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Abstract
The main purpose of this paper is to study the fourth power mean of the general

Gauss sums, and give two exact calculating formulae.

1. Introduction

For any Dirichlet character mod , the classical Gauss sums are defined by

( ) =
=1

( )e

where e( ) = e2 . The various properties of ( ) appeared in many analytic num-
ber theory books (see references [1] and [2]). Perhaps the most famous properties of

( ) are the following identities:

( ) = ( ) ( ) and ( ) =

where is a primitive character mod , is the conjugate character of , and
( ) = (1 ). If is a nonprimitive character modulo , then the value distribu-

tion of ( ) is much irregular, even more is zero!
Let 3 be a positive integer. For any integer and positive integer , we define

the general -th Gauss sums ( ; ) as follows:

( ; ) =
=1

( )e

The summation is very important, because it is a generalization of the classical
Gauss sums ( ). But about the properties of ( ; ), we know very little at
present. The value of ( ; ) is irregular as varies. One can onlyget some
upper bound estimates. For example, for any integer with ( ) =1, from the gen-

This work is supported by N.S.F.(10271093) and P.N.S.F. of P.R.China.



190 Z. WENPENG AND L. HUANING

eral result of Cochrane and Zheng [3] we can deduce

( 2 ; ) 2 ( ) 1 2

where ( ) denotes the number of distinct prime divisors of . The case that is
prime is due to Weil [5].

However, it is surprising that ( ; ) enjoys many good value distribution
properties in some problems of weighted mean value. Also for= 2, the first au-
thor studied the hybrid mean value of Dirichlet -functions and the general quadratic
Gauss sums, and obtained several interesting asymptotic formulae as follows (see ref-
erences [6] and [7]):

Proposition 1. For any integer with( ) = 1, we have the asymptotic formu-
lae

= 0

( 2 ; )
2

(1 ) = 2 + 3 2 ln2

and

= 0

( 2 ; )
4

(1 ) = 3 3 + 5 2 ln2

where ( ) denotes the Dirichlet -function corresponding to the character mod-
ulo ,

= 1 +
2
1

2

42 2
+

4
2

2

44 4
+ +

2 2

42 2
+

is a constant, = 0
denotes the summation over all nonprincipal characters mod-

ulo , denotes the product over all primes, and 2 = (2 )! ( !)2.

Proposition 2. Let be an odd prime with 3 mod 4. Then for any fixed
positive integer with( ) = 1, we have the asymptotic formula

= 0

( 2 ; )
6

(1 ) = 10 4 + 7 2 ln2

Let be any integer with ( ) = 1. The first author [5] also obtained the follow-
ing two identities:

mod

( 2 ; ) 4 =
( 1) 3 2 6 1 + 4 if 1 mod 4;

( 1)(3 2 6 1) if 3 mod 4
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and

mod

( 2 ; )
6

= ( 1)(10 3 25 2 4 1) if 3 mod 4

where ( ) is the Legendre symbol.
It is very natural to consider the calculating problem of thesum

mod

( ; )
2

and try to give some exact calculating formulae. For = 1, we easily get

mod

( ; )
2

=
mod =1

( )e
=1

( )e

= ( )
=1

e = 2( )

where =1 denotes the summation over all such that ( ) = 1. In this paper,we
study the sum

mod

( ; )
4

and give two exact calculating formulae. That is, we shall prove the following two
main Theorems.

Theorem 1. Let be a prime with3 1, then we have the identity

mod

(1 3 ; )
4

= 5 3 18 2 + 20 + 1 +
5

+ 5 5 3 4 2 + 4

where = =1
3 is a real constant.

Theorem 2. Let 3 be a square-full number(i.e. if and only if 2 ),
, be integers with( ) = 1 and 1. Then we have the identity

mod

( ; )
4

= 2( ) ( 1)2

( 1)=1

( 1)

1

where denotes the product over all prime divisors of, and ( ) is the Euler
totient function.
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For general integers 3, whether there exist some exact calculating formulae
for

mod

( ; )
2

is an open problem.

2. Some Lemmas

To complete the proof of the Theorems, we need following several lemmas.

