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1. Introduction

Consider the ^-dimensional lattice Zv. We define a second order difference
operator H° by

where σ is a positive constant and C0(ZV) is the space of functions on Zv with
finite supports. Let {q(a) = q(ay ω); # eZv} be a family of independent, identi-
cally distributed non-negative random variables defined on some probability
space (Ω, .3, P). We are then concerned with the difference operator Hω de-
pending on the random parameter

( 1 ) (H"u)(a) = (H0u)(a)-q(a, ω)u(ά) ,

The operator —Hω, considered as a linear transform over C0(ZV), is a non-
negative definite symmetric operator on L2(ZV) and has a unique self-adjoint

extension —ΐfω. Express — Hω as — Hω=\ xdEl by the associated spectral
J[o,«0

family {£"", — oo <ΛJ< 00} and put pω(^)=(£'"/0, 70), where ( , ) is the L2-inner

product and /β(β/)=δββ/> fl> tfxeZv.
Denote by < > the expectation with respect to the probability measure P

and set

( 2 ) p(x) = <p (#)>, — oo<#<oo .

p(x) is a probability distribution function vanishing on (— oo, 0). We call this
the spectral distribution function associated with the ensemble of operators
{Hω

9 ω^Ω} or rather with the disordered dynamical system governed by Jf/ω's
(e.g. a tight binding electron model [4]).

Our main aim is to show in §4 the following asymptotic behaviours of
ρ(x) near the origin.
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Theorem 1.1.

A = -

Theorem 1.2. PFfow ι>=l,

όV6e

lim V ̂  log p (x) ̂  - π σ/322

A - -log P(?(0) - 0) (^ oo) .

Theorem 1.3. Suppose that the distribution of q(0) obeys the one-sided
stable law with exponent α, 0 < a < 1 <e~Xq^y=e~^, λ > 0. Then

En *"/cl-°» log p(*)^ -(l-αJα'/d-J .
*ψo

Ifv=l in addition, then

If q(a)=q(a, ω) is equal to a constant £^>0 identically, then we see from
the well known Tauberian theorem [2; vol. 2, XIII] and the asymptotic form
(17) of the Laplace transform of p(x), that ρ(x) grows up from c in a polynomial

order: p(x)~ - -. - Ax — £)v/2, x \ c. The exponential characters in

Theorems l.l^Ί.3 exhibit a sharp contrast to this state of the deterministic case.
Exponential characters of the spectral distribution of a disordered system

near the end points of the spectrum were derived by I.M. Lifschitz [6] by some
qualitative argument. M.M. Benderskii and L.A. Pastur [1] and L.A. Pastur
[9] have proved those rigorously for the differential operator Δ— q(a) in the
case of the z^-dimensional continuum R". If v=l and if q(ά), a^R1, is a
stationary Markov process taking two values 0 and 1, then l im\/# logp(jc)

exists and is negative finite ([!]). When q(ά) is a stationary Gaussian process
with parameter a e Λv, then under certain regularity conditions for the covariance

limlogp(*)= 1
.+ - x2 2<?(0)*>

([9]). Here ρ(x) is understood to be defined as above

but through the integral kernel of the operator
Let us now put

(3)
r[o,«0

ί>0.
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Just as in [9], we will use the Kac formula for k(t) and appeal to a Tauberian

theorem of exponential type (Theorem 2.1) to prove Theorem 1.1~1.3.
•

We introduce the time-continuous Markov process M=(Ω> IB, Xty Pa) on
Zv with the generator H°: the function Ttu(ά)=Ea(u(Xt}\ a<=ΞZ\ ί>0, u<=Coy

satisfies the Kolmogorov differential equation — t^&=H0(Ttu)(ά) and the initial
at

condition lim Ttu(a)=u(ά), #eZv. Here Ea stands for the expectation with
'*°

respect to the probability measure Pa governing sample paths X. starting at a.

We call the process Mthe (time-continuous) simple random walk on Zv. Let E

be the expectation with respect to the product measure P=PxP0, then we have

the Kac expression as follows (Lemma 4.1):

(4)

By making use of the formula (4) and in connection with the range of the

sample path Xt9 we derive in §4 some asymptotic properties of k(f). The range
will be compared with the maximum of the absolute value of Xt whose behaviours

are studied in §3. The results of §3 are valid for a large class of Markov
processes including the present random walk and the Brownian motion.

Here we state two remarks on related matters.

