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Abstract
The main purpose of this paper is to study the fourth powermuéahe general
Gauss sums, and give two exact calculating formulae.

1. Introduction

For any Dirichlet charactey mag , the classical Gauss sumgafined by

q
G, x) = Zx(b)e@) |
b=1 )

where e¢ ) = &, The various properties af n(x ) appeared in many analytic num-
ber theory books (see references [1] and [2]). Perhaps th& famous properties of
G(n, x) are the following identities:

Gn, x*) =x" ()7 (x") and |t (") =4,

where x* is a primitive character mag %* is the conjugate character ¢f* , and
(x*) = G(1, x*). If x is a nonprimitive character modulp , then the \aldistribu-
tion of 7(x) is much irregular, even more is zero!

Let ¢ > 3 be a positive integer. For any integer and positivegeté , we define
the generak -th Gauss sunisn, k, x ¢q ; ) as follows:

q k
Gl ki) = 3 x0re (™).

b=1 4

The summation is very important, because it is a generaizaif the classical
Gauss sumss n( x ). But about the propertiesGf, k( x ¢ ; ), we know vetle lat
present. The value ofG n(k, x ¢;|) is irregular as  varies. One can gely some
upper bound estimates. For example, for any integer witly (1) frfom the gen-
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190 Z. WENPENG AND L. HuANING
eral result of Cochrane and Zheng [3] we can deduce
1G(n. 2, x:q)| < 2°@q"/?,

where w ¢ ) denotes the number of distinct prime divisorsqof e Tase thaty is
prime is due to Weil [5].

However, it is surprising thaG n(k, x ¢, ) enjoys many good valuetriigtion
properties in some problems of weighted mean value. Alsokfer 2, the first au-
thor studied the hybrid mean value of Dirichlet -functionedahe general quadratic
Gauss sums, and obtained several interesting asymptotitufae as follows (see ref-
erences [6] and [7]):

Proposition 1. For any integern with(n, p) = 1, we have the asymptotic formu-
lae

Z |G(n, 2, X;P)|2- |L(1, X)| =C. p2+ 19) (p3/2|nzp)
X#Xo
and
Z |G(n, 2, X;p)|4~ IL(1, x)| =3-C- p*+ 0 (p°2In?p)
X7 Xo

where L(s, x) denotes the Dirichlef. -function corresponding to the cluéea y mod-
ulo p,

+...

(2) (%)
C:H 1+ 2l 2" et 2mm 2m
) 42.p2  4*. pA 42m . p

is a constant ZX”O denotes the summation over all nonprincipal characters -mod
ulo p, ], denotes the product over all primeand (*") = (2m)!/(m!)>2.

Proposition 2. Let p be an odd prime witlp = 3 mod 4 Then for any fixed
positive integem with(n, p) = 1, we have the asymptotic formula

Z |G(’l’ 2, X;p)|6 . |L(1, X)| =10-C - p4+ 19) (p7/2In2 p).
X7 Xo

Let n be any integer witha, p ) = 1. The first author [5] also obtdiriee follow-
ing two identities:

S 602 i) (p—1)[3p2_6p—1+4(%)@], if p=1 mod 4;
n,2, x;p)" =

x mod p (p — 1)(3p? — 6p — 1), if p=3mod 4
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and

316G, 2, x;p)|° = (0 — D)(A0p® — 25p2 — 4p — 1), if p=3 mod 4

x mod p

where @/p ) is the Legendre symbol.
It is very natural to consider the calculating problem of than

2m
> G0k xig)|™"
x modg
and try to give some exact calculating formulae. kor =1, waleaget
q k q k
2 na _ nb
> Itk ol = Y Y atwe( ") Y xte( ")
x modgq x modg a=1 q b=1 q
i / nak nak 2
=p(@))_ el — —— ) =4%a),
a=1 4 4

where >’ Zzl denotes the summation over all such thatg( )= 1. In this paper,
study the sum

4

> G0k o)

x modg

and give two exact calculating formulae. That is, we shativprthe following two
main Theorems.

