pj, 0'>2), be the 2-disc represented as a regular (plane) »zy-gon with vertices
αι» ••' ,am, and base point a^=*. If S is a finite set in the plane let ch(S)
denote its closed convex hull. Write

P. = Q. u Rj U ρ/, (;>2), where ρy =
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Q/ = ch(a2+m._lr •••, amj) and R^ = ch(a^ al+mj_ιy a2+mj_lt am.) .

Let kj\ Q/-*Qj be the linear homeomorphisms given by kj(al_r+ntj)=ar. Also

let γy: (Qj, ch(aly «1+my_1))-»(Py_1, *) be a relative homeomorphism such that
fYj(ai)=ait (1 </ ̂ Wy.j), and γy is linear on each edge. Put P2—P with vertices

α1==(0, 0), fl2=(0, 1), 03= (1, 1) and α4=(l, 0). Let h.: R^P be the linear

homeomorphism given by

hjfa) = aιy hj(al+mj^) = azy hj(a2+m._^ = a* and h.(am.) = a, .

Now let {Xf> i> 1} be an indexed set of copies of a space X. Define

δ: Γχ(X1VX2)-*SX1VSX2 by

δ(*> S, *> j) = |>> y]2> δ(ί, ί, Λ, *) == [ί, Λ;],

, ; s, t^I and the suffix indicates the wedge factor).

We now inductively construct the spaces, X(j), (j>2). Put X(2)=I2χX1

X X* U ^(iSX, V S 2̂) where

/32: /'Xί^ VX 2 )U9/ 2 X^X^ 2 -> SX.VSX, is given by

&(*, £, Λ, y) - [ί, *]„ /52(6, ί, Λ, y) - [ί, y]2, (£ = 0 or 1) ,

and β2=S otherwise. Thus X(2)=SXl X SX2.

Now let τtλ\
 J

be the canonical projections and inclusions. Define

where βj : dPj X ( X X{) \ J P j X ( V^)-> Ψ SX{ is defined by the following com-

positions :—

f I (QPJ Π Qj) X ( X Xt) = *I»/Sy-ι°(7y X *.) .

y I (9P, Π Λy) X ( X ̂ ) = »,o(δ 1 72χ (JΓy V*))o(Λ, X w.) ,

/8y I Λy x ( ^ ) = * = β. I (ρy u Q/

βj\R}χXj = i2o(δ\Γx(X.V*))°(

β, I ρy x (V^) = irfi-sΰ, x i) ,
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and 0 |

The map Δy of Theorem 1.3 (v) is induced by

P.x^xY - > P/xXxY^P.χXχP.χY.J Δ x l x l ' 3

We now prove Theorem 1.3 (vi) part (vii) is similar. Consider the problem

of extending ^adj(w):^ SXi-^XP(2) over X(j). The map (^adj(w))oβ.

sends 3Py V(xX, ) to the basepoint and induces

μ. : 3Py Λ ( X Xι) = S(χ X{) -* XP(2) with adjoint
/ /^*/

μj\ xXi-^ΩXPβ). Let/:C(3Py)— ̂ >Py be a cone-wise homeomorphism

which is the identity on 3Py. Also let /have cone-point, z0£ΞPj, such that

(( \/ adj(w))° β j ) (zQχ \/Xf)= *, (ify=2) this can be arranged by altering

adj(w) by a homotopy). Suppose that μy is nullhomotopic then there exists a

nullhomotopy,

, of(ψadj(w))°β; such that

Thus defining #: Py X ( X Zt.)-^^ (̂2) by ff(?, x)=GJtf, x\ where /([w, 9

X])

=}(j/e9Py; q^Pj'y u<=I\ x^ xXi), induces a map JΓ(/)->XP(2) extending
y «

V 'adj(w). Conversely, if \/adj(w) extends, we have

H:PjX(xXi)^XP(2) extending (^ adj(w))<> β ̂  and we may assume £Γ(Py

X *)=*. Now let Gu: 3Py-»Py be a based homotopy from the inclusion to the

constant map. Thus

flΌ(Gxl): 7χ9P yx(xJr f )-*-XP(2) induces a nullhomotopy of μjm Ho-

wever, the map μ. : X Xf-^XP(2) is the composition of ( X w) and the j-fold

commutator on ΩXP(2), Since w is an ίf-map we have «joφy:=±μy. Thus if

φy is nullhomotopic the extension exists. If right translation is a homotopy
equivalence in X there exists a map r: ΩXP(2)-+X, [11, Lemma 4.2], such that

The maps, Γy, of Theorem 1.3 (iii) are induced by maps Gy: Py x(x -X",— >
y-l

P y _ιX( X^ ) which are defined in the .following manner. Let _pro/: Λy->J?y_1

be such that hj_^projQ(h.γl is projection on the first factor in I2 and let ^>2 be
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Put

x

Gj \RjX(x Xi) = projxp, .

It is clear that there exist homeomorphisms

π1 and

Also GJ(R,X(xXi))c:(dPj_lΓ{RJ -l)xXj.l which goes to the basepoint in

X(j—\)l('\jSX). Let q: S2-^VS2 be the standard pinching map and put

A.:S2f\Xj-*S2/\XJ-1 as the composition (fold Λl)°((l V* V —

We have a commutative diagram in which the rows are cofibrations

Hence Theorem 1.3 (iv) is proved.
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