<table>
<thead>
<tr>
<th>Title</th>
<th>High Power Microwave Plasma Beam as A Heat Source (Report I): Microwave Plasmotron in Nitrogen Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Arata, Yoshiaki; Miyake, Shoji; Takeuchi, Sadao</td>
</tr>
<tr>
<td>Citation</td>
<td>Transactions of JWRI. 2(1) P.27-P.39</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1973-02</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/12105</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td>本文データはCiNiiから複製したものである</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive: OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
High Power Microwave Plasma Beam as A Heat Source
(Report I)†
—Microwave Plasmatron in Nitrogen Gas—

Yoshiaki ARATA*, Shoji MIYAKE** and Sadao TAKEUCHI***

Abstract

A 3 kW-class microwave plasmatron in nitrogen is investigated. The dimension of the plasma flame becomes 10 cm in length and 0.5 cm in diameter in a typical operation. The plasma attains a temperature about 6700 K and its density \(7 \times 10^{19} \text{ cm}^{-3}\) near the hottest part of the plasma. A remarkable spatial nonuniformity of the plasma conductivity is observed. A large gas flow rate (30 ≤ \(\phi\) ≤ 200 l/min) strongly affects the dimension and the energy transfer process of the plasma. The measurement of the plasma impedance gives a qualitative agreement with the rod model of the plasma. Some theoretical discussions are performed on the energy balance problems and compared with the experimental results.

1. Introduction

Several types of plasmas in a steady state operation at atmospheric pressure were employed for various engineering purposes, using "plasmatron" such as plasma jet or induction torch, etc. As for the plasma jet, many kinds of torches have been produced and developed and they are utilized in practice up to the power level of 1 MW for welding, cutting, melting, chemical reactions and so on. Their physical processes have also been intensively studied by many researchers. RF plasmatrons (named after induction torch) which has a frequency range from 1 MHz to 30 MHz is applied for chemical reaction processes or spectroscopic sources etc., with a power level of several tens of kilowatts.

Microwave plasmatrons with \(f=1\sim10\ \text{GHz}\) were also developed on a coaxial waveguide \(^{19-21}\) or on a rectangular one. \(^{41}\) But the power level employed in such cases was about 1 kW at most and it was not used as a practical processing heat source. Recently "optical plasmatron" prepared by CO₂ Laser energy was proposed by Yu. P. Raizer \(^{23-25}\), and its power was only about 200 watts. But we predict that its fundamental properties will be studied as a practical heat source.

The physical character of the plasma jet obtained with these DC plasmatrons is generally believed to be in a thermal equilibrium state with the temperature below several eV. Plasmas in RF plasmatrons are also said to be in LTE (local thermal equilibrium state)\(^3\), but its deviation for the typical plasma parameters has been reported by several researchers. \(^{99-100}\) As for microwave plasmatron some authors \(^{52-63}\) report that the plasma is in LTE but others report \(^{31-45}\) that it is not in LTE. This is because the plasma processes strongly depend on gas type, gas flow rates, incident microwave energy and so on, and no systematic investigation have been performed until now.

Recently, P. L. Kapitza and his group \(^{30}\) have studied plasmas in several types of cavity resonators above atmospheric pressure and they succeeded in producing a fully ionized plasma with electron temperature \(T_e=100\ \text{eV}\), by using a cylindrical cavity resonator where deuterium or helium gas is circulated in a vortex form at the pressure 1～3 atm. Using CW microwave energy of 175 kW with \(f=1.55\ \text{GHz}\), the maximum power absorbed to the plasma was about 20 kW. The plasma dimension reached to 10 cm in length which is nearly equal to half a wavelength and about 1 cm in diameter. Its state was in a high degree of nonequilibrium between the electrons and the heavy particles. It is recognized that this method is quite unique and introduces some new atmospheric plasma processes which have never been obtained to date. A mechanism was proposed to sustain ultra-high temperature "plasma lump", which was enclosed with such a plasma boundary as the electric double layer and separated from cold high pressure gas. It still remains left behind to clarify several problems, theoretically and experimentally. Nevertheless, this plasma process encourages us to study the high power microwave atmospheric plasma beam as a new type
of practical heat source.