A fine structure of the random spectral function pω(x) is known. Consider

the operator (1) for the one dimensional semi-infinite lattice {0, 1, 2, •••} under
the fixed end boundary condition at — 1. Suppose that the distribution of

#(0) is non-degenerate and that <#(0)> is finite. Then, for almost every

fixed ωeΩ, the one dimensional measure ρω(dx) admits no absolutely con-

tinuous part (K. Ishii [4] and Y. Yoshioka [11]).
The second remark is that the averaged spectral distribution function

p(x)=^p'(x)y can be obtained as the almost sure limit of the normalized ditribu-
tion of the eigenvalues of the operator — Hω restricted to each of increasing

bounded domains under some admissible boundary conditions. Thus p(x) is a
physically observable quantity of the disordered system. The ergodicity of this

kind has been studied by L.A. Pastur systematically for continuous systems.

The ergodicity for lattice systems will be formulated elsewhere.
Theorem 1.2 and 1.3 suggest some possibility to answer the question: Can

we guess some properties of <?(0) from the knowledge of p(x) ?

2. Tauberian theorems of exponential type

Consider a non-decreasing function p on (—00, oo) with ρ(χ)=Q, #<0.

We assume that p is right continuous and that k(t)= \ e"txp(dx) is finite for
J[o,°°)

every t>0.
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Theorem 2.1. Fix a number γ such asQ<γ<l.

(i) If lιm

then lim log #v/(1-γ) log p(x)^~
*ψo

(ii)

ίίm *γ/(1-γ) log p(*)^ — (
*ψo

Proof. We put

( 5 ) κ(t)=(~e-<*p(x)dx.
Jo

Since k(t)=tκ(t)y it is enough to consider κ(t) in place of A(£) in order to show
Theorem 2.1.

(i) Let us assume that lim — log tc(t)^ —A. Then, for any £>0, κ(t)^
,too ft

exp{— (A-{-£)ty} for sufficiently large t. Choose a constant C>A and observe

J cΛ"1 f T O

e~*x ρ(x)dx=κ(t)— \ e~txρ(x)dx. The left hand side is not
o Jcr"1

greater than p(a*y-1)1~exp^~C^l The right hand side is not smaller than

cxp{-(A+8)ff}-κ(εt)txp {-(l-£)αΎ}=(l+o(l))exp {-(̂ 4+ }̂ when 6
is small enough. Hence we have

( 6 ) liml log p(Ct^)^-(A+6) .
f t o o fi

Put x=Cft'\ then limχW^logp(x)^ -C^l'^(A+6)9 from which we get our

first assertion by letting 6 j 0 and C [ A.

(ii) Let us assume that ίίm — log κ(t)^— A with 0<^4<oo. Then, for

any £>0, κ(i)^ exp {— (A— 6)f*} if t is sufficiently large. From κ(t)^

e-^p(x)dx^p(Ct^l)exp^~Cff\ we have pίCt^1)^ κ(t) exp (CP). Hence
"1 ί

Rm — log p(CtΊ-1)^ —(A—ε—C), from which follows
't00 ίv

( 7 ) ϊίm ^/(1-γ) log p(jc)^ -(^-C)^01-^ .
*ψo

Since C>0 is arbitrary and max (^-C)C<y/cl-w=(l-7)ίyγ/cl"w-41/α"w, we arrive
x . . v 0<(7<4

at (n).

The second estimate of Theorem 2.1 is best possible. Indeed if we invoke
the Minlos-Povzner Tauberian theorem [8], we can obtain the next theorem.
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Theorem 2.2. Fix γ with 0<γ<l and put A^l-

Then lim — logk(t)=-Ay (O^A^oo), if and only if lim x^1"" log p(x)

5 00
e~βtyp(y)dy by the change of vari-

0
able j^f"1^', we have

( 8 ) g-ΛCOφ/Cβ) _ f ""
Jo

with a(f)=t\ φt(β)=-±logκ(βt) and φ,(;y) = -±r{log p(-g-)-(l-Ύ) log ί j.

An obvious modification of [8; §5, Theorem 2] now implies " only if" part of
Theorem 2.2 as follows; since lim φt(β) = βΊA, lim ώt(ί) = lim sc"*-" log p(x)

ίt°° /t0 0 *ψo

exists and equals inf (β—β*A)=—Aγ. "If" part of Theorem 2.2 follows from
0<β<°°

the analogous modification of [8; §5, Theorem 3],

Here is an immediate consequence of Theorem 2.2.

