



|              |                                                                             |
|--------------|-----------------------------------------------------------------------------|
| Title        | A note on a fixed-point-free automorphism and a normal P-complement         |
| Author(s)    | Nagao, Hirosi; Nomura, Kazumasa                                             |
| Citation     | Osaka Journal of Mathematics. 1975, 12(3), p. 635-638                       |
| Version Type | VoR                                                                         |
| URL          | <a href="https://doi.org/10.18910/12090">https://doi.org/10.18910/12090</a> |
| rights       |                                                                             |
| Note         |                                                                             |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Nagao, H. and Nomura, K.  
Osaka J. Math.  
12 (1975), 635-638

## A NOTE ON A FIXED-POINT-FREE AUTOMORPHISM AND A NORMAL P-COMPLEMENT

HIROSI NAGAO AND KAZUMASA NOMURA

(Received October 17, 1974)

### 1. Introduction

Let  $A$  be a group of automorphisms of a group  $G$ , and denote by  $C_G(A)$  the subgroup of  $G$  consisting of all the elements fixed by  $A$ . If  $C_G(A)=1$  then  $A$  is said to be fixed-point-free. The purpose of this note is to prove the following two theorems.

The first theorem is an extension of a result of F. Gross ([2], Theorem 3.5).

**Theorem 1.** *Let  $A$  be a group of automorphisms of a finite group  $G$  and  $p$  a prime divisor of  $|G|$ . Suppose that either  $A$  is cyclic and fixed-point-free or  $(|A|, |G|)=1$  and  $C_G(A)$  is a  $p$ -group. If a Sylow  $p$ -subgroup  $P$  of  $G$  is of the form*

$$P = P_1 \times P_2 \times \cdots \times P_l$$

*where  $P_i$  is a direct product of  $m_i$  cyclic subgroups of order  $p^{n_i}$  with  $n_1 < n_2 < \cdots < n_l$ , and if each  $m_i$  is less than any prime divisor of  $|A|$ , then  $G$  has a normal  $p$ -complement.*

If an abelian  $p$ -group  $P$  is of the form as in the theorem above, we denote  $\sum_{i=1}^l m_i$  by  $m(P)$ , and  $\max_{1 \leq i \leq l} m_i$  by  $\tilde{m}(P)$ .

For a  $p$ -group  $P$ ,  $ZJ(P)$  denotes the center of the Thompson subgroup of  $P$  and we define  $(ZJ)^i(P)$  recursively by the rule

$$\begin{aligned} (ZJ)^0(P) &= 1, & (ZJ)^1(P) &= ZJ(P), & \text{and} & & ZJ(P/(ZJ)^{i-1}(P)) \\ & & & & & = (ZJ)^i(P)/(ZJ)^{i-1}(P). \end{aligned}$$

In a case of  $p$  odd Theorem 1 can be extended as follows.

**Theorem 2.** *Let  $G$  be a finite group,  $p$  an odd prime divisor of  $|G|$  and  $P$  a Sylow  $p$ -subgroup of  $G$ . Suppose that  $G$  has a group  $A$  of automorphisms satisfying the same assumption as in Theorem 1. If each  $\tilde{m}((ZJ)^i(P)/(ZJ)^{i-1}(P))$  is less than any prime divisor of  $|A|$ , then  $G$  has a normal  $p$ -complement.*

For the proof of Theorem 1, Lemma 1 in the next section is fundamental. The other arguments are similar to those in Gross [2]. The proof of Theorem 2 is based on the celebrated theorem of Glauberman and Thompson.

The notation is the same as in [1], and all groups are assumed to be finite.

## 2. Preliminaries and some lemmas

The following propositions are well known and will be used later.

**Proposition 1** ([1], Theorems 6.2.2, 10.1.2 and Lemma 10.1.3). *Let  $A$  be a group of automorphisms of a group  $G$  such that either  $(|A|, |G|)=1$ , or  $A$  is cyclic and fixed-point-free. Then we have*

(i) *For any  $p \in \pi(G)$   $G$  has an  $A$ -invariant Sylow  $p$ -subgroup.*

(ii) *If  $H$  is an  $A$ -invariant normal subgroup of  $G$ , then  $C_{G/H}(A)=HC_G(A)/H$ .*

*In particular if  $A$  is fixed-point-free then  $A$  induces a fixed-point-free group of automorphisms of  $G/H$ .*

**Proposition 2** ([1], Theorem 5.3.1). *Let  $A$  be a  $p'$ -group of automorphisms of a  $p$ -group  $P$  which stabilizes some normal series of  $P$ . Then  $A=1$ .*

In the following lemmas we assume that a group  $G$  has a group  $A$  of automorphisms such that either

(\*)  $A$  is cyclic and fixed-point-free, or

(\*\*)  $(|A|, |G|)=1$  and  $C_G(A)$  is a  $p$ -group.

