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CHAPTER 1

INTRODUCTION

Since the presentation of inventory model which was proposed by
Wilson in 1915, a number of papers have been published concerning
mathematical models and analysis of inventory. - In these models, it was
assumed that the inventory was nonperishable in nature, that is, once they
are stocked, it oould be used to satisfy demand at any time in the future.

Little consideration was given to the case of ordering stock where the
canmodity could be used to satisfy demand only for a limited amount of
time after it was received into storage.

Recently, however there has been considerable interest in developing
mathematical models of inventory for describing optimal inventory policies
with respect to perishing or decaying commodities. Commodities can be
classified into two types taking account of their quality level ; one is
the commodity with a maximum usable lifetime (perishable items) ana the
other is the commodity whose lifetime is decreasing with a fixed decay

constant (decaying items).
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Figure 1.1 Historical Stream of Inventory Problem for Perishable and Decaying Commodities



Ghare and Schrader [6] developed an EOQ(Economic Ordering Quantity)
model. They assumed the commodity whose lifetime is decreasing with a
fixed decay constant. Covert and Philip [4] obtained an EOQ model for
items with a variable rate of deterioration by assuming the two-parameter
Weibull distribution for the progress of the item deterioration. Philip
[16] discussed a model by assuming the three-parameter Weibull
distribution for the progress of the item deterioration. Shah [20]
developed a model in which shortages are permissible. They are
generalization of the works of Ghare and Schrader [6] and of Covert and
Philip [4]. Cohen [2] has considered the problem of Jjoint ordering and
pricing decisions for decaying inventory under known demand. 1In above
models the demand rate is assumed to be deterministic. Shah and Jaiswal
{21, 22] discussed periodic review inventory models for deteriorating
items with stochastic demand. Nahmias and Wang [10] considered the
leadtime with respect to decaying items. Nose et al. [11] discusses a
(§,r) inventory control system with finite varying stochastic procurement
leadtime for exponentially decaying commodities.

Recently, remarkable researches have been worked out for obtaining
optimal ordering policies in case of perishable commodities. In such a
case, when demand is deterministic, the problem has a trivial solution,
that is, place an order so that no item perishes. However, the solution
is much more complex when demand is random. In this case it is not
possible to order so that no item will perish. Hence outdating becames an
important factor for placing an order. Bulinskaya [1] considered a case
where the lifetime of an item was exactly one period. Though, his work
was concerned with an extension of the previous analysis of nonperishable
commodity's inventory model to the analysis of a simple inventory model
for perishable commodity. This analysis is a simple extension of the

inventory models for nonperishable commodities to perishable ones.



Analysis of a single item inventory model with a lifetime of exactly
two periods was pioneered by Van Zyl [23]). He restricted his attention to
only shortage and ordering costs. His model does not include a perishing
cost as my work do, so that the perishability feature is included only
through the transfer function. Nahmias and Pierskalla [8] have developed
the model with an outdating cost which is incurred at the time when the
order is placed instead of the time the lifetime of the ordered commodity
reaches to the specified lifetime.

The earlier models with a lifetime of only two periods have been
extended for an item with predetermined maximum lifetime of m periods by
Fries [5] and Nahmias [9]. 1In the single period model of Fries [5] the
expected outdating cost is irrelevant to whether one places an order or
not, so that the optimal ordering policy is the same as the case of
nonperishable commodity's inventory problem. Therefore, it is no good as
the optimal ordering policy for perishable commodity's inventory problem.
On the other hand, Nahmias [9] includes in an explicit way the effect of
outdating . He noted that the number of units of the curxent order that
will outdate without meeting any demand is a random variable that depends
upon both the age distribution of inventories on hand and the realizations

of the demands over the next m periods.



Almost of those models mentioned above assume that their remaining
lifetime is predetermined fixed when the reordered perishable commodities
are received. However this assumption is not realistic in many actual
circumstances. Therefore it may be reasonable to assume that if the
procurement leadtime varies, the value of commodities may also be
changeable. Ishii et al. [7] discussed the model for a perishable
commodity with the stochastic procurement leadtime. Furthermore, Nose et
al. [12] derived some properties of optimal ordering policies for a
perishable commodity with the stochastic procurement leadtime. Nose et
al. [13] is a generalized model of [7] and [12] incorporating the
discriminating selling prices.

On the other hand, most of the previous works have been discussed
with customers who had no control over the depletion of inventories. That
is FIFO (First-In-First-Out) issuing which is assumed that the older
inventory is always used first to meet demand. One of tﬁe most
interesting studies is that of Cohen and Pekelman [3] in which they give
attention to customer controlled depletion. Given commodity information
such as an expiration date, it may be reasonable to assume that customers
will select the newest available item on the shelf if all items are
equally priced and if no search cost is involved. Also, whenever high
reliability is needed, the newest first issuing may be desirable. The
newest first issuing doctorine is equivalent to a LIFO (Last-In-First-Out)
issuing sequence. Nose et al. [14] discusses an inventory control for
perishable commodity subject to stochastic procurement leadtime on LIFO

and FIFO issuing sequences respectively.