Using a 3 kW-class (f=2.45 GHz) microwave plasma torch similar to the one employed in ref. 12), some systematic studies on "microwave plasmatron" are reported in this paper, with data on different types of gas, gas flow rates and incident microwave powers. Spectroscopic and electric diagnostic techniques were employed to determine plasma dimension, its conductivity, temperature, and their spatial distributions, etc. These results were compared with some theoretical considerations pertaining electrodynamic and thermodynamic plasma processes occurring in microwave plasmatron.

2. Experimental Procedures

2.1 Experimental Apparatus

![Diagram](image)

Fig. 1. Schematic diagram of experimental apparatus: (1) magnetron, f=2.45 GHz, P=3 kW, CW, (2) circulator, (3) standing wave meter, (4) directional coupler, (5) E-corner, (6) coaxial transformer, (7) plasma formation coaxial waveguide, (8) quartz pipe with 20 cm in length and 3.7 cm in diameter inserted in the outer conductor, (9) plasma flame.

Figure 1 shows a schematic diagram of the experimental apparatus. Ultrahigh frequency (UHF) oscillation with a frequency f=2.45 GHz generated by a magnetron (1) is transmitted in a rectangular waveguide with TE_{01} mode through circulator (2), standing wave meter (3), and directional coupler (4); to a coaxial transformer (6), where TEM type oscillation is produced and it enters into the plasmatron (7) having a coaxial waveguide (17 mm o. d. x 39 mm i. d.) with two tuning plungers. UHF power from the magnetron can be varied continuously up to 3 kW. Discharge gases are axially introduced into the coaxial waveguide through a gas inlet at the bottom end in the range of flow rates from 30 to 200 l/min.

The discharge is ignited at the open end of the plasmatron where a water cooled tungsten electrode is placed on the tip of the inner conductor. A quartz pipe (8), 20 cm in length, is set to obtain a stable axial flow of the gases. In this study, nitrogen and a mixture of 5% hydrogen into nitrogen were mainly used as a plasma forming gas, although various gases as indicated in Table 1 were also tried.

* () refer to Fig. 1.

Table 1. Operating Condition.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-wave frequency</td>
<td>f = 2.45 GHz</td>
</tr>
<tr>
<td>Micro-wave power of magnetron</td>
<td>P = 0.2~3 kW</td>
</tr>
<tr>
<td>Plasma-forming gases</td>
<td>N_2 & N_2 + 5% H_2 (mainly), Air, CO_2, Ar, Ar + 2~10% H_2</td>
</tr>
<tr>
<td>Flow rate of gas</td>
<td>(\phi = 30~200 \text{ L/min})</td>
</tr>
</tbody>
</table>

The circulator (2) with a matched load serves to protect the magnetron from the incidence of a large reflected power. With a universal power meter connected to the directional coupler (4), the reflected power is detected and the standing wave meter (3) is used to determine plasma impedance for various plasma parameters.

2.2 Measurement of Microwave Radiation

Microwave radiation from the open end of the plasmatron into space is measured, using a loop antenna with 2 mm in the loop radius and 0.5 mm in the lead radius, and the loop efficiency is estimated at about 8%.[13] Spatial distributions of the radiation were detected, by revolving the loop axially or radially with a motor-driven unit. In Fig. 2 is shown a block diagram of the radiation detection system.

To obtain some relations between wave propagation and plasma formation, a CdS cell is set at the same position with the antenna as also indicated in Fig. 2.

2.3 Spectroscopic Measurements

The principal problem in the study of the plasma itself is the determination of the electron density N_e, the ion density N_i, the neutral particle density N, and also their temperatures T_e, T_i, and T_n. Determination

![Diagram](image)

Fig. 2. Block diagram of microwave radiation and light emission measurement system. The radiation is detected with a loop antenna and the total light emission from the plasma flame with a CdS cell.
of the electron density can be accomplished frequently, using the Stark effect in the visible part of the spectrum by measuring the broadening of a spectral line. For this purpose, the hydrogen Balmer line H_β was obtained by mixing 5% H_2 into N_2 gas. From the broadening $\Delta \lambda$, its Stark effect part $\Delta \lambda_\text{S}$ was determined, and we have

$$N_e = C(N_e, T) \Delta \lambda_\text{S}^{3/2}$$ \hspace{1cm} (1)

where C is the numerical factor that has a very weak dependence on temperature and it is tabulated in ref. 14 with $\Delta \lambda_\text{S}$ in Å.