Theorem 1. Let p be a prime with3 | p — 1, then we have the identity
5

U
3 |6 3 x:p)|* = 5p° — 187 + 20p #1eo -+ 5pU 503 — 4U? + 4U,

x mod p
whereU = Y""_ e (a®/p) is a real constant.

Theorem 2. Letg > 3 be a square-full numbefi.e. p | ¢ if and only ifp? | g),
n, k be integers with(nk, ¢) =1 and k > 1. Then we have the identity

> 160k xiq) = a¢?@ [t p =27 ] ¢lp—1)

-1
x modg plg plg P
(k,p—1)=1

where qu denotes the product over all prime divisorsgofand ¢(gq) is the Euler
totient function.
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For general integers:, k > 3, whether there exist some exactlatig formulae
for

3 |GGk x; )"

x modgq

is an open problem.

2. Some Lemmas

To complete the proof of the Theorems, we need following #emmas.

Lemma 1. Letp be a prime with3 | p— 1 and x1 be a cubic character mog,
then we have the identity

X:m(b3 =1 (Xl)

Proof. For any integer ¥a < p— 1, it is easy to show that

3, if ais a cubic residue mog ;

1 1+x1(a) + x2(a) =
@ xa(a) * xia) 0, otherwise.

So that
p—1 p—1

le(bS 1)= Z (1 +xa(b) + xF(B)) xalb - 1).

From the properties of cubic character we know that

(2) =%, al-D)=1  and  T(a)=1(x),
therefore
p—1 p—1 p—1 p-1
Y Ol -1) =) xub)xab—1)= le(l b)=Y xalb—1),
bh=1 bh=1 bh=1

whereb is the inverse ob defined byp =1 modp and 1< b < p—1. So we have

p—1 p—1 p—1 p—1

@ D al’-1=2) xb-+) b -1)=3 ube-1)-

b=1 b=1 b=1 b=1
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Note that
p— p—1lp-1 C(b 1)
)= 3 xl(b)e( ) Z n-ae(-2)= X% xl(bc)xl(c)e< )
b=1 b=1 c=1
—1p-1 p—1
le(b)yl(c)e<c(b ~J)- G 2 albts 1)
b=1 c=1
That is
p—1
4 ZXl(b(b_ 1)) _ r3(X1).
b=1 p

Now combining (3) and (4) we immediately get

p—1

ORGEEES )

This completes the proof of Lemma 1. [l

Lemma 2. Let p be a prime witl3| p—1 and x; be a cubic charactermod p,
then we have the following identities

t(x) +t(x)) = U

t2(x1) + 12(x1) = U% — 2p;
°(x1) + t°(x1) = U®+5p?U — 5pU°.
Proof. From formula (1) we have
p—1

b3 -
e(—) = _1+7()+ 700,
1 P

b=

therefore
t(x)+t(x) =U
Note that
U2 = (t(x0) + 7o) = 1200) + 7(x0) + 2p.
U = (v() +70)” = 730w + 720w + 3p(t 6w) + 7))
and

U® = (t(x) + M)S = 7°(x0) + 75(x1) + 5p(v3(x1) + T3(x2) ) + 10p*((x) + T (x2) ).
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So we easily get
w2(x1) +72(1) =U* = 2p and t°(x1) + t5(xa) = U® + 5p°U — BpU>.
This proves Lemma 2. U

Lemma 3. Let ¢ be a square-full number. Then for any nonprimitive clara
ter x modulog, we have the identity

q
(0= G0 D =Y x(@e (g) =0
a=1

Proof (see Theorem 7.2 of [4]). [l

Lemma 4. Let p be a prime k, « and 8 be positive integers witfk, p) = 1
and o > B8 > 2, a be any integer with(a, p) = 1. Then we have the identity

pa’ aCk
Z G<F) =0.