Optimal allocation policies for perishable commodities were analyzed
first’by‘Prastacos (17] (181 [19]. These models were discussed under
charging cost only for shortage and outdating. But, if we discuss the
allocation problem, transportation cost should be also an - important
factor. Nose et al. [15] discussed a single period allocation problem of
perishable commodities based on a LIFO issuing and a rotation allocation
policies considering shortage, outdating and transportation costs.

Chapter II constructs a model for perishable commodities subject to
stochastic procurement leadtime and the optimal ordering policies are
derived. And the chance constraint for shortage is added and the optimal
ordering policy 1is again derived. Furthermore, the influences of
leadtime, rate of excess perishability and on-hand stock upon the obtained
optimal ordering policies are discussed.

Chapter III discusses a model for a perishable product with the
stochastic procurement leadtime and discriminating selling prices. And
the optimal ordering policy and its properties are analyzed.

In Chapter IV, an inventory control for perishable commodity subject
to stochastic procurement leadtime on both LIFO and FIFO issuing policies
is considered under zero or 1 unit leadtime. Optimal ordering policies on
both LIFO and FIFO are derived and the influences of the change of
probability of occurring leadtime 1, on-hand inventory and costs of unit
holding ,‘ shortage and outdating upon the optimal order-up-to-level are

investigated on both issuing policies, respectively.



Chapter V describes a (Q,r) invent;.ory control system for decaying
conmoaities with finite varying stochastic procurement leadtime for
exponentially decaying commodities. Characteristics of optimal ordering
decision, i.e., optimal ordering quantityl and reorder point are derived
under given probability of stockout occurrence and their sensitivities of
changes in decay are also clarified.

Chapter VI discusses a single period allocation problem of perishable
commodities based on a LIFO issuing and a rotation allocation policies
considering shortage, outdating and transportation costs. First, the
existence of the optimal allocation policy is clarified. Furthermore, an
algorithm of obtaining the optimal allocation policy for a perishable
commodity is offered. Finally, we note Figure 1-~1 summarized this chapter

visually.
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CHAPTER 1I

INVENTORY CONTROL SUBJECT TO STOCHASTIC
LEADTIME FOR PERISHABLE COMMODITIES

2.1 Introduction

There exist so many commodities whose value does not remain constant
over time during transportation, holding in stock, etc.. Bulinskaya [11,
Van Zyl [8], etc., treated the cases where lifetimes are one or two
periods of time. But they did not refer to the perishing cost for the
determination of optimal ordering policy. Nahmias and Pierskalla (71
introduced perishing cost into the determination of optimal ordering
policy for the two periods lifetime dynamic inventory nodel.‘Later, Fries
[2i‘and Nahmias [5] generalized their nndei to the m periods lifetime
model.

But most of those models assume that the maximum lifetime of the
product is fixed when the reordered perishable commodities are received.

However this assumption is not realistic in many actual circumstances.

- 10 -



Therefore it is reasonable to assume that if the procurement leadtime
varies, the value of commodities may also be changeable. Taking the above
view point into consideration, this chapter discusses the inventory
control for perishable commodities under a certain maximum lifetime and
the stochastic leadtime. Particularly the case of 0 or 1 period leadtime
is considered and its optimal ordering policy is derived. Further the
influences for optimal ordering policy of same important factors, i.e.,
the probability of leadtime 0 or 1, the rate of excess perishablity under
the occurrence of leadtime 1 and the status of inventory on hand (newer or
older), are analyzed.

Next, considering the fixed ordering cost, same other characteristics
of the ordering policy are obtained. Note that the model in this chapter
is a generalization of the one period horizon model of Nahmias [4].

Section 2.2 states the assumptions and the notations which are used
throughout this chapter. Subsection 2.3.1 formulates the model and the
optimal ordering policy is obtained.

Furthermore the proposed model is compared with the Nahmias' model.

In subsecticn 2.3.2, the chance constraint for shortage is added and
the optimal ordering policy is again derived. 1In subsection 2.3.3, we
give an example in order to illustrate the results of subsections 2.3.1
and 2.3.2.

Subsection 2.4.1 discusses the influences of leadtime, rate of excess
perishability and on-hand stock upon the obtained optimal ordering policy.
Subsection 2.4.2 gives a numer ical example in order to illustrate the
results of the subsection 2.4.1.

Section 2.5 concludes this chapter and discusses further research

problems.