Corollary. Let GΛ(x), Q^x<o°, be the distribution function of the one-sided

i
oo

e~^xGa(dx) = exp(— \"), λ >0. Then

lim Λ /O- ' log G^H-O-aK*1-00.
*ψo

By appealing to the Tauberian theorem of Hardy-Littlewood type, we can
only obtain lim^~eGe(*)==0 [2; vol. 2, XIII, 6, Theorem 1]. A much more

*ψo

precise formula of GΛ(x) is known however [3; Theorem 2.4.6].

3. Maximum of the absolute value of the sample path

Let us start with a rather general setting. We consider a right continuous
Markov process M=(Xt> Pa) over Zv with a transition probability p(t, a, ό),
ί>0, 0,δeZv, and put

(9)

Here \a\ denotes \ak\
2 for a=(aly a2y •- ,αv)y jfe-i

Theorem 3.1. Suppose that there exists a constant 5>0 such that

(10) p(ty a, b)^Br^2

for sufficiently large t and for any ayb^ Zv. Then, for each β > 0,

ίΐm r1/3 log E0(e-*Mt) ̂
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Proof. An integration by part leads us to

(11) E0(e-?M') =β

where F(x)=P0(Mt^x). We can further observe, for any large s (Q<s<t),

(12) F(x)^(x+\/Ίϊγl(C^Bγs-™n.

Here /= [t/s] and Cv is the volume of the z>-dimensional unit ball. This is an
easy consequence of the inequality F(x)<^P0( | X s \ <^x, \X2S\ ί^x, •••, \X/S\ 1=zχ)>
the Markovian transition mechanism and the bound (10).

Using then the bound Γe-**(x+y/'Tγ'dx£eP** ^^ and the Stirling

upper estimate nl<^/2πnnne~nel/12n ([2; vol 1]), we see from (11) and (12) that

(13) -̂

with D=—(Cv£)1/v.

Let us choose s such that Z>—j"1/2=l, namely, s=D2/*t2/\ Then
s

^ 1 and /^Z)-2/3ί1/3-l. (13) now implies

(14) ίίm r1/3 log £0(*~ w)^ -z>#~2/3.

/ v \v/2

Furthr we have from the bound C::l>( ) that
-\2πel

. } . proving Theorem 3.1.
\/2πe I * 5

We return to the simple random walk M=(Xt, Pa) introduced in § 1. M is
spatially homogeneous and its transition function is expressed as

(15) p(t, 0, a) = py-,

where C is the Euclidean cube C= {θ\ —π<θί<π, /=!, 2, •••, v} . To see this,

let us consider the characteristic function φt(θ)=E0(eiθ'*'), then φt(θ)=(φt/n(θ))n

and lim— (l-φ,/,((9))=-/ί0/0(0)-Σ^%(0) ̂  Λ-2σ2 Σ sin2^. Hence
»t°° t βφo k^ 2

K V Λ \

— 2σ2t 2 sin2-^) and (15) is nothing but the inversion formula.
*=-ι 2 /2

(15) immediately implies

(16) M 0, fl)^/(ί, 0, 0) ,

Furthermore
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(17) p(t, 0, 0)~(2;πr2ίΓ/2

) ί-κx>.

θ θ

Since sin — ~— , 0-»0, the right hand side of (15) is of the same order as
Zί Δι

Γ Γ e~'*2tθ2/2)dθy=(2πtσ2T*/2> yielding (7).

Theorem 3.1 now applies and we have the following. Mt denotes sup \X8\.ΓΓ σ org^f

Theorem 3.2. For the simple random walk Mon Zv,

ίϊm r 1/3 log

We continue to work with the simple random walk M.

Theorem 3.3. Fix a and β such that 0^α<l, /3>0. Then,

Iimr{cl+e3/c8-e»logi0(^i*ji}"el; Xt= 0)
/->«>

-> _ 3-afl-a
- T

In particular (a=ϋ)

lim Γ1/3 log £!0(e°̂°

We prepare two lemmas in order to prove Theorem 3.3. Denote by
the k-th coordinate of Xs and put lfr<»= sup I X^ \,k=l, 2, •-, v.

o&^t

Lemma 3.1. For each positive integer a, the function pa(t, 0, 0)=
α, •••, M^<at Xt=0) has the following bound:

P°(t, 0, 0)^<Γc*2w

a

Proof. /β(ί, 0, 0) can be expanded in the form
1S
)fe=

λΛ, l^n^2a— 1, is the eigenvalue of the one-dimensional problem

~{u(x— I)— 2u(x)+u(x+l)} = — \u(x) x^Z\ \x\<a,

u(—a) = u(ά) = 0 ,
a

and vn is the corresponding eigenfunction with T1. vn(x)2 = 1 . It is easy

to see that λΛ=2σ2sin2— , VZΛ(Λ) =— jL= sin — Λ (l^Λ^α— 1) and v2jk-!(ic)=
4α v α α
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-=
V a 2a

a. Since
40

^£—, the first term of the ex-
4a

pansion gives rise to Lemma 3.1.

Lemma 3.2. Far a and β as in Theorem 3.3. and for fixed ?? > 0 and ξ > 0,
we put

Then

1 Λf / 1 xv\VC3-*)(18) lim ftt+'Vca-αυ j jφ^ _ ό—a ( ln^ ) ^σ-
'•»- 1 — cΛ 2 /

Proof. For each C> 0 and 8 > 0,

(19) /(i)

5c#ε

e-c"/4:2^ .
0

On the other hand, integrating the inequality e~h/χ2^(-^- + — \e~h/χ2, we

S
d J3 12

e~h/χ2dx^—e~h/d2 provided that — is sufficiently small.
o 4h h
Hence (19) leads us to

' - exp -
for £< — and sufficiently large £. We choose 6 such that a+8— £a=l— 26,

namely, 8= ^— Then l-2£= and
3— a\ 3 / 3— a

(20) lim r

The maximum of the right hand side of (20) for OO is just the right hand
side of (18) and we have done.

Proof of Theorem 3.3. Let us put G(x)=PQ(Mt^x, X^O) for every real
x. Then

(21) 0(

= (\-ά)βt* χ-a
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Since G(x)^^x'^^^ (t, 0, 0), Lemma 3.1 implies that the left hand side of

(21) is not smaller than

-α)#V/* J

2 2 2

Therefore Theorem 3.3 follows from Lemma 3.2 with η= — - — .
8

REMARK. It is clear from our proof that Theorem 3.2 and 3.3 are also

true for the "pinned" process obtained from the ^-dimensional Brownian motion

with transition density p(s, 0, ά)= - - -- e-ί\a\2/2<τ2s\ We have just the same
yP^ } 2 2 J

estimate as in Lemma 3.1 for the pinned Brownian motion.

4. Proof of Theorem 1.1~1.3

In this section, we prove the theorems stated in §1. We first show the Kac
formula (4).

Lemma 4.1.

k(t) = E(exp (- (' q(Xs)ds); *f=0) .
Jo

Proof. By taking the expectation < > of the both hand sides of

(22) \~e-'*p (dx) = E0 (exp(- \* q(Xst ω)Λ); -£,=0) ,
Jo Jo

we arrive at Lemma 4.1. In order to show (22), it suffices to prove

S~ j fτ?ωτ T \ . r°° \ q(Xs,<j>^ds
dχ(E***> Ia) = Ea(\ e-«'e )o I0(Xt)dt) ,

o a+x Jo

for every a > 0.
The right hand side of (23) is, as a function of <zeZv, a bounded solution

of the next equation ([5]).

(24) (a-H-Wa) = /„(«) , αeZ* .

Here we regard Hωv as the function on Zv defined at each point a by the explicit

formula (1). The left hand side of (23) equals G«I0(a) with GZ=(a-R~)-\
Hence (*-H»)GlIQ(ά)=((a-H<*)GlI^ Ia)=(GωJQ, (a-H^Ia)=(Gl^(a-H-)Ia)

= ((α-^7ω)G:/0, IΛ)=I0(a).^ Since moreover | GωJ0(a) | 2^ (GωJ0, G 0̂)(/β, Ia)

^a~2

y the left hand side of (23) is also a bounded solution of (24).

1) This point becomes trivial if one notices that the operator Hω is described explicitly as
follows: .0(#ω)={weL2(Zv); tfω

M<ΞL2(Zv)}, H^u^H^u, u£Ξ3)(Hω).
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It is quite easy to show that the bounded solution of (24) is unique. To

see this, consider a bounded solution v of (a—Hω)v=0 and put M=sup\v(a)\.

Then, fromv(a)= ^ Σ v(b\ we getM^ vσ* M. Therefore
q(ά)+a+vσ2 ι*- ι= ι

ϋ=0, yielding the equality (23) and hence Lemma 4.1.