c=1

Proof. Letd =&, p — 1) andy, be ad th-order character mgal . Then we have

P° r »’ « p*
/ ac / ac !/ ac
— a-B _ a-p d—1
> el —)=p"> e(—)—p > [L4xa(e) +--+ x5 o) e(—)
(p" ) —~ "\ p* ~ [ 2 ) PP

c=1
_ pﬂ/ c _ v c —d-1 r d—1 c
= ot ;le(ﬁ)+xZ(a);xZ(c)e(ﬁ)+---+xZ‘ @Y (c)e(ﬁ) .

From the properties of Dirichlet characters and Lemma 3 we gzt
2 , k

>e(45) =0

c=1 P

This proves Lemma 4. U

Lemma 5. Let p be a prim¢k and o be positive integers witlk, p) = 1 and
a > 2, n be any integer with(n, p) = 1. Letd = (k, p — 1), then we have the identity

dp(p—-1)
prA(p®) ———, if d=1;
S Gk x. p)[* = p-1

x mod p d2pa¢2(pa)’ if d>1.
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Proof. Ifd =1, then from Lemma 3 we have

o 6ok x| = Y

Zx(b)e<nb>‘ = Y G

x mod p¢ x mod p® | b=1 x mod p«
1
29 (0(0%)) = p0%0) - PP

On the other hand, il > 1, thep > 2. From the properties of Didthuharacters
mod p¢ we may get

o o 2
P P k(1k
a4 N / 1 nc* (" —1)
S GOk x ) =00 Y [T e(7>
Xx mod p« b=1 | c=1 p
p* p* k(1k 2
N N / 1 (nc (b -1)
= dd* (") + 60 Y Ze( )
=1 |c=1
pbi-1
(5) =d¢>(p*) + p(p*)V.
By Lemma 4 we have
1 p” p” 2
S , Lo (et @ = 1)/p*
v=) Y e(
$=0 b=1 c=1
(b*=1,p)=p#
p” P” 2
-y Zfe<nck(bk—1>/pa—l>
h=1 =1 p
(=1, p*)=pa-1
P” p” 2 P” P” 2
_ Z/ Z/e<nck(bk—l)/p°‘_l> Z Z <nck(bk—1)/p"’_l>
b=1 | =1 p beL [t p
peipi-1 pelbE—
6) =Q—d¢?*(p*),
where
a i k(pk NG
/ ’ b* — 1)/ p*~
Q= Z Z e(”C ( )/ P )
b=1 c=1 p
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Let ¢ be a primitive root modgp* , then we have

”Z <nc’<(b’< - 1)/p°‘_1> ‘2

= P

Q= pZ(a—l) Z

b=1
o{ llblx l

#(p*)-1

= p2eD) Z

=0
[7"‘71|g[k71

pf e (nck(g’k - 1)/p“1) ‘2
=1

p

#(p*)

2(0( 1) Z

S e <”Ck(8lk — 1)/190‘1) ‘2 )

c=1 p

d(p*- 1)I/k
Let Ik =s¢(p® 1), where 0< s <dp — 1. Note thag?® ) =1 modp,

Fr 1= (gaﬁ(p"’l) _ 1) (g¢(p“*1)(s—1) +ot gy 1)

and
g¢(17"’1)(s—1) FR g¢(1’a71) +1=s modp,
we have
2
dp—1|p-1 k ‘w(pa*l) oa—1
nc -1
= ey |e( M
s=0 | c=1 p

_ — o— 2
1 ile(”ck R 1)/17“‘1)‘
c=1 p

);
— p2(ot71) R d(p _ 1)2 +dp2(ot71)z
1
p—1 Ck s p |p—1 2
Sl %) oSl
c=1 s=1 [ c=1 P

p—1p-1 p p—1lp-1 p k
« (c* =d" « d'(c" -1)
=y L Y Y e((o D) ﬂ“zzz(sc )

c=1 d=1 s=1 c=1 d=1 s=1
(7))  =d?p? p(p — 1) =d?p*p(p").