As for the temperature determination we assume hereafter that the plasma is in LTE. Then from the Saha- Eggert equation,

$$\frac{N_rN_{r+1}}{N_r} = \frac{2U_{r+1}(T)}{U_r(T)} \frac{S_r^*(T)}{S_{r+1}^*(T)} e^{\frac{E_r E_{r+1}}{kT}} \text{ (cm}^{-3}\text{)}, \hspace{1cm} (2)$$

where N_r, N_{r+1} = number density of all r- and $(r+1)$-fold ionized atoms (cm^{-3}); U_r, U_{r+1} = partition function of r- and $(r+1)$-fold ionized atoms; k = Boltzman's constant; E_r = ionization energy for ionization $r \rightarrow (r+1)$; E_{r+1} = lowering of ionization energy; T = $T_r = T_{r+1}$ (K), we can obtain the plasma temperature T combining the data listed in ref. 15 and the measured electron density. Moreover it is considered in this case that the nitrogen temperature is equal to that of hydrogen. The assumption of LTE is admissible at least for nitrogen or air at atmospheric pressure as is generally stated in the results of arc plasma.

In order to obtain exact line widths we have employed a monochrometer (GE=100, 1 m Ebert type) with the first order dispersion 8.3 Å/mm. The resolving power of the monochrometer was calibrated by measuring the emission spectrum of a low pressure mercury discharge tube and the instrumental half-width is 0.15 Å with the exit slit width of 15 µ. The width of the entrance slit is fixed at 30 µ.

The optical system is shown in Fig. 3. The measurement is made perpendicular to the plasma flame. To measure the emission from the limited zone of the plasma and to shield the microwave radiation, a copper cylinder (3)** movable in the axial direction is set over the quartz pipe (2), and it has a slit (4) of 4.5 mm in width cut over a semicircumference. The change in the reflected power due to the setting of this cylinder was very small, so that the effect of the cylinder to the plasma character was negligible. The emission from this limited plasma is focused on a slit S(6) (0.8 mm in width) set in front of a crystal lens L2.

Fig. 3. Schematic diagram of optical system; (1) plasma flame, (2) quartz pipe, (3) copper cylinder with a slit (4) of 4.5 mm in width cut over a semicircumference, (5) and (7) crystal lenses L1 and L2 respectively whose aperture is 1.7 cm and the focal length 8 cm, (6) movable transverse slit S of 0.8 mm in width, (8) monochrometer (GE=100, Ebert type, 1st order dispersion 8.3 Å/mm), (9) photomultiplier tube (R212 UH), (10) DC amplifier, (11) X-Y recorder, (12) DC high voltage source, (13) motor-driven system.

(7) Axial intensity distribution is measured by moving the copper cylinder and the monochrometer at the same rate, and the radial distribution is obtained by scanning the slit (6) transversely. Thus the spatial scanning of the monochromatic emission are detected by a photomultiplier (9) and recorded on an X-Y recorder (11).

3. Experimental Results

3.1 Profile of Plasma Flame for Different Gases

Typical photographs of the plasma flame are shown in Figs. 4 9 for nitrogen, air, carbon dioxide, helium, argon and mixtures of argon and hydrogen respectively. The discharges with molecular gases (Figs. 4 6) show stable characters even for high powers and the reflected power is small. The plasmas in rare gases (Figs. 7 8) have large power reflection and are less stable. Moreover, the flash over between the inner and the outer conductors tends to occur more frequently in these gases. It is fairly difficult to raise the incident power more than 1 kW. The situation changes abruptly, however, when we admit several percentages of hydrogen (2 10%) into these gases. In general, the more the percentage of hydrogen, the more the stability increases and the reflected power decreases. Moreover, the hydrogen-mixed discharge provides a filamentary-like core as shown in Fig. 9 or as stated in ref. 11).

As for the flash over of the discharge, it means that a plasma tends to occur along the electric lines of force, which is directed radially in the coaxial waveguide. Then to avoid the flash over it is better to have a discharge directed parallel to the electric field (for instance as indicated in ref. 6).

