

Title	On complex cobordism groups of classifying spaces for dihedral groups
Author(s)	Kamata, Masayoshi
Citation	Osaka Journal of Mathematics. 1974, 11(2), p. 367-378
Version Type	VoR
URL	https://doi.org/10.18910/12117
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kamata, M.
 Osaka J. Math.
 11 (1974), 367-378

ON COMPLEX COBORDISM GROUPS OF CLASSIFYING SPACES FOR DIHEDRAL GROUPS

MASAYOSHI KAMATA

(Received December 30, 1973)

1. Introduction

Let $G=H\cdot\Gamma$ be a semi-direct product of a finite group H by a finite group Γ , X a compact G -manifold which induces by restriction a principal H -manifold and Y a principal Γ -manifold. Then we have a principal G -space $X\times Y$ with a G -action defined by $h\gamma(x, y)=(h\gamma x, \gamma y)$, $h\gamma\in H\cdot\Gamma$. The equivariant map $i: X\rightarrow X\times Y$ defined by $i(x)=(x, y_0)$, induces a homomorphism

$$i^*: U^*((X\times Y)/G) \rightarrow U^*(X/H).$$

We can define a Γ -action over $U^*(X/H)$ corresponding to a Γ -action over the complex bordism group of unitary G -manifolds defined by (1.3) of [7]. The action is denoted by x^γ , $x\in U^*(X/H)$, $\gamma\in\Gamma$.

In this paper, we define a homomorphism

$$i_*: U^*(X/H) \rightarrow U^*((X\times Y)/G)$$

and obtain the following.

Theorem 1.1. *For $x\in U^*(X/H)$, $i^*i_*(x)=\sum_{\gamma\in\Gamma} x^\gamma$.*

Let $D_p(m, n)$ be the orbit manifold of $S^{2m+1}\times S^n$ by the dihedral group D_p whose action is given in [7]. Making use of Theorem 1.1 and the Atiyah-Hirzebruch spectral sequence of the complex cobordism group, we have the following.

Theorem 1.2. *Suppose that p is an odd prime. There exists an isomorphism*

$$\tilde{U}^{2m}(D_p(2k+1, 4k+3)) \cong \tilde{U}^{2m}(L^{2k+1}(p))^{Z_2} \oplus \tilde{U}^{2m}(RP^{4k+3}) \oplus U^{2m-8k-6},$$

where $L^i(p)=S^{2i+1}/Z_p$ is a $(2i+1)$ -dimensional lens space, RP^s is an s -dimensional real projective space and $U^*(\)^{Z_2}$ is the subgroup consisting of the elements which are fixed under the Z_2 -action.

Let BZ_p be a classifying space for Z_p . There exists an isomorphism $U^{ev}(BZ_p) \cong U^*[[X]]/([p]_F(X))$, $U^{ev}(\) = \sum U^{2i}(\)$ [8]. Consider the Z_2 -action on $U^{ev}(BZ_p)$ defined by

$$f(X)^t = f([-1]_F(X)) ,$$

where t is a generator of Z_2 . We use Milnor's short exact sequence [10] and Theorem 1.2 to compute the complex cobordism group of a classifying space for the dihedral group D_p .

Theorem 1.3. *Suppose that p is an odd prime. There exist isomorphisms*

$$\tilde{U}^{2m}(BD_p) \cong \tilde{U}^{2m}(BZ_p)^{Z_2} \oplus \tilde{U}^{2m}(BZ_2)$$

and

$$\tilde{U}^{2m+1}(BD_p) \cong 0 .$$

Making use of the Conner and Floyd isomorphism

$$\tilde{K}(X) \cong \tilde{U}^{ev}(X) \otimes_{U^*} Z$$

and Theorem 1.2, we can deduce the structure of the K -group of $D_p(2k+1, 4k+3)$ which is also obtained in [5] and [6].

2. The homomorphism $i^*: U^*(X/H) \rightarrow U^*((X \times Y)/G)$

By a G -manifold we mean a C^∞ -manifold which can be embedded equivariantly in some Euclidean G -space [11]. Let M and X be G -manifolds. By a complex orientation of a G -map $f: M \rightarrow X$ we mean an equivalence class of factorizations

$$Z \xrightarrow{i} E \xrightarrow{p} X$$

where $p: E \rightarrow X$ is a complex G -vector bundle over X and where i is an equivariant G -embedding endowed with a complex structure compatible with the G -action on its normal bundle ν_i . As Quillen [12] we can define equivariantly a cobordant relation joining such proper complex oriented G -maps for a G -manifold X . We denote by $U_G^m(X)$ the set of cobordism classes of proper complex oriented G -maps of dimension $-m$. Assume that X is a principal G -manifold which is a G -manifold such that no element of the group other than the identity has a fixed point [2]. Then the complex cobordism group $U_G^m(X)$ is isomorphic to $U^m(X/G)$ by sending the equivariant cobordism class $[Z \xrightarrow{i} E \xrightarrow{p} X]_G$ to $[Z/G \xrightarrow{i'} E/G \xrightarrow{p'} X/G]$, where i' and p' are quotient maps.