-11 -



2.2 Assumptions of inventory model for perishable commodities

A periodic review inventory model is considered for one planning
period horizon and s‘ingle item. That ig, ordering takes place at the
start of a period and costs are incurred during a period, rather than
continuously. The period length is predetermined fixed constant with unit
length I . And the followings are assumed throughout this chapter.
(1) Maximum lifetime of the perishable commodity discussed in this
chapter is m finite periods. If the commodity has not been depleted by
demand until the period it reaches age m, then it perishes and must be
discarded at a specified per-unit cost ».
(2) Demaxﬁs'Dj in succesive periods j=1,2,... are independent nonnegative
random variables with known distribution function Fj (-) and probability
density fj(-}.
(3) After commodities are placed into stock, deterioration proceeds
monotonically one stage in each period and inventory is depleted by demand
at the start of each period according to a FIFO policy .
(4) When procurement leadtime £ is 0, the stock arrives new, that is,
maximum lifetime m, and when § =3, the stock with lifetime m-1 or m-2
arrives. Leadtime 0 occurs with probability £,and 1 with £;, where £ ot 21=1
¢ 2570 , £;20 , and when £=1, the stock with lifetime m-1 arrives at a
constant rate a (0<o<1) and m-2 at 1-o. Here, 1-a corresponds to the rate
of excess perishability under the occurrence of leadtime 1.

In stocking perishable commodities, it is necessary to keep track of
the amount of inventory on hand at each lifetime level. Concentrating on

our model, we define the following notations;

- 12 -



x . ;the amount of commodity on hand with ¢ periods of usable lifetime
left,

XP ;inventory level in stock, i.e., XP-A- (x p

;demand during jth period :
'B. ;the total unsatisfied demand until the end of the j th period

x p-] 'aucp:c 1 )D JS,PS"-JJ

after depleting all the cormpodities x P x,j-l .--5.Ax 1 *ie@es

- ) . + . (2.1)
Bj' le + Bj..z - ::‘J. ] y 153 £m-1 | :
where BO'O and [b]f‘ = max (b,0).
Figure 2.1 illustrates this model.
Qn(ul Xn_l);the probability that D + B, ; 1is less than a real number u ,

i.e.,

Qi X 1) = Pr{D +B .<u), 1gngm

1 (2.2)

. < A
where, if u<0, then Qn(ul xn-—l) 2 0,
A(Xm- 1:.1/) ;the total expected cost when y is ordered under the current
stock level Xm-] , i.e., including the fixed ordering,
purchasing, holding, shortage and outdating costs, i.e.,

X ;fixed ordering cost/order,

e ;purchasing cost/unit, h ;holding cost/unit,
P ;shortage cost/unit, | x j;outdating cost/unit,
x ;total amount of inventory on hand, i.e., 3—'9'2':::; T s

e, ;i-th unit vector, i.e., ei A 0, oo 11,0, «.. ,0), i=1,2, ... s m-1,

L(Xm_ 1’y) ;the total expected cost excluding the fixed ordering cost
fram A(Xm-l’y) ,

- 13 =
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2.3 Optimal ordering policy subject to. stochastic leadtime and stockout

constraint

2.3.1 Inventory model for perishable commodities
From the definitions (2.1) and (2.2), the distribution fimction of

the amount of new order Y that perishes is

Pr([y-(Dm+Bm_1)l+ < ul -J-QmQ~u|Xm_1). (2.3)

Note that y.is a decision variable which represents the amount of ordered
commodity. Then, among the incoming amount ¥ of new commodity, the
expected amount remaining until the end of m wunits of period and thus to
be abandoned eventually is described as in the following formula [4]; fram

the definitions (2.2) and (2.3).

] y )
" ) 2.4
Ioud{z-qm@—u|xm_1)}=J0 Q G|X _)du. (2.4)

Then the total expected cost A(X ., y) is established as the equations

(2.5) and (2.6):
A(xm_ly y)" K'GQ/)'*'L(xm‘__]y y). (2.5)

where

15 y>0.
~6Q/>~{
0 ; y=0.

- 15 -



Ard,

. -ty
L(xm—‘l’ y)=c.y+20[hjo (;ﬁ-y-u) .fl (u)du
+p jxi-y (urx-y) -fl (u)du+’r:.J sz(ul )gn_l)du]

X L
+L, [/'1 J 0 (z-u) *f; (w)dutp Jm(u—m) 3 (u)du

N Pj (I-a)y+=x =1

x
m-1

Qm-l (u l xm—2 )du

ay '
+ rj . Qm(u'Xm_1+(J-a)y.em_1)du:| . (2.6)

Now, we show the oonvexity of the cost function L(Xm_ 17 y), described
above, utilizing the lemma due to Nahmias in the literature [4], where
Qn(u.-xn_ 1) is derived recursively by using the convolution of &, ; with
fn(°) , namely .