** () refer to Fig. 3.
3.2 Wave Propagation and Power Absorption

In Fig. 10 the transmitted power, P_t, from the open end of the plasmotron into the plasma beam and the space is plotted for various incident powers, P_i, to the plasmotron. The line of $P_i = P_t$ means the case where there is no reflection of power. It is clear that the plasma acts as a well matched load to the wave and the reflection coefficient is about 15% at the power level of 2.5 kW, which increases nearly proportionally to the incident power.

The radial distribution of the wave transmitted into space from the plasmotron without plasma is shown in Fig. 11 (a). The radiation intensity at $z=1$ cm is almost constant at $0 \leq r \leq 8$ mm. This distribution clearly corresponds to that of the wave in the coaxial waveguide. Its intensity is proportional to the transmitted power as shown in Fig. 11 (b), which confirms the good response of the loop antenna.
axial radiation distribution shows the maximum value at the open end (z=0 cm) with the optimum matching, which is generally expected in the microwave theory.

In general it is so difficult to obtain a real distribution of the wave in the core of the plasma beam that it is measured at the surface of the quartz pipe as sketched in Fig. 14. Figure 12 shows the axial distribution of the radiation measured at r=21 mm and the light emission from the plasma measured with a Cds cell. The distance that gives the maximum radiation intensity shifts due to the plasma formation. The relation between the axial distance which gives the maximum radiation z, and the transmitted power is given in Fig. 13.

In case of no plasma, z, does not change, but when the plasma is firing it increases up to 35 mm with P, and after that it shows nearly constant value at P≥0.8 kW. Meanwhile Fig. 14 shows a dependence of the maximum intensity on the transmitted power. In both cases, with or without plasma, it is proportional to the transmitted power and lies on the same line. This means that the microwave energy in this region (r=21 mm) has no effect on the power absorption to the plasma. The plasma absorbs the wave energy in the region of 0≤r≤8 mm, as the plasma radius is below 3 mm for the maximum incident power (see Fig. 17).

It is certified with a spectrum analyzer that the output signal of the loop antenna gives only the signal of the wave transmitted from the plasmatron.
3.3 Configurations of the Plasma

As stated in Sec. 3.1, the nitrogen plasma beam is so stable and efficiently absorbs the wave power with a configuration shown in Fig. 4. When the CdS cell is moved along this plasma axis at the radial point r=21 mm, the maximum point of light emission is obtained as indicated by the dotted line in Fig. 12. Although the dotted line gives total amount of the light emitted from the plasma beam toward the cell the real spatial intensity distribution of the monochromatic light emission is given in Fig. 18. The distance of the maximum light emission, z, changes with the power as shown in Fig. 15 and it has a similar character as that of the microwave radiation and reaches a value of about 15 mm when $P_r \geq 0.8$ kW.

Length of the plasma flame, L is determined using the axial length of half-height of the emission distribution measured from the end of the plasmatron as sketched in Fig. 16. It increases in proportion to P_r and becomes about 10 cm at $P_r = 2.0$ kW. The plasma diameter, D is determined using the half width of the radial distribution of the monochromatic radiation (H_g line) measured with the movable slit S in Fig. 3. A sample record of the radial intensity distribution of H_g line is shown in Fig. 23. The plasma diameter also increases with the transmitted power as shown in Fig. 17 and has about 5 mm at $P_r = 2.5$ kW. The axial dependence of the plasma beam diameter obtained from the data of Fig. 18, is shown in Fig. 19.
The reference plane of the impedance measurement in the rectangular waveguide system is set along the center axis of the coaxial transformer (6) and the characteristic impedance of the rectangular waveguide is $462 \, \Omega$. The impedance obtained in this manner gives the same character that the plasma torch shows itself.

Figures 21 and 22 show the effects of the transmitted power and the gas flow rate on the plasma impedance respectively. The resistance of the plasma increases sharply with increasing the power, and it

It becomes about 5 mm at $z=15$ mm and is nearly constant up to $z=4$ cm, while the intensity of the H_θ line on the axis indicates the maximum value at $z=0.75$ cm and falls rather sharply with the distance. The microwave energy seems to be absorbed to the plasma beam between $0 \leq z \leq 15$ mm.

Both the plasma diameter and the reflected power decrease with an increase in the gas flow rate as shown in Fig. 20.