The sample path Xt of Jf behaves as follows: it stays at its starting point

during an exponential holding time with expectation l/vσ2 and then jumps to

one of its 2v neighbours with equal probability. Let us put

(25) j ξn(ώ) = inf

n = 2, 3,

We have then Pa(ξ,>t)=e-^2t for any ,

Denote by Rt(ω) the number of different points visited by the sample path

Xs(ω) during the time interval [0, t). The range Rt equals k if and only if

?*-ι(ω)ί££<ίfΛ(ω). Since q(ά) and q(b) are independent and have the same

distribution as #(0) when αΦ&, we can readily obtain the next lemma.

Lemma 4.2.

£(exp(— \q(Xs)ds); Rt = k, Xt = 0)

Here Ja(t)=\ Ia(Xs)ds,
Jo

We are now in a position to give the proof of Theorem 1.2 and 1.3.

Proof of Theorem 1.2. From Lemma 4.2, J?(exp(— ̂ q(Xs)ds)\ Rt= k, Xt=0)
Jo

^P(q(0) = Qγ P0(Rt=k, Xt=Q). Putting P(?(0)=0)= e~^ and using Lemma

4.1,

(26)

When z/=l, Λ^2M,4-1 and hence k(t)^E0(e-β*2]iί*+l> , Xt=ϋ), which together

with Theorem 3.3 implies

(27) Km Γ 1/3 log A(ί) ̂  - V S (2τrσ/32)
2/3.

Theorem 1.2 is an immediate consequence of (27) and Theorem 2.1 (i).

Proof of Theorem 1.3. We assume that #(0) is distributed according to the

one-sided stable law with exponent a, 0<α<l. By Lemma 4.2,
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E(exp(-\'q(Xs)ds); Rt = k,Xt = 0)
Jo

= E0(exp {-(MtT+J (ί)"H h/^ (t)")} ;Rt = k,Xt = 0).

Using then Lemma 4.1 and the inequality t*kl~*

*=f), we are led to

(28) (e-'"?--; £ = Q)^k(t)^e-<°P0(Xt = 0 ) .

The second inequality of (28) and the asymptotic formula (17) imply

(29) Rmr

The first assertion of Theorem 1.3 follows from this and Theorem 2.1 (ii).
When ι;=l, we use the inequality R}~« ^(2Mί+l)1~*^(2M,)1-*+l to

obtain from the first part of (28) and Theorem 3.3 that

(30) lim Γ{(1+

with A=
l-α\ 2 / 8

By Theorem 2.1 (i), we then conclude li
*ψo

which is the second assertion of Theorem 1.3.
It only remains to show Theorem 1.1. We need a lemma.

Lemma 4.3.

with β^-

Proof. Denote by ώ£ the shifted path: Xs(ώ^)=Xu+s(ώ), s^>Q. Replacing

J± (0 bY ?i(^)' /=0> l j '"' ̂ ""^ (^o^0)* in the formula of Lemma 4.2 andξ/
applying the Schwarz inequality twice, we obtain

(31) [E(exp(-Γ q(Xt)ds); Rt = k, Xt = O)]2

Jo

We next note the equality

(32) Ea«e-2ί
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In fact the left hand side equals

Furthermore we have

(33) £:o«e-2ίιc^(0)><^-2^c^CO)> - <*-2ίιc"ί*-ι*cβ>>) - «-** , ^ = 2, 3, ••-.

In order to see (33), notice that ξn is a stopping time (a Markov time in

the terminology of [5]) and that the random variables £ι(ώ^), / < w , depend

only on the events occurred up to time ξn. Therefore the strong Markov

property ([5]) and (32) imply that the left hand side of (33) is equal to

= ••• = e-
βι*.

From (31) and (33), we have

)ώ); Rt^t, Xt = O)]2

o

- (' q(Xs}ds) ;Rt = k,Xt = O)]2

J O

= A, ̂  =

On the other hand, [E(exρ(— \ q(Xs)ds)\ Rt>t, Xt=Q)]2 is not greater than the
Jo

left hand side of (33) with k=[f\.

Proof of Theorem 1.1. X=Q implies Mt-\-\^Rt. Hence by virtue of

Lemma 4.3 and Theorem 3.2, we are led to

+ o(l))}+exp {-

which implies

2 V v e

Theorem 1.1 follows from this and Theorem 2.1 (ii).
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