From now on, we suppose that G is a semi-direct product $H \cdot \Gamma$ of a finite group H by a finite group Γ and that X is a G -manifold whose action restricted to H is free and Y is a principal Γ -manifold. The element γ of Γ acts on the group H by the inner automorphisms $h^\gamma = \gamma^{-1} h \gamma$ and the group operation of $H \cdot \Gamma$ is given by

$$(h_1 \gamma_1)(h_2 \gamma_2) = h_1 h_2^{\gamma_1^{-1}} \gamma_1 \gamma_2.$$

The map $i: X \rightarrow X \times Y$, $i(x) = (x, y_0)$, is an equivariant map. Then, there exists a composition homomorphism

$$i^*: U^*((X \times Y)/G) \xrightarrow{r^*} U^*((X \times Y)/H) \xrightarrow{i_H^*} U^*(X/H)$$

where r^* sends an equivariant cobordism class $[Z \rightarrow E \rightarrow X]_G$ to the class $[Z \rightarrow E \rightarrow X]_H$ obtained by restriction of the group action and i_H^* is the quotient map of i . Suppose that X is a compact principal G -manifold, $G = H \cdot \Gamma$. Let $[Z \xrightarrow{i} E \xrightarrow{p} X]_H$ be an element of $U_H^m(X)$ represented by an H -equivariant factorization. Since $q: X \rightarrow X/H$ is a principal bundle, a functor q^* from the category of vector bundles and homomorphisms over X/H to the category of H -vector bundles and H -homomorphisms over X is an equivalence [1]. There exists an H -complex vector bundle F over X such that $E \oplus F = X \times C^n$ where H acts on $X \times C^n$ by the rule $h(x, z) = (hx, z)$. Therefore,

$$[Z \xrightarrow{i} E \xrightarrow{p} X]_H = [Z \xrightarrow{i} X \times C^n \xrightarrow{\tilde{p}} X]_H$$

as equivariant cobordism classes, where $i(z) = (i(z), 0)$ and $\tilde{p}(x, z) = x$. We form the quotient space $G \times_H Z$. The group G acts on $G \times_H Z$ by $\hat{g}(g \times_H z) = (\hat{g}g \times_H z)$. We have then the equivariant embedding

$$\begin{aligned} i_1: G \times_H Z \times Y &\rightarrow X \times C^n \times Y \times V \\ i_1(h\gamma \times_H z, y) &= (h\gamma i(z), y, e(\gamma)) \end{aligned}$$

where $G \times_H Z \times Y$ is a G -space by $h\gamma(g \times_H z, y) = (h\gamma g \times_H z, \gamma y)$, V is a complex Euclidean Γ -space, for example a regular representation space of Γ , $X \times C^n \times Y \times V$ is a G -space by $h\gamma(x, z, y, v) = (h\gamma x, z, \gamma y, \gamma v)$ and $e: \Gamma \rightarrow V$ is a Γ -equivariant embedding.

Lemma 2.1. *If the normal bundle ν of $i: Z \rightarrow X \times C^n$ has a complex structure compatible with the H -action, then the normal bundle ν_1 of $i_1: G \times_H Z \times Y \rightarrow X \times C^n \times Y \times V$ has a complex structure compatible with the G -action.*

Proof. Let $J: \nu \rightarrow \nu$ be a complex structure compatible with H -action, that is, $hJ = Jh$. We may consider that X and Y are embedded in a Euclidean G -space V_x and a Euclidean Γ -space V_y , respectively and that each element of G operates on $V_x \times C^n \times V_y \times V$ as an orthogonal linear transformation. The total space of the normal bundle ν_1 is described as follows:

$$E(\nu_1) = \{(i_1(h\gamma \times_H z, y), (h\gamma w, v)): w \text{ is a vector of a fiber of } \nu \text{ over } i(z) \text{ and } v \in V\}.$$

We put

$$\tilde{J}(i_1(h\gamma \times_H z, y), (w, v)) = (i_1(h\gamma \times_H z, y), (\gamma J \gamma^{-1} w, \sqrt{-1} v)).$$

The homomorphism \tilde{J} is a complex structure of the bundle ν_1 q.e.d.

From Lemma 2.1, we have a factorization

$$G \times_H Z \times Y \xrightarrow{i_1} X \times C^* \times Y \times V \xrightarrow{p_1} X \times Y,$$

$p_1(x, z, y, v) = (x, y)$, which is a complex orientation of a map $p_1 \circ i_1$. We set

$$i_*[Z \xrightarrow{i} E \xrightarrow{p} X]_H = [G \times_H Z \times Y \xrightarrow{i_1} X \times C^* \times Y \times V \xrightarrow{p_1} X \times Y]_G.$$

This defines a U^* -module homomorphism

$$i_*: U^*(X/H) \rightarrow U^*((X \times Y)/G)$$

of degree 0.