3.4 Measurement of Plasma Impedance

Employing the standing wave meter (3) indicated in Fig. 1, the plasmotron impedance was measured.
becomes $600 \, \Omega$ at $P_e=0.8 \, kW$ and after that, the increase is gradual. It has a similar tendency with the data of Fig. 15. Meanwhile the reactance (in fact it is the capacitance) changes almost proportionally to the power input.

3.5 Plasma Temperature and Its Density

The electron density of the plasma beam was obtained, measuring the broadening due to the Stark effect, that is, the line width of hydrogen Balmer series, H_α line. Figure 23 shows an example of the spectrum profile and its radial distribution. The plasma temperature is estimated using Saha-Egbert equation with the assumption of local equilibrium state (LTE) of the plasma. The axial distribution of the plasma temperature and its density is plotted in Fig. 24. They increase quite abruptly and attain the maximum value, $T=6700^\circ K$, $N_e=7\times10^{19} \, cm^{-3}$, at $z=5 \, mm$ and then decrease moderately with the axial distance. The radial distribution of the plasma temperature is shown in Fig. 25, though the Abel inversion of the intensity distribution is not performed. It decreases moderately with the radial distance.

![Fig. 23. Sample records of H_α line emission. (a) Wavelength scanning of the line, where the spectra of HgI are also traced for comparison. From HgI spectra the instrumental half-width of the monochromator is decided as 0.15 Å. A small peak in H_α spectrum comes from nitrogen spectrum. (b) Radial intensity distribution of H_α line.](image)

![Fig. 24. Axial distribution of plasma temperature and its density for $P_e=1.8 \, kW$, $\phi=56 \, l/min$. The plasma temperature is estimated from eqs. (2)–(3).](image)

![Fig. 25. Radial distribution of plasma temperature for $P_e=1.5 \, kW$, $\phi=141 \, l/min$.](image)

The effects of both the transmitted power and the gas flow rate on the plasma temperature are shown in Figs. 26–27. The plasma temperature increases nearly proportionally to the power when $P_e \geq 0.8 \, kW$. The change of the gas flow rate slightly affects the plasma temperature or its density as shown in Fig. 27; that is, the temperature keeps about $6600-6650^\circ K$ at $30\leq \phi \leq 200 \, l/min$.

(34)
\[n = \left(\frac{1}{2} \left(\varepsilon + \sqrt{\varepsilon^2 + 4 \pi \sigma^2 / \omega^2} \right) \right)^k, \]

\[\chi = \left(\frac{1}{2} \left(\varepsilon + \sqrt{\varepsilon^2 + 4 \pi \sigma^2 / \omega^2} \right) \right)^r, \]

\[\varepsilon = n^2 - \chi^2, \quad 2n\chi = 4\pi \sigma / \omega, \quad k = \frac{\omega}{c} (n - i\chi). \]

The depth of penetration of the wave into a plasma, which is well known as "skin depth", \(\delta \), is given as follows.

\[\delta = \frac{1}{\mu} = \frac{c}{2\omega \chi}, \]

where \(\mu \) is the damping coefficient.

From these equations both the electrical conductivity and the skin depth were calculated, using the measured electron temperature and its density. In the estimation of the effective collision frequency, we have used the collision cross section, \(\sigma_{ei} = 1.0 \times 10^{-15} \text{ cm}^2 \) from ref. 17), because the elastic collision with nitrogen molecules is most dominant in the temperature \(T = 6000 \sim 7000 \text{ K} \). In Fig. 28 \(\sigma_r, \sigma_i \), and \(\delta \) are plotted for various transmitted powers. \(\delta \) is about 1.2 mm and comparable with the plasma radius, \(r_0 = D / 2 \) (Fig. 17). From eq. (4) \(\sigma_r / \sigma_i = \nu_{eff} / \omega = 4 \). In an RF plasmotron, it is generally so large, \(\sigma_r / \sigma_i \gg 1 \) and for an optical plasmotron it becomes \(\sigma_r / \sigma_i \ll 1 \). At the same time \(\delta \gg r_0 \) holds for the former device and \(\delta \ll r_0 \) for the latter. Most of the theoretical investigations on HF discharges in an atmospheric