Lemma 1. Let be a prime with3 1 and 1 be a cubic character mod ,
then we have the identity

1

=1

1( 3 1) =
3( 1) 2

Proof. For any integer 1 1, it is easy to show that

(1) 1 + 1( ) + 2
1 ( ) =

3 if is a cubic residue mod ;

0 otherwise.

So that

1

=1

1( 3 1) =
1

=1

1 + 1( ) + 2
1 ( ) 1( 1)

From the properties of cubic character we know that

(2) 2
1 = 1 1( 1) = 1 and ( 1) = ( 1)

therefore

1

=1

2
1 ( ) 1( 1) =

1

=1
1( ) 1( 1) =

1

=1

1(1 ) =
1

=1

1( 1)

where is the inverse of defined by 1 mod and 1 1. So we have

(3)
1

=1

1( 3 1) = 2
1

=1

1( 1) +
1

=1

1 ( 1) =
1

=1

1 ( 1) 2
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Note that

2( 1) =
1

=1

1( )e
1

=1

1( )e =
1

=1

1

=1

1( ) 1( )e
( 1)

=
1

=1

1

=1

1( ) 1( )e
( 1)

= ( 1)
1

=1

1 ( 1)

That is

(4)
1

=1

1 ( 1) =
3( 1)

Now combining (3) and (4) we immediately get

1

=1

1( 3 1) =
3( 1)

2

This completes the proof of Lemma 1.

Lemma 2. Let be a prime with3 1 and 1 be a cubic charactermod ,
then we have the following identities

( 1) + ( 1) = ;

2( 1) + 2( 1) = 2 2 ;

5( 1) + 5( 1) = 5 + 5 2 5 3

Proof. From formula (1) we have

1

=1

e
3

= 1 + ( 1) + ( 1)

therefore

( 1) + ( 1) =

Note that

2 = ( 1) + ( 1)
2

= 2( 1) + 2( 1) + 2

3 = ( 1) + ( 1)
3

= 3( 1) + 3( 1) + 3 ( 1) + ( 1)

and

5 = ( 1) + ( 1)
5

= 5( 1) + 5( 1) + 5 3( 1) + 3( 1) + 10 2 ( 1) + ( 1)



194 Z. WENPENG AND L. HUANING

So we easily get

2( 1) + 2( 1) = 2 2 and 5( 1) + 5( 1) = 5 + 5 2 5 3

This proves Lemma 2.

Lemma 3. Let be a square-full number. Then for any nonprimitive charac-
ter modulo , we have the identity

( ) = ( 1) =
=1

( ) = 0

Proof (see Theorem 7.2 of [4]).

Lemma 4. Let be a prime, , and be positive integers with( ) = 1
and 2, be any integer with( ) = 1. Then we have the identity

=1

e = 0

Proof. Let = ( 1) and 2 be a th-order character mod . Then we have

=1

e =
=1

e =
=1

1 + 2( ) + + 1
2 ( ) e

=
=1

e + 2( )
=1

2( )e + + 2
1( )

=1

1
2 ( )e

From the properties of Dirichlet characters and Lemma 3 we can get

=1

e = 0

This proves Lemma 4.

Lemma 5. Let be a prime, and be positive integers with( ) = 1 and
2, be any integer with( ) = 1. Let = ( 1), then we have the identity

mod

( )
4

=
2( )

( 1)

1
if = 1;

2 2( ) if 1.
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Proof. If = 1, then from Lemma 3 we have

mod

( )
4

=
mod =1

( )e

4

=
mod

( ) 4

= 2 ( ) = 2( )
( 1)

1

On the other hand, if 1, then 2. From the properties of Dirichlet characters
mod we may get

mod

( )
4

= ( )
=1 =1

e
( 1)

2

= 3( ) + ( )
=1

∤ 1
=1

e
( 1)

2

= 3( ) + ( )(5)

By Lemma 4 we have

=
1

=0 =1
( 1 )=

=1

e
( 1)

2

=
=1

( 1 )= 1
=1

e
( 1) 1

2

=
=1

1 3 1
=1

e
( 1) 1

2

=1
1

=1

e
( 1) 1

2

= 2( )(6)

where

=
=1

1 3 1
=1

e
( 1) 1

2
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Let be a primitive root mod , then we have

= 2( 1)