We define a Γ -action on $U^*(X/H)$: We take an equivariant cobordism class $[Z \xrightarrow{i} X \times C^* \xrightarrow{p} X]_H \in U_H^*(X) = U^*(X/H)$, with an H -action $\phi: H \times Z \rightarrow Z$. Let Z^γ be a copy of Z whose action $\phi^\gamma: H \times Z^\gamma \rightarrow Z^\gamma$ is given by

$$\phi^\gamma(h, z) = \phi(h^\gamma, z)$$

and $i^\gamma: Z^\gamma \rightarrow X \times C^*$ be an equivariant H -map given by

$$i^\gamma(z) = \gamma i(z).$$

Denote by ν the normal bundle of $i: Z \rightarrow X \times C^*$ and ν_x the fiber over x . The total space E of the normal bundle ν^γ of $i^\gamma: Z^\gamma \rightarrow X \times C^*$ is

$$E = \{(i^\gamma(z), \gamma v) : v \text{ is a vector in the fiber } \nu_{i(z)}\}.$$

Let $J: \nu \rightarrow \nu$ be a complex structure compatible with the H -action. Then, a bundle map $J^\gamma: E \rightarrow E$, $J^\gamma(i^\gamma(z), w) = (i^\gamma(z), \gamma J \gamma^{-1} w)$, is a complex structure of ν^γ compatible with the H -action. We set

$$[Z \xrightarrow{i} X \times C^* \xrightarrow{p} X]_H^\gamma = [Z^\gamma \xrightarrow{i^\gamma} X \times C^* \xrightarrow{p} X]_H.$$

Proof of Theorem 1.1.

We recall that $i_*[Z \xrightarrow{i} X \times C^* \xrightarrow{\tilde{p}} X]_H = [G \times_H Z \times Y \xrightarrow{i_1} X \times C^* \times Y \times V \xrightarrow{\tilde{p}_1} X \times Y]_G$. Consider the map $j: X \times C^* \times V \rightarrow X \times C^* \times Y \times V$, $j(x, z, v) = (x, z, y_0, v)$. The map j is an H -map and transversally regular on $i_1(G \times_H Z \times Y)$. Let Γ be the set consisting of $\gamma_1, \gamma_2, \dots, \gamma_m$. It follows that

$$j^{-1}(i_1(G \times_H Z \times Y)) = \bigcup_k Z_k$$

where $Z_k = \{(h\gamma_k i(z), e(\gamma_k)) : h \in H, z \in Z\} \subset X \times C^n \times V$. Clearly, Z_k is equivariantly diffeomorphic to Z^{γ_k} and $[Z_k \xrightarrow{i_k} X \times C^n \times V \xrightarrow{\tilde{p}} X]_H = [Z \xrightarrow{i} X \times C^n \xrightarrow{\tilde{p}} X]_H^{\gamma_k}$, where i_k is an inclusion. Therefore, we have $i^* i_* [Z \xrightarrow{i} X \times C^n \xrightarrow{\tilde{p}} X]_H = \Sigma [Z \xrightarrow{i} X \times C^n \xrightarrow{\tilde{p}} X]_H^{\gamma_k}$. q.e.d.

3. The structure of $\tilde{U}^{2m}(D_p(2k+1, 4k+3))$

In [7], the manifold $D_p(l, n) = (S^{2l+1} \times S^n)/D_p$ was useful to determine the structure of complex bordism group of principal dihedral group D_p -actions. In this section, we determine the additive structure of $\tilde{U}^{2m}(D_p(2k+1, 4k+3))$. Consider an action of the dihedral group $D_p = Z_p \cdot Z_2$ over $S^{2l+1} \times S^n$ given by

$$(1) \quad (g^i t^j)(z, x) = (\rho^i c^j(z), (-1)^j x), \quad \rho = \exp 2\pi\sqrt{-1}/p$$

where g is a generator of order p and t is the generator of order 2 and $c(z)$ is the conjugation operator. The manifold $D_p(l, n)$ is the orbit space. This manifold is an example of manifolds described in §2. We take a Z_p -space S^{2l+1} with $g \cdot z = \rho z$ ($z \in S^{2l+1}$, g is a generator of Z_p), a Z_2 -space S^n with $t \cdot x = (-1)x$ ($x \in S^n$, t is the generator of Z_2) and a D_p -space $S^{2l+1} \times S^n$ with the D_p -action given by (1). Then, there are equivariant maps

$$\begin{aligned} i: S^{2l+1} &\rightarrow S^{2l+1} \times S^n & i(z) &= (z, (1, 0, \dots, 0)) \\ j: S^n &\rightarrow S^{2l+1} \times S^n & j(x) &= ((1, 0, \dots, 0), x) \end{aligned}$$

and

$$p: S^{2l+1} \times S^n \rightarrow S^n \quad p(z, x) = x$$

with respect to inclusions $i: Z_p \rightarrow D_p$, $j: Z_2 \rightarrow D_p$ and a projection $p: D_p \rightarrow Z_2$ respectively. Denote by $U^*(S^{2l+1}/Z_p)^{Z_2}$ the subgroup consisting of elements fixed under the Z_2 -action over $U^*(S^{2l+1}/Z_p)$ described in §2. Then we have the following.

Proposition 3.1. *If p is an odd prime, the homomorphism $\Phi: \tilde{U}^{2m}(S^{2l+1}/Z_p)^{Z_2} \oplus \tilde{U}^{2m}(S^n/Z_2) \rightarrow \tilde{U}^{2m}(D_p(l, n))$ given by $\Phi(x, y) = i_*(x) + p^*(y)$ is injective.*

Proof. We remark that $\tilde{U}^{2m}(S^{2l+1}/Z_p)$ is a p -group and $\tilde{U}^{2m}(S^n/Z_2)$ is a 2-group. Hence, $i^* p^* = 0$. Since $j^* p^* = 1$ and from Theorem 1.1 $i^* i_*(x) = 2x$, Φ is injective. q.e.d.