14. Theoretical Considerations and Discussions

When a plane electromagnetic wave, \(\mathbf{E} = \mathbf{E}_0 e^{i(\omega t-kz)} \), propagates in a uniform plasma, electrical conductivity, \(\sigma = \sigma_r - i\sigma_i \), and dielectric constant, \(\varepsilon \), of the plasma are defined from elementary theory:

\[\sigma_r = \frac{\varepsilon' N_e \nu_{eff}}{m (\omega^2 + \nu_{eff}^2)}, \quad \sigma_i = \frac{\varepsilon'' N_e \omega}{m (\omega^2 + \nu_{eff}^2)}, \]

\[\varepsilon = 1 - \frac{4\pi e^2 N_e}{m (\omega^2 + \nu_{eff}^2)} = 1 - \frac{4\pi \sigma_r}{\nu_{eff}} = 1 - \frac{4\pi \sigma_i}{\omega}, \]

where \(\sigma_r, \sigma_i \) = real and imaginary part of the conductivity, and \(m, e \) = electron mass and charge, respectively, and \(\omega = \text{wave frequency}, N_e = \text{plasma density}, \) and
pressure are devoted in these extreme cases and they can surely be adopted quite precisely to the RF plasma-motron or optical one.

For the intermediate case, Yu. P. Raizer gives an analysis on the propagation of the discharge wave in a steady state regime\(^{10}\). His analysis is based on the experimental results of Beust and Ford\(^{10}\) who have observed the moving of the arc formed in a rectangular wave guide system.

Following this model, we will calculate the energy flux, \(S\), of the microwave, which is necessary to heat a plasma to the temperature \(T\) and then compare the result with the experimental one.

Suppose that the electromagnetic wave propagates along the \(z\)-axis through cold gas having initial density, \(\rho_0\) and velocity, \(u\) in the wave direction, and it penetrates a little into the plasma region. It is also assumed that the radial extent of the wave, \(r_0\), is same as that of the plasma region (see Fig. 29). Then the steady state thermodynamic process occurring in this system is described by the energy balance equation:

\[
Q = \mu S = -\frac{dS}{dz}.
\]

(8)

Here \(c_p\) is specific heat; \(\kappa\) is thermal conductivity; \(S = \frac{1}{A} \int \mathbf{E} \cdot \mathbf{H} dt\) is energy flux of the wave averaged over the period of the field. We have neglected energy loss of radiation, because the plasma temperature is relatively low. Moreover we have considered the plasma front is flat and the radial component of the gas velocity is much smaller than the axial one. Then \(v_r = 0\), \(\rho v_t = \rho_0 u = \text{const}\).

To avoid the complexity of the problem due to the two-dimensionality of the process, a simplified one-dimensional problem is considered by averaging eq. (7) over the cross section of the plasma channel. The second term of the right-hand side of eq. (7) can be represented in the following form:

\[
\left(\frac{2}{r_0}\right) \kappa \frac{\partial T}{\partial r} |_{r_0} = -\frac{\Lambda}{r_0^2} \Theta,
\]

(9)

where \(\Theta = \int_0^T \kappa \delta T\) is heat flux potential corresponding to the mean temperature, \(T\) of the channel at the point \(z\) and \(\Lambda\) is a numerical coefficient determined by the radial profile of the temperature. The maximum value of \(\Lambda\), \(\Lambda_{\text{max}} = 5.8\), corresponds to the case \(T(r_0) = 0\). When the skin depth \(\delta\) of the field is much smaller than the width of the plasma region \(r_0\), \(\delta \ll r_0\), the thermal conduction losses in the radial direction can be neglected and we may put \(\Lambda = 0\). Fig. 29 (b) shows a schematic distribution of \(T\), \(N_e\), and \(S\) etc. in the case of no loss (\(\Lambda = 0\) or \(\delta \ll r_0\)). In the case \(\delta = r_0\), they will have a distribution as sketched in Fig. 29 (c), since the effect of the conduction loss in the radial direction becomes appreciable (\(\Lambda \neq 0\)), and a similar profile of the temperature distribution is obtained in our experiment (Fig. 24).