=1
1 1

1

=1

e
( 1) 1

2

= 2( 1)
( ) 1

=0
1 1

1

=1

e
( 1) 1

2

= 2( 1)
( ) 1

=0
( 1)

1

=1

e
( 1) 1

2

Let = ( 1), where 0 1. Note that ( 1) 1 mod ,

( 1) 1 = ( 1) 1 ( 1)( 1) + + ( 1) + 1

and

( 1)( 1) + + ( 1) + 1 mod

we have

= 2( 1)
1

=0

1

=1

e
( ( 1) 1) 1

2

= 2( 1) ( 1)2 + 2( 1)
1

=1

1

=1

e
( ( 1) 1) 1

2

= 2( ) + 2( 1)
1

=1

1

=1

e

2

= 2( 1)

=1

1

=1

e

2

= 2( 1)
1

=1

1

=1 =1

e
( )

= 2( 1)
1

=1

1

=1 =1

e
( 1)

= 2 2( 1) ( 1) = 2 ( )(7)

So for 1, from (5), (6) and (7) we get

mod

( )
4

= 3( ) + 2 2( ) 3( ) = 2 2( )

This completes the proof of Lemma 5.
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Lemma 6. Let , , 1 and 2 be integers with( 1 2) = 1. Then for any char-
acter mod 1 2, we have the identity

( ; 1 2) = ( 1
2 1; 1) ( 1

1 2; 2)

where = 1 2 with 1 mod 1 and 2 mod 2.

Proof. Since (1 2) = 1, so if and pass through a complete residue system
mod 1 and 2 respectively, then 2 + 1 passes through a complete residue system
mod 1 2. Note that = 1 2 with 1 mod 1 and 2 mod 2 we have

( ; 1 2) =
1 2

=1

( )
1 2

=
1

=1

2

=1

1( 2 + 1) 2( 2 + 1)
( 2 + 1)

1 2

=
1

=1

1( 2)
( 2)

1 2

2

=1

2( 1)
( 1)

1 2

=
1

=1

1( )
1

2

1

2

=1

2( )
1

1

2

where we have used 1( 2) = 2( 1) = 1. This proves Lemma 6.

3. Proof of the theorems

In this section, we complete the proof of the Theorems. Let bea prime with
3 1 and 1 be a cubic character mod , from (1) and (2) we have

mod

(1 3 ; )
4

=
mod

1

=1

( )e
3

4

= ( 1)
1

=1

1

=1

e
3( 3 1)

2

= ( 1)
1

=1

1

=1

(1 + 1( ) + 1( ))e
( 3 1)

2

= ( 1)
1

=1

1

=1

e
( 3 1)

+ 1( 3 1) ( 1) + 1( 3 1) ( 1)

2
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= 3( 1)3 + ( 1)
1

=1
∤ 3 1

1( 3 1) ( 1) + 1( 3 1) ( 1) 1
2

= 3( 1)3 + ( 1)( 4)(2 + 1) + ( 1) 2( 1)
1

=1

1( 3 1)

+ 2( 1)
1

=1
1( 3 1) 2 ( 1)

1

=1
1( 3 1) 2 ( 1)

1

=1

1( 3 1)

= 3( 1)3 + ( 1)( 4)(2 + 1) + ( 1)

where

= 2( 1)
1

=1

1( 3 1) + 2( 1)
1

=1
1( 3 1) 2 ( 1)

1

=1
1( 3 1)

2 ( 1)
1

=1

1( 3 1)

By Lemma 1 and Lemma 2 we get

=
5( 1) + 5( 1)

4 2( 1) + 2( 1) + 4 ( 1) + ( 1)

=
5

+ 5 5 3 4 2 + 8 + 4

Therefore

mod

(1 3 ; )
4

= 5 3 18 2 + 20 + 1 +
5

+ 5 5 3 4 2 + 4

This proves Theorem 1.
Let 3 be a square-full number, , be any integers with ( ) = 1 and
1. Let = =1 be the factorization of into prime powers and ==1 ,

where be a character mod . From Lemma 5 and Lemma 6 we have

mod

( ; )
4

=
=1 mod

1

;

4

=
=1

( 1)2 2( )
=1

( 1)=1

( 1)

1
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= 2( ) ( 1)2

( 1)=1

( 1)

1

This completes the proof of Theorem 2.
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