Denote by $L'(p)$ a $(2l+1)$ -dimensional lens space. The manifold $D_p(l, n)$ is homeomorphic to the orbit space of $L'(p) \times S^n$ by a Z_2 -action $t([z], x) = ([cz], -x)$, $t \in Z_2$ the generator. Let C_i and D_j be the standard cells of $L'(p)$ and S^n respectively. The images (C_i, D_j) of the $C_i \times D_j$ by the quotient map $L'(p) \times S^n \rightarrow D_p(l, n)$ give a cellular decomposition of $D_p(l, n)$. Denote by (c^i, d^j) the dual

cochain element to (C_i, D_j) . Then we have the following coboundary relations

$$\begin{aligned}\delta(c^{2i+1}, d^j) &= \{(-1)^i + (-1)^j\}(c^{2i+1}, d^{j+1}) + p(c^{2i+2}, d^j) \\ \delta(c^{2i}, d^j) &= \{(-1)^i + (-1)^{j+1}\}(c^{2i}, d^{j+1}).\end{aligned}$$

Therefore, we have the following.

Proposition 3.2. *The integral cohomology group $\tilde{H}^*(D_p(l, n); \mathbb{Z})$ is a direct sum of the following groups*

- (i) *case l: even and n: even*
a free group generated by (c^{2l+1}, d^n) , torsion groups generated by the (c^0, d^{2j}) and the (c^{2l+1}, d^{2j-1}) whose orders are 2 and torsion groups generated by the (c^{4i}, d^0) and the (c^{4i-2}, d^n) whose orders are p ,
- (ii) *case l: even and n: odd*
a free group generated by (c^0, d^n) , torsion groups generated by the (c^0, d^{2j}) and the (c^{2l+1}, d^{2j+1}) whose orders are 2 and torsion groups generated by the (c^{4i}, d^0) and the (c^{4i}, d^n) whose orders are p ,
- (iii) *case l: odd and n: even*
a free group generated by (c^{2l+1}, d^0) , torsion groups generated by the (c^0, d^{2j}) and the (c^{2l+1}, d^{2j}) whose orders are 2 and torsion groups generated by the (c^{4i}, d^0) and the (c^{4i-2}, d^n) whose orders are p ,
- (iv) *case l: odd and n: odd*
free groups generated by (c^0, d^n) , (c^{2l+1}, d^0) and (c^{2l+1}, d^n) , torsion groups generated by the (c^0, d^{2j}) and the (c^{2l+1}, d^{2j}) whose orders are 2 and torsion groups generated by the (c^{4i}, d^0) and the (c^{4i}, d^n) whose orders are p ,

where $0 \leq 2j \leq n$ and $0 \leq 2i \leq l$.

Let Y_k be the $(8k+5)$ -skeleton of $D_p(2k+1, 4k+3)$. Denote by $(E_r^{s,t}(X), d_r^{s,t})$ the Atiyah-Hirzebruch spectral sequence for $U^*(X)$.

Lemma 3.3. *If $s \neq 8k+6$ then an inclusion $\iota: Y_k \rightarrow D_p(2k+1, 4k+3)$ induces the isomorphism for any r*

$$E_r^{s,t}(Y_k) \cong E_r^{s,t}(D_p(2k+1, 4k+3)).$$

Proof. Using Proposition 3.2, it follows that $\iota^*: E_2^{s,t}(D_p(2k+1, 4k+3)) \rightarrow E_2^{s,t}(Y_k)$ is isomorphic if $s \neq 8k+6$. We note that the images of the differentials $d_r^{s,t}$ for any r are torsion groups [4]. By induction on r we have the lemma. q.e.d.

Proposition 3.4. *There exists a short exact sequence*

$$0 \rightarrow U^{2m-8k-6} \rightarrow \tilde{U}^{2m}(D_p(2k+1, 4k+3)) \rightarrow \tilde{U}^{2m}(Y_k) \rightarrow 0.$$

Proof. Consider the exact sequence of complex cobordism groups for a pair $(D_p(2k+1, 4k+3), Y_k)$:

$$\dots \rightarrow \tilde{U}^*(D_p(2k+1, 4k+3)) \rightarrow \tilde{U}^*(Y_k) \rightarrow \tilde{U}^{*+1}(D_p(2k+1, 4k+3)/Y_k) \rightarrow$$

From Lemma 3.3 $\iota^* : \tilde{U}^i(D_p(2k+1, 4k+3)) \rightarrow \tilde{U}^i(Y_k)$ is isomorphic for i odd. Since $\tilde{H}^i(D_p(2k+1, 4k+3)/Y_k; Z) = 0$ if $i \neq 8k+6$ and $\tilde{H}^{8k+6}(D_p(2k+1, 4k+3)/Y_k; Z) \cong Z$, we have that $\tilde{U}^{2m}(D_p(2k+1, 4k+3)/Y_k) \cong U^{2m-8k-6}$. q.e.d.