Eq. (7) is rewritten in the following form:

\[
\frac{\rho_0 u c_p}{\kappa} \frac{d\Theta}{dz} = \frac{d^2 \Theta}{dz^2} + Q - \frac{\Lambda \Theta}{r_0^2}.
\]

(10)

The analytic solution of eq. (10) is obtained in ref. 18 with the following boundary conditions,

\[
Q = 0 \quad \text{for} \quad T < T_o, \quad z < 0 \quad \text{or} \quad T < T_o, \quad z > l
\]

(11)

\[
Q = \text{const.} \quad \text{for} \quad 0 \leq z \leq l,
\]

where \(T_o\) is the plasma forming temperature and \(Q\) is physically rewritten as follows,

\[
Q = \alpha S / l, \quad l = y \delta.
\]

(12)
with \(\alpha \) and \(\gamma \) of the order of unity. In ref. 18) calculation of the energy flux to elevate the plasma temperature to \(T_p \) are performed under the assumption, \(\alpha = \left(\Theta(T_n)/(\Theta(T_s)) \right) -1 \ll 1 \), and it is applied to the heated air from the results of Beust and Ford. Making a substitution of our experimental data of \(\delta \) and \(r_0 \) for various temperatures combined with the transmitted power (Fig. 26), the theoretical curves are obtained as shown in Fig. 30 for various values of \(\alpha \). As for the estimation of \(\kappa \) and \(c_\gamma \) data in refs. 21) and 22) are used, and \(\alpha = 1, \gamma = 2 \) are taken from the consideration in ref. 18). Naturally more energy should be introduced with the increase of \(\alpha \) to keep the constant temperature. The experimental curve in Fig. 30 is obtained by assuming that the wave has a uniform distribution over \(r = 1.4 \) cm (see Fig. 11, where the half width of the radiation distribution is about \(2.8 \) cm at \(z = 1 \) cm). The agreement is not so good.

The increase of \(S_n \) in the theoretical curves at the lower temperature in case of \(A \approx 0 \) seems to be a curious result. This, however, comes from the fact that we have assumed the radial extent of the wave is same with that of the plasma. In the substitution of \(\delta \) or \(r_0 \) into eq. (10) the larger extent of the wave (\(=1.4 \) cm) than \(r_0 \) which will surely bring out heating of the plasma also from the radial direction and the decrease in \(S_n \) is not taken into account. Moreover it should be noted that the plasma radius is a function of the gas flow (Fig. 20). With the increase of the gas flow rate it becomes smaller, while the reflected power also smaller. Then the experimental value of \(S_n \) changes from 0.312 to 0.35 kW/cm\(^2\) at \(30 \leq \phi \leq 200 \) l/min. The plasma temperature, meanwhile, is almost constant in this range of the flow rate and about equal to 6650 K. Indeed the large gas flow makes it necessary to give more energy to keep a constant temperature and compensate the increase of the radial conduction loss.

From these results it seems to be more appropriate to study the heat transfer process from the absorption of the wave energy in the radial direction under the effect of a large axial gas flow, since the uniform extent of the wave is considerably large and the plasma length is in order of magnitude larger than its radius which is nearly equal to the skin depth. Of course the axial dependence of the wave energy should be introduced in the calculation and the result will be reported elsewhere.

The result in Figs. 15 and 16 show that the phase of the transmitted wave changes with the variation of the plasma length and a standing wave is formed at the power \(P_n \approx 0.8 \) kW. This is also clarified with the standing wave meter, which shows a shift of the minimum or maximum output point towards the plasmatron in relation to that of \(z_n \). Moreover \(z_n = 35 \) mm is almost equal to \(\lambda_n \), where \(\lambda_n \) is the wave length of the wave, so that the point \(z = 0 \) coincides with the node of the standing wave. The current density of the plasma is described by

\[
j = (\sigma_i - i\sigma_s) E_z = j - i\lambda,
\]

where \(E_z \) is the electric field strength in the plasma. The change of the wave phase coincides with the change of \(j \), since \(z_n \) in Fig. 15 shows that the point of the maximum light emission is related with \(j \) and varies with \(z_n \). Then the impedance of the plasma will show a similar behavior as is clearly seen in Fig. 21. In this figure the resistance \(R \) and the reactance \(X \) increase linearly with the transmitted power \(P_n \), when \(P_n \geq 0.8 \) kW. This relation must be connected with the change of the conductivity in Fig. 28. Experimental results show that both \(\sigma_i \) and \(\sigma_s \) are different for different positions in space (Figs. 24 and 25), while \(R \) and \(X \) give macroscopic character of the plasma over the space. So it is a difficult problem to find a proper relation between \(Z = R + iX \) and \(\sigma = \sigma_i - i\sigma_s \). We can only give some general interpretations on the results in Fig. 21.