We remark that if  $H$  is an  $A$ -invariant subgroup of  $G$  then  $A$  induces a group of automorphisms of  $H$  satisfying the assumption (\*) or (\*\*) and if  $H$  is an  $A$ -invariant normal subgroup of  $G$  then the same holds for  $G/H$ .

**Lemma 1.** *Let  $G$  be a group of order  $p^a q^b$  with  $p \neq q$  primes. If a Sylow  $p$ -subgroup  $P$  of  $G$  is abelian and normal, and  $m(P)$  is less than any prime divisor of  $|A|$ , then  $G$  has a normal  $p$ -complement.*

**Proof.** Suppose  $G$  is a minimal counter-example to the lemma. Let  $Q$  be an  $A$ -invariant Sylow  $q$ -subgroup of  $G$  and let  $H=QA$  the semi-direct product of  $Q$  by  $A$ . Then  $H$  acts on  $P$ .

(a) Suppose that  $P$  has a proper  $H$ -invariant subgroup  $P_0 \neq 1$ . Then  $P_0$  is an  $A$ -invariant normal subgroup of  $G$ . By the minimality of  $G$ ,  $G/P_0$  and  $P_0Q$  have normal  $p$ -complements  $P_0Q/P_0$  and  $Q$  respectively. Then, since  $Q \operatorname{char} P_0Q$  and  $P_0Q \triangleleft G$ ,  $Q$  is normal in  $G$ , which is a contradiction.

Thus  $P$  has no non-trivial  $H$ -invariant subgroup. In particular  $P$  is an elementary abelian group of order  $p^{m(P)}$  and  $H$  acts irreducibly on  $P$ .

(b) Let  $Q_0=C_Q(P)$ . Since  $N_G(Q_0)$  contains  $P$  and  $Q$  we have  $G=N_G(Q_0)$ . If  $Q_0 \neq 1$  then  $G/Q_0$  has normal  $p$ -complement  $Q/Q_0$ , and hence  $Q$  is normal in  $G$ , which is a contradiction.

Thus we have  $C_Q(P)=1$  and  $Q$  acts faithfully on  $P$ .

(c) Suppose that  $Q$  has a non-trivial  $A$ -invariant subgroup  $Q_1$ . Then  $PQ_1$  has a normal  $p$ -complement  $Q_1$  and hence  $Q_1 \leq C_Q(P)$ , which is a contradiction.

Thus  $Q$  has no non-trivial  $A$ -invariant subgroup. In particular  $Q$  is abelian.

(d) We consider the action of  $H$  on  $P$ . We may regard  $P$  as a vector space of dimension  $m(P)$  over  $K_0=GF(p)$ , where  $GF(p)$  is a finite field of  $p$  elements. Then  $P$  is an irreducible  $K_0[H]$ -module, and as is well known there is an extension field  $K=GF(p^r)$  of  $K_0$  and a vector space  $V$  over  $K$  such that  $V$  is an absolutely irreducible  $K[H]$ -module and if we regard  $V$  as a vector space over  $K_0$  then  $V$  is isomorphic to  $P$  as  $K_0[H]$ -module. If  $V$  is of dimension  $s$  over  $K$  then  $m(P)=rs$ .

Now we take a splitting field  $L$  of  $Q$  which contains  $K$  and let  $V_L=L \otimes_K V$ . Then  $V_L$  is an irreducible  $L[H]$ -module, and since  $Q$  is abelian any irreducible  $L[Q]$ -submodule of  $V_L$  is of dimension 1. By the theorem of Clifford ([1], Theorem 3.4.1)  $V_L$  is the direct sum of the Wedderburn components  $V_1, \dots, V_t$  with respect to  $Q$ . Since  $t$  divides  $s$  and also divides  $|H:Q|=|A|$ , if  $t>1$  then  $m(P)$  is not less than some prime divisor of  $|A|$ , which contradicts the assumption. Thus  $t=1$  and  $V_L$  is a direct sum of irreducible  $L[Q]$ -submodules  $W_1, \dots, W_s$  which are all isomorphic as  $L[Q]$ -modules. Let  $\lambda: Q \rightarrow L^*$  be the linear representation of  $Q$  obtained by  $W_i$ . Then, since  $Q$  acts faithfully on  $P$ ,  $\lambda$  is faithful. For  $\phi \in A$ ,  $W_1\phi^{-1}$  is an irreducible  $L[Q]$ -submodule of  $V_L$  and hence isomorphic to  $W_1$ . Therefore  $\lambda(x)=\lambda(x^\phi)$  for  $x \in Q$  and we have  $\lambda(x^{-1}x^\phi)=1$ . Hence  $x^\phi=x$  for any  $\phi \in A$  and any  $x \in Q$ , which is a contradiction.