We investigate the Thom homomorphism $\mu : U^*(X) \rightarrow H^*(X)$ which is the edge homomorphism of the spectral sequence associated with $U^*(X)$. Let X be an orientable manifold. We take an element $[M \xrightarrow{i} X \xrightarrow{id} X] \in U^*(X)$ which is represented by an inclusion map $M \xrightarrow{i} X$ with the normal bundle ν equipped with a complex structure. Denote by $N(\nu)$ the tubular neighborhood of M , and we have a canonical map $j : (X, \phi) \rightarrow (X, \{\text{Int } N(\nu)\}^c)$. Then, we can describe the Thom homomorphism as $\mu[M \xrightarrow{i} X \xrightarrow{id} X] = j^* \tau(\nu)$, $\tau(\nu)$ is the Thom class of ν , and

$$(2) \quad \mu[M \xrightarrow{i} X \xrightarrow{id} X] = Di_* \sigma(M)$$

where D is the Poincaré duality isomorphism $H_*(M) \cong H^*(M)$ and $\sigma(M)$ is a fundamental class of M .

We put

$$L_{k-m} = [S^{4m+3} \xrightarrow{i} S^{4k+3} \xrightarrow{id} S^{4k+3}]_{Z_p} \in U_{Z_p}^{4(k-m)}(S^{4k+3}),$$

where S^{4k+3} and S^{4m+3} are Z_p -spaces with canonical action $g \cdot z = \rho z$ and i is the canonical inclusion, and

$$R_{2k+1-n} = [S^{2n+1} \xrightarrow{i} S^{4k+3} \xrightarrow{id} S^{4k+3}]_{Z_2} \in U_{Z_2}^{4k+2-2m}(S^{4k+3})$$

where S^{2n+1} and S^{4k+3} are Z_2 -spaces with the canonical action $t \cdot x = (-1)x$, and i is the canonical inclusion.

Proposition 3.5. *Suppose that p is an odd prime, then*

$$\mu i_*(L_{k-m} + L_{k-m}^t) = a(c^{4(k-m)}, d^0), \quad a \not\equiv 0 \pmod{p}$$

and

$$\mu p^*(R_{2k+1-n}) = (c^0, d^{4k+2-2m}).$$

Proof. The manifold $D_p(2k+1, 4k+3)$ is orientable. Using Theorem 1.1 and (2), we have the proposition. q.e.d.

Proof of Theorem 1.2.

Proposition 3.5 shows that in the Atiyah-Hirzebruch spectral sequence for $\tilde{U}^*(D_p(2k+1, 4k+3))$, the (c^{4i}, d^0) and the (c^0, d^{2j}) are permanent cycles. It is

easy to prove that the spectral sequence is trivial. Therefore it follows from Propositions 3.1 and 3.5 that there exists an isomorphism

$$\begin{aligned} \lambda^* + i_* + p^* : \tilde{U}^{2m}(D_p(2k+1, 4k+3)/Y_k) &\oplus \tilde{U}^{2m}(S^{4k+3}/Z_p)^{Z_2} \oplus \tilde{U}^{2m}(S^{4k+3}/Z_2) \\ &\rightarrow \tilde{U}^{2m}(D_p(2k+1, 4k+3)) \end{aligned}$$

where $\lambda : D_p(2k+1, 4k+3) \rightarrow D_p(2k+1, 4k+3)/Y_k$ is the projection map. q.e.d.

4. $\tilde{U}^*(BZ_p)$, p an odd prime

The complex cobordism group $\tilde{U}^{ev}(L^n(p)) \cong \tilde{U}^{ev}(S^{2n+1}/Z_p)$ is a U^* -module with a generating set $\{[S^{2k+1} \xrightarrow{i} S^{2n+1} \xrightarrow{id} S^{2n+1}]_{Z_p}; Z_p\text{-equivariant cobordism classes which are represented by the canonical equivariant inclusion map } i(z_0, \dots, z_k) = (z_0, \dots, z_k, 0, \dots, 0), 0 \leq k \leq n-1\}$.

$$\begin{aligned} \text{Lemma 4.1. } &\{i_n^*([S^{2k+1} \xrightarrow{i} S^{2n+1} \xrightarrow{id} S^{2n+1}]_{Z_p})\}^t \\ &= i_n^*([S^{2k+1} \xrightarrow{i} S^{2n+1} \xrightarrow{id} S^{2n+1}]_{Z_p}^t), \end{aligned}$$

where $i_n : L^{n-1}(p) \rightarrow L^n(p)$ is the inclusion map $i_n(z_0, \dots, z_{n-1}) = (z_0, \dots, z_{n-1}, 0)$.

Proof. By the definition of the Z_2 -action, $[S^{2k+1} \xrightarrow{i} S^{2n+1} \xrightarrow{id} S^{2n+1}]_{Z_p}^t = [(S^{2k+1})^t \xrightarrow{i^t} S^{2n+1} \xrightarrow{id} S^{2n+1}]_{Z_p}$ with $i^t(z) = ci(z)$. Let $H_n : S^{2n-1} \times I \rightarrow S^{2n+1}$ be a map defined by

$$H_n(z_0, \dots, z_{n-1}, t) = \frac{1}{A}(tz_0, tz_1 + (1-t)z_0, \dots, tz_{n-1} + (1-t)z_{n-2}, (1-t)z_{n-1})$$

where A is the norm of $(tz_0, tz_1 + (1-t)z_0, \dots, (1-t)z_{n-1})$. H_n is an equivariant Z_p -map. Put

$$j_n(z) = H_n(z, 0),$$

then we have that $j_n^* = i_n^*$. Moreover $j_n : S^{2n-1} \rightarrow S^{2n+1}$ is transverse regular on $i^t(S^{2k+1})$. Therefore, we have

$$j_n^*[(S^{2k+1})^t \xrightarrow{i^t} S^{2n+1} \xrightarrow{id} S^{2n+1}]_{Z_p} = [(S^{2k-1})^t \xrightarrow{i^t} S^{2n-1} \xrightarrow{id} S^{2n-1}]_{Z_p}.$$

q.e.d.