p—1
=d¢*(p*) +dp** VY
1

So ford > 1, from (5), (6) and (7) we get

3 GOk x. p)[* = dgP () + d?p e Hp”) — dg*(p”) = dPp P (p®).

x mod p¢

This completes the proof of Lemma 5.
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Lemma 6. Letn, k, g1 and g2 be integers with(g1, ¢g2) = 1. Then for any char-
acter x modqig2, we have the identity

|G(n, k. x;q192)| = |Gngy ' k. x1:q0)| - |G(ngs . k.,

where y = x1x2 with x; modg; and x2 modgs.

Proof. Since 41, ¢2) =1, so ifa andb pass through a complete residue system
mod ¢ and g, respectively, themg, + bgqx passes through a complete residue system
mod g1q2. Note thaty =x1x2 with x; modg; and x, modg, we have

|G(n, k, x;9192)| =

q1492
> x(b)e< )‘

q1 92 k
n(ags +b

E E x1(aqz + bq1) x2(agz + bgi)e (7( 42+ bq) )

a=1 b=1 9192

q2
> rbae (”(bq” )‘

()}

le(aqz)e< s )‘

) E

Z xa(a)e (

where we have usefki1(qz2)| = |x2(q1)| = 1. This proves Lemma 6. ]

3. Proof of the theorems

In this section, we complete the proof of the Theorems. pet abgrime with
3| p— 1 andx; be a cubic character mog , from (1) and (2) we have

> 6@ 3 i)' =

x mod p

2

x mod p

p—1 4
Zx(b)e< )‘

b=1

p

p it a3 gy [
=(p-1) Ze(iﬂ
c=1

p—1
=(p—-1)

bh=1

p—1
=(p-1)

p—1

D€ (@) +71(0° = 17 (x2) + xa(0® — e (x)

c=1

= c(®-1)
> )+ e (2 )‘

c=1

2
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p—1
=30 - 1P+ (-1 Y [%a® — Dr(x) + xa® — Drlxd) - 1]
b=1
pibi—1

p—1
=3p—P+(p—-Dp -4 +1)+p— 1)[r2(xl) > a®®-1)

b=1

p—1 p—1 p—1
+12(x) Y Ta(b® — 1) = 20 () Y X (0® - 1) — 20 (x1) ) a(0® - 1)}
b=1

b=1 b=1

=3p -1+ -V -H2 +1)+p— 1,

where
p—1 p—1 p—1
W=t (x0) ) xab® — 1) +72(xa) ) wa(® = 1) — 20 () Y xa(b® — 1)
b=1 b=1 bh=1

p—1
= 2e(xa) Y xab® - 1),

b=1

By Lemma 1 and Lemma 2 we get

LA

» t2(x1) + t2(x2) | + 4 () + 7(x1) |

U5
= — +5pU — 5U3 —4U%+8p + 4U.
p

Therefore

U5
3 |63 xip)|* = 5p° — 187 + 20p L=+ 5pU 5U3 — 4U2 + 4U.

x mod p

This proves Theorem 1.

Let ¢ > 3 be a square-full numben, k  be any integers witk, § ) =1 and
k> 1. Letq =[]-, p;" be the factorization off into prime powers and [F-; xi.
where x; be a character mggf” . From Lemma 5 and Lemma 6 we have

g \F ! 4
G|n (T) K, xis pf
D;

, . . d =1
= ]‘[ [(k, pi — 1P ¢%(p")] ]_[ %
i=1 i=1 l

(k,pi—1)=1

> |G(n,k,x;q)|4:lL[|: >

x modg i=1 | y; mod p;
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= g% [ [0 p—27 ] 2222

rlg rlg p—1
(k,p—1)=1

This completes the proof of Theorem 2.
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