**Lemma 2.** *Suppose that  $G$  has an  $A$ -invariant abelian normal  $p$ -subgroup  $P_0$  such that  $m(P_0)$  is less than any prime divisor of  $|A|$ . Let  $P$  be a Sylow  $p$ -subgroup of  $G$ . Then  $G=PC_G(P_0)$ .*

Proof. Let  $q(\neq p) \in \pi(G)$  and  $Q$  an  $A$ -invariant Sylow  $q$ -subgroup of  $G$ . Then  $P_0Q$  satisfies the assumption of Lemma 1. Hence  $Q \leq C_G(P_0)$ . Thus  $G/C_G(P_0)$  is a  $p$ -group, which proves our lemma.

**Lemma 3.** *Suppose that a Sylow  $p$ -subgroup  $P$  of  $G$  has a chain*

$$1 = P_0 < P_1 < \dots < P_l = P$$

such that  $P_i \operatorname{char} P$ ,  $P_i/P_{i-1}$  is abelian and  $m(P_i/P_{i-1})$  is less than any prime divisor of  $|A|$ . Then  $N_G(P)=PC_G(P)$ , and if  $P$  is abelian  $G$  has a normal  $p$ -complement.

Proof. We may assume  $P$  is  $A$ -invariant. Let  $Q$  be an  $A$ -invariant Sylow  $q$ -subgroup of  $N_G(P)$ , where  $q \neq p$ . Then  $N_G(P)/P_{i-1}$  has an  $A$ -invariant abelian normal subgroup  $P_i/P_{i-1}$  satisfying the assumption of Lemma 2. Hence  $Q$  acts trivially on  $P_i/P_{i-1}$ . Thus  $Q$  stabilizes the normal series of  $P$  in the lemma. Therefore  $Q \leq C_G(P)$  and  $N_G(P)/C_G(P)$  is a  $p$ -group. Thus we have  $N_G(P)=$

$PC_G(P)$ . If  $P$  is abelian then  $P \leq Z(N_G(P))$ , and hence by a theorem of Burnside  $G$  has a normal  $p$ -complement.

### 3. Proofs of the theorems

Proof of Theorem 1. It will suffice to show that  $P$  has a chain of characteristic subgroups as in Lemma 3.

Now  $P/\Omega_1(P)$  is isomorphic to

$$P_1/\Omega_1(P_1) \times P_2/\Omega_1(P_2) \times \cdots \times P_l/\Omega_1(P_l)$$

where  $P_i/\Omega_1(P_i)$  is a direct product of  $m_i$  cyclic subgroups of order  $p^{n_i-1}$ . Thus by induction on  $|P|$  we may assume that there is a chain

$$\Omega_1(P) = K_0 < K_1 < \cdots < K_r = P$$

such that  $K_i \operatorname{char} P$ ,  $K_i/K_{i-1}$  is abelian and  $m(K_i/K_{i-1})$  is less than any prime divisor of  $|A|$ . Now let  $L_i = \Omega^{n_i-1}(P) \cap \Omega_1(P)$  for  $i=1, 2, \dots, l$  and let  $L_{l+1}=1$ . Then  $L_i \operatorname{char} P$  and we have a chain

$$1 = L_{l+1} < L_l < \cdots < L_1 = \Omega_1(P)$$

where  $m(L_i/L_{i+1}) = m_i$ . Thus we have a chain of subgroups of  $P$  as in Lemma 3.

Proof of Theorem 2. Let  $G$  be a minimal counter-example to the theorem. By a theorem of Glauberman and Thompson ([1], Theorem 8.3.1.) we have  $G = N_G(ZJ(P))$ . Since  $G/ZJ(P)$  satisfies the assumption of our theorem it has a normal  $p$ -complement  $H/ZJ(P)$ . Then by Theorem 1  $H$  has a normal  $p$ -complement  $K$ , which is also a normal  $p$ -complement of  $G$ . This is a contradiction.

OSAKA UNIVERSITY  
TOKYO INSTITUTE OF TECHNOLOGY

---

### References

- [1] D. Gorenstein: Finite Groups, Harper and Row, New York, 1968.
- [2] F. Gross: *Some remarks on groups admitting a fixed-point-free automorphism*, Canad. J. Math. **20** (1968), 1300–1307.