Let $F(X, Y)$ be the formal group of the complex cobordism theory. Denote by $[-1]_F(X)$ the element of $U^*[[X]]$ satisfying $F(X, [-1]_F(X)) = 0$ and by $[k]_F(X)$ the element of $U^*[[X]]$ defined by the following formulae

$$\begin{cases} [1]_F(X) = X \\ F(X, [k]_F(X)) = [k+1]_F(X). \end{cases}$$

We define a Z_2 -action on $U^*[[X]]$ by

$$f(X)^t = f([-1]_F(X)).$$

By the definition of the formal group law, it follows immediately that $\{[p]_F(X)\}^t$ and $(X^{n+1})^t$ belong to the ideal $([p]_F(X), X^{n+1})$ generated by $[p]_F(X)$ and X^{n+1} in $U^*[[X]]$ and thus Z_2 acts on $U^*[[X]]/([p]_F(X), X^{n+1})$. We can see that the element $[S^{2n-1} \xrightarrow{i} S^{2n+1} \xrightarrow{id} S^{2n+1}]_{Z_2}$ corresponds to the cobordism 1-st Chern class $c_1(\xi_n)$ of the canonical line bundle ξ_n over $L^n(p)$ and that $[S^{2n-1} \xrightarrow{i} S^{2n+1} \xrightarrow{id} S^{2n+1}]_{Z_2}^t$ is the cobordism 1-st Chern class $c_1(\bar{\xi}_n)$ of the conjugate bundle $\bar{\xi}_n$. Therefore, we have the following.

Lemma 4.2. $U^{ev}(L^n(p))^{Z_2} \cong \{U^*[[X]]/([p]_F(X), X^{n+1})\}^{Z_2}$.

Proof. From the definition of the multiplication in $U^{ev}(L^n(p))$ we have that for $0 \leq k, l \leq n$

$$\begin{aligned} & [S^{2k+1} \xrightarrow{i} S^{2n+1} \xrightarrow{id} S^{2n+1}]_{Z_2} [S^{2l+1} \xrightarrow{i} S^{2n+1} \xrightarrow{id} S^{2n+1}]_{Z_2} \\ &= \begin{cases} [S^{2(n-k+l)+1} \xrightarrow{i} S^{2n+1} \xrightarrow{id} S^{2n+1}]_{Z_2} & \\ 0 & \text{if } n-k-l > 0. \end{cases} \end{aligned}$$

Then, it follows immediately that the Z_2 -action on $U^*(L^n(p))$ is multiplicative. There exists an isomorphism $U^{ev}(L^n(p)) \cong U^*[[X]]/([p]_F(X), X^{n+1})$ which maps $c_1(\xi_n)$ to X [13]. Since $F(c_1(\xi_n), c_1(\bar{\xi}_n)) = c_1(\xi_n \otimes \bar{\xi}_n) = 0$, the lemma follows. q.e.d.

Denote by $j_k: D_p(2k-1, 4k-1) \rightarrow D_p(2k+1, 4k+3)$ and $\hat{j}_k: L^{2k-1}(p) \rightarrow L^{2k+1}(p)$ respectively, the maps induced by the inclusions $S^{4k-1} \times S^{4k-1} \subset S^{4k+3} \times S^{4k+3}$ and $S^{4k-1} \subset S^{4k+3}$. The following diagram is commutative

$$\begin{array}{ccc} \tilde{U}^{2m}(L^{2k+1}(p)) & \xrightarrow{i_*} & \tilde{U}^{2m}(D_p(2k+1, 4k+3)) \\ \downarrow \hat{j}_k^* & & \downarrow j_k^* \\ \tilde{U}^{2m}(L^{2k-1}(p)) & \xrightarrow{i_*} & \tilde{U}^{2m}(D_p(2k-1, 4k-1)). \end{array}$$

Since the Z_2 -action on $U^*(L^n(p))$ and \hat{j}_k^* are U^* -homomorphisms, it follows from Lemma 4.1 that i_* induces a homomorphism of inverse systems

$$i_*: \{\tilde{U}^{2m}(L^{2k+1}(p))^{Z_2}, \hat{j}_k^*\} \rightarrow \{\tilde{U}^{2m}(D_p(2k+1, 4k+3)), j_k^*\}.$$

Consider the quotient map of j_k

$$\tilde{j}_k: D_p(2k-1, 4k-1)/Y_{k-1} \rightarrow D_p(2k+1, 4k+3)/Y_k,$$

where Y_k is a $(8k+5)$ -skeleton of $D_p(2k+1, 4k+3)$. Maps $\lambda: D_p(2k+1, 4k+3)$