Let's consider next three simplified cases of a coaxial line transmitting an electromagnetic wave in the principal mode: i) coaxial line with infinite center conductor, ii) coaxial line radiating into semi-infinite space and iii) change in inner radius of coaxial line. Equivalent circuits for these cases at the reference plane \(T_n \) are illustrated in Fig. 31. i) and ii) are equivalent to conductance and susceptance and iii)
susceptance. For all these cases when the diameter of the inner conductor 2b is increased G and B decreases, so that the resistance, R and the capacitance, C are increased. In our plasmotron, a model of a coaxial line with a finite inner conductor of low conductivity at the reference point, T_x is appropriate (Fig. 31 iv). This corresponds to the case in which the above three cases are mixed. If we follow this model, the increase in the plasma diameter will bring about the increase of the plasma resistance and the reactance. The results in Fig. 21 are in accordance with this interpretation, since the plasma diameter increases with the power P_1. These characteristics are also observed when the flow rate of nitrogen is varied. Figure 22 shows R and X becomes smaller with the increase of the flow rate, while the plasma diameter also decreases as is shown in Fig. 20.

The plasma temperature we have obtained is 6500 \sim 7000$^\circ$K. Similar value was already reported, using a 1.5 kW microwave plasmatron with a rectangular waveguide type31, where the state of LTE is experimentally clarified by measuring nitrogen temperature from the absolute value or the relative intensity ratio of atomic lines and molecular band spectra of nitrogen.

Even in a large axial gas flow rate over 200 l/min, the plasma can exist stably with less reflection of power in our plasmotron. This is because the microwave intensity has its maximum value on the axis, where the plasma is formed. Moreover the plasma diameter changes strongly with the flow rate, though its temperature and length keep a nearly constant value. These are the remarkable features of a microwave plasmotron with a coaxial waveguide type. The plasma temperature, however, is rather low compared with a usual arc type plasma jet at the same power level. The increase of the microwave power to the plasmotron results in that of the plasma volume (πD^2L) rather than in temperature. This is mainly because the thermal conductivity κ of nitrogen increases sharply in the range of 5000\sim7000$^\circ$K. This comes from the dissociation of N$_2$ into N. When the temperature is raised over 7000$^\circ$K κ decreases and the microwave power input will bring about the excess increase in temperature rather than in volume. This problem will soon be studied by using 30 kW-class plasmotron and be reported in the next paper.

5. Conclusion

In a 3 kW-class microwave plasmotron, a stable nitrogen plasma flame with an axial gas flow ($30 \leq \phi \leq 200$ l/min) is obtained, and its temperature is about 6700$^\circ$K, with its density 7×10^{13} cm3, at the power level of 2.4 kW. The spatial distribution of them is rather non-uniform due naturally to the concentrated distribution of electric field in space. The higher the power input the larger the plasma volume becomes, whereas the temperature increase is moderate. The flame attains a length of about 10 cm and its diameter becomes 0.5 cm at $P_1=2.0$ kW.

A large influence of the gas flow rate on the plasma dimension and the wave transmission is observed. The increase of the flow rate causes a decrease in the diameter and also in the reflected power. The plasma temperature keeps a nearly constant value. From these results it will be considered that the decrease in .the plasma diameter results in the easier transmission of the wave with some more absorption to the plasma to keep a constant temperature.

The measured plasma impedance shows a qualitative agreement with a model that the plasma beam acts as if it is an inner conductor with a relatively low conductivity in a coaxial waveguide.

Theoretical considerations of energy transfer processes between the wave and the plasma shows a bad coincidence with the experimental results. Much more detailed analysis is necessary to interpret precisely the experimental results. Especially it should be noted
that the large gas flow rate and the large extent of the wave give a remarkable effect on the energy balance processes.

The authors would like to thank Prof. T. Suita and Dr. M. Nishikawa for the preparation of the optical systems in our experiment.

References

1) Yu. P. Raizer, "High-Frequency High-Pressure Induction Discharge and the Electrodeless Plasma-tor" Sov. Phys.—USPEKH1 12, No. 6, 777 (1970). A review article of RF plasma-torion is described in this paper.