$\rightarrow D_p(2k+1, 4k+3)/Y_k$ and p ; $D_p(2k+1, 4k+3) \rightarrow RP^{4k+3}$ induce homomorphisms of inverse systems

$$\begin{aligned} \lambda^*: \{ \tilde{U}^{2m}(D_p(2k+1, 4k+3)/Y_k) &\cong U^{2m-8k-6}, \tilde{j}_k^* \} \\ &\rightarrow \{ \tilde{U}^{2m}(D_p(2k+1, 4k+3)), j_k^* \} \end{aligned}$$

and

$$p^*: \{ \tilde{U}^{2m}(RP^{4k+3}), \hat{j}_k^* \} \rightarrow \{ \tilde{U}^{2m}(D_p(2k+1, 4k+3)), j_k^* \},$$

where $\hat{j}_k: RP^{4k-1} \rightarrow RP^{4k+3}$ is the inclusion map. From Theorem 1.2, we have an isomorphism

$$(4.1) \quad \begin{aligned} i_* + p^*: \lim_{\leftarrow} \tilde{U}^{2m}(L^{2k+1}(p))^{Z_2} \oplus \lim_{\leftarrow} \tilde{U}^{2m}(RP^{4k+3}) \\ \rightarrow \lim_{\leftarrow} \tilde{U}^{2m}(D_p(2k+1, 4k+3)), \end{aligned}$$

because $\tilde{j}_k^*: \tilde{U}^{2m}(D_p(2k+1, 4k+3)/Y_k) \rightarrow \tilde{U}^{2m}(D_p(2k-1, 4k-1)/Y_{k-1})$ is a zero homomorphism.

Lemma 4.3. $j_k^*: \tilde{U}^{2m+1}(D_p(2k+1, 4k+3)) \rightarrow \tilde{U}^{2m+1}(D_p(2k-1, 4k-1))$ is a zero homomorphism.

Proof. Let \tilde{Y}_k be a $(8k+2)$ -skeleton of $D_p(2k, 4k+2)$. We consider the map j_k as a composition map $j_k: D_p(2k-1, 4k-1) \rightarrow \tilde{Y}_k \rightarrow D_p(2k, 4k+2) \rightarrow D_p(2k+1, 4k+3)$. By Proposition 3.2 case (i), it follows that $\tilde{H}^{odd}(Y_k; Z) \cong 0$ and $\tilde{U}^{2m+1}(\tilde{Y}_k) \cong 0$. Therefore, j_k^* is the zero homomorphism. q.e.d.

Lemma 4.4. $\lim_{\leftarrow}^1 \tilde{U}^{2m}(D_p(2k+1, 4k+3)) = 0$.

Proof. From Proposition 3.5 and Theorem 1.2 it follows that $\{L_{k-m} + L_{k-m}^t\}$ is a generating set for U^* -module $\tilde{U}^{ev}(S^{4k+3}/Z_p)^{Z_2}$. By Lemma 4.1, $\hat{j}_k^*: \tilde{U}^{2m}(L^{4k+3}(p))^{Z_2} \rightarrow \tilde{U}^{2m}(L^{4k-1}(p))^{Z_2}$ is surjective. Therefore, it follows that an inverse system $\{ \tilde{U}^{2m}(D_p(2k+1, 4k+3)), j_k^* \}$ satisfies the Mittag-Leffler condition and the lemma follows. q.e.d.

Proof of Theorem 1.3.

There exists Milnor's short exact sequence

$$(4.2) \quad \begin{aligned} 0 \rightarrow \lim_{\leftarrow}^1 \tilde{U}^{*-1}(D_p(2k+1, 4k+3)) &\rightarrow \tilde{U}^*(BD_p) \\ &\rightarrow \lim_{\leftarrow} \tilde{U}^*(D_p(2k+1, 4k+3)) \rightarrow 0 [10]. \end{aligned}$$

Using Lemma 4.3 and 4.4, we have $\tilde{U}^{2m+1}(BD_p) = 0$.

Lemma 4.3 implies that the inverse system $\{ \tilde{U}^{2m+1}(D_p(2k+1, 4k+3)), j_k^* \}$ satisfies the Mittag-Leffler condition. Therefore we have that

$$\tilde{U}^{2m}(BD_p) \cong \lim_{\leftarrow} \tilde{U}^{2m}(D_p(2k+1, 4k+3)).$$

Using Theorem 1.2 and Lemma 4.2 we complete the proof.

5. The structure of $\tilde{K}(D_p(2k+1, 4k+3))$

In [3], Conner and Floyd gave the isomorphism

$$(5.1) \quad c: \tilde{K}(X) \cong \tilde{U}^{ev}(X) \otimes_{U^*} Z,$$

which maps $\eta_n - n$ to $c_1(\eta_n) \times 1$. Consider a Z_2 -action on $K(L^n(p))$ defined by $\eta^t = \bar{\eta}$, t a generator of Z_2 . Since Z_2 -action on $U^*(L^n(p))$ is multiplicative, we have the commutative diagram

$$(5.2) \quad \begin{array}{ccc} \tilde{K}(L^n(p)) & \xrightarrow{c} & \tilde{U}^{ev}(L^n(p)) \otimes_{U^*} Z \\ \downarrow t & & \downarrow t \otimes_{U^*} id \\ \tilde{K}(L^n(p)) & \xrightarrow{c} & \tilde{U}^{ev}(L^n(p)) \otimes_{U^*} Z \end{array}$$

Lemma 5.1. $\tilde{U}^{ev}((L^n(p)) \otimes_{U^*} Z)^{Z_2} = \tilde{U}^{ev}(L^n(p))^{Z_2} \otimes_{U^*} Z$, where $(\tilde{U}^{ev}(L^n(p)) \otimes_{U^*} Z)^{Z_2}$ is an invariant subgroup of $\tilde{U}^{ev}(L^n(p)) \otimes_{U^*} Z$ under the Z_2 -action $\cdot^t \times_{U^*} id$.

Proof. By the definition of Z_2 -action of $\tilde{U}^{ev}(L^n(p)) \otimes_{U^*} Z$, it follows that $\tilde{U}^{ev}(L^n(p))^{Z_2} \otimes_{U^*} Z \subset (\tilde{U}^{ev}(L^n(p)) \otimes_{U^*} Z)^{Z_2}$. Suppose that $x \otimes_{U^*} m \in \tilde{U}^{ev}(L^n(p)) \otimes_{U^*} Z$ and $x^t \otimes_{U^*} m = x \otimes_{U^*} m$. Since c is isomorphic, there exists an element $\eta \in \tilde{K}(L^n(p))$ with $c(\eta) = x \otimes_{U^*} m$. By the commutative diagram (5.2),

$$c(\eta) = c(\eta)^t = c(\eta^t) \quad \text{and} \quad \eta = \eta^t.$$

N. Mahammed [9] proved that $\tilde{K}(L^n(p)) = Z[\xi_n]/(\xi_n^n - 1, (\xi_n - 1)^{n+1})$, ξ_n is the canonical line bundle over $L^n(p)$. Put $X = c_1(\xi_n)$. Then, the element $c_1(\eta)$ is described as a polynomial $f(X)$ with the coefficient in U^* . We can see that $c_1(\bar{\eta}) = f([-1]_F(X))$. By the observation in Lemma 4.2, it follows that $c_1(\eta) \in \tilde{U}^{ev}(L^n(p))^{Z_2}$. Therefore, we have that if $x \otimes_{U^*} m \in (\tilde{U}^{ev}(L^n(p)) \otimes_{U^*} Z)^{Z_2}$, then there exists an element $\eta \in \tilde{K}(L^n(p))$ such that

$$x \otimes_{U^*} m = c_1(\eta) \otimes_{U^*} 1, \quad c_1(\eta) \in \tilde{U}^{ev}(L^n(p))^{Z_2}.$$

q.e.d.

From the isomorphism (5.1), Lemma 5.1 and Theorem 1.2, we have the following.

Theorem 5.2 ([5] and [6]).

$$\tilde{K}(D_p(2k+1, 4k+3)) \cong Z \oplus \tilde{K}(L^{2k+1}(p))^{Z_2} \oplus \tilde{K}(RP^{4k+3}).$$

KYUSHU UNIVERSITY

References

- [1] M.F. Atiyah and G.B. Segal: *Equivariant K-theory*, Lecture Note, University of Warwick (1965).
- [2] P.E. Conner and E.E. Floyd: *Differentiable Periodic Maps*, *Ergebnisse der Math. und ihrer Grenzgebiete*, Springer Verlag, 1964.
- [3] P.E. Conner and E.E. Floyd: *The Relation of Cobordism to K-theories*, Springer, Berlin, 1966.
- [4] A. Dold: *Relations between ordinary and extraordinary cohomology*, Notes, Aarhus Colloquim on Algebraic Topology, Aarhus, 1962.
- [5] T. Fujino, N. Ishikawa and M. Kamata: *On the complex K-group of certain manifold*, *Math. Rep. College Ed. Kyushu Univ.* **9** (1973), 1–6.
- [6] M. Imaoka and M. Sugawara: *On the K-ring of the orbit manifold $(S^{2m+1} \times S^l)/D_n$ by the dihedral group D_n* , *Hiroshima Math. J.* **4** (1974), 53–70.
- [7] M. Kamata and H. Minami: *Bordism groups of dihedral groups*, *J. Math. Soc. Japan* **25** (1973), 334–341.
- [8] P. S. Landweber: *Coherence, flatness and cobordism of classifying spaces*, Proc. Adv Study inst., Aarhus, 1970.
- [9] N. Mahammed: *A propos de la K-theories des espaces lenticulaires*, *C.R. Acad. Sci. Paris*, **271** (1970), 639–642.
- [10] J. Milnor: *On axiomatic homology theory*, *Pacific J. Math.* **12** (1962), 337–341.
- [11] R.S. Palais: *The classification of G-spaces*, *Mem. Amer. Math. Soc.* No. **36** (1960).
- [12] D. Quillen: *Elementary proofs of some results of cobordism theory using Steenrod operations*, *Advances in Math.* **7** (1971), 29–56.
- [13] K. Shibata: *Oriented and weakly complex bordism algebra of free periodic maps*, *Trans. Amer. Math. Soc.* **177** (1973), 199–220.