Qn(ui&-l) =J0 Qn-l (Wt n-1 lxn-—Z) fn W-v)dv, 1 Sn Zm (2.7)
and  Q,(u) = 1.

Especially, the integrand of last term of the equation (2.6) is derived by

the following lemma, i.e.,

Lenma 2.1
| Xt (2-0) yoeg ) 'J; Qug W g +(I-0W Xy ) I ()
| (2.8)
and Qyu) = 1,

Lemma 2.2 ([4]) Assume that each demand distribution function Fy(d)
possesses density function f‘k( d) which is continuous in d > 0. Then the
functions aQn( Xn)/ dx ; are continuous over n dimensional real space R .
If f, has a jump at 0, then aQn()g,)/ax.i are all continuous over F' for
ign-1 and 99, (X )/3x is continuous in all its arguments except a

jump at = " =Q,

- 16 ~



Applying Lemma 2.1 to the last integral in eqguation (2.6) and

differentiating L(X _ Z,y) with respect to v,

3 (X,.7s¥) |
“_ay‘z““ = ¢ + %) (D) (= 4y)-P+rQ, WX, )]
+ 2, [(1-0)rQ,_ (@ . | +(-0)y|X ) {I-F,_(ey)}
Y
+ rJ: Q. wz . '“'xm-z)fm(“’d“] =0, (2.9)
is obtained.

Next theorem demonstrates the existence of an optimal ordering policy
y*(X,-,) under inventory level X,_, .
Theorem 2.1

L(X,_,y) is a convex function of y and there exists y*(X,_,) in (—, )

which minimizes the value of L(X,-n») i.e.,

L(X,y, y*(X,,_ ) = min[L(X,,-,. )] (2.10)

Proof.

First ,note that by setting t=v,s=u-—y,

[ [ a0+ 5ms + (1= 0) y LX) )0
(1]

g ay—SQm—I(I + K= 1 + (1 . a)y I Xm—'l)fm(s)d’ds

’jl‘"(s)Qm_|(), +xm—l - ‘ ‘Xm-—l)ds - in— I(Xm—l + (1 - ﬂ)y ‘ Xm—Z)F;n( ay)

0
Lk
A
(2.11)

and by setting t=ay-—vo,

- 17 -~



jla)'Qm—l(v-’-xm—l + (l - “)}' I‘Xm—.l).j:u(ay— v)dv=f‘)n}.énl—l(y+xrlu—l -1 ‘ Xm——.’.)/lln(’)d, .
0 ) , )

Then

3’%—'&%[( B P) S F )+ 103 | X))
. +2, 01 - @) - i((1 = @)y + Xyt | X2 ) (1 = Folar))
+ aerm-l((i - a)_v + X, le-z)/:n(“)’)

xy
+r qm—l(y+xm—| —,'an—z)/l-"(l)d[] 20' (2.12)

Since all the terms are composed of non-negative values.

This implies the convexity of L(X,_,») ,[3]. Moreover,

aL(X, -1,
 lim ——-(—%’—'—)—’2=c+20(h+r)+2,[(l—a)r

=+ lim (1 ---cnr)rf.y'/“q;"_,(u+;cm__l + (1 —a)y | X,mp)f(u—v)dudo]| >0, (2.13)
y—eo o ‘o

] 8L(X,._).»)

lim ——=t = —pg, <o, (2.14)

y——~os Ey

Inequalities (2.12)-(2.14) together prove Theorem 2.1,
The equation (2.10) guarantees the existence of an optimal ordering

quantity y &, ;) under inventory on~hand stock level X1 *

Theorem 2.2
When x,._, =0, the following critical order policy is optimal:

order, if x < x* :
{ . (2.15)
not order, otherwise,

where the critical order point, x* is obtained uniquely as follows:
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s irp(s)=PRTE
x*—__ {x, lj-Fl(x)— (h+p)£o a"dc<p[°v (2016)

0, otherwise.

When X =1 50,

e

order , x,-; <zd-i(X,-2)
[ (2.17)

not order, otherwise,
is optimal where the critical order point z}_,(x,_,)=0 1is derived based

ny—=

on the solution £, ,(X,_,) of the equation (2.19) :

x;(;-'(xm_z) — {jm—- I(Xm—l)i if X ot — l.(Xm—Z) saus“ylng(Z’ 19 )CXiSls, . (2. 18 )
. 0, otherwise
m=2 ' . m—2
c+2"0 hFl( E'xi+jm—l(xm—2)) _P{I_FI( xi+jm'-!(xm"‘2))}J (2- 19)
i=1 i=1

(1 —a) 240, (£, (Xp3) | Xpma) =0.

Proof.
(Case ¥,-;=0): If Pl <c ,then for all X,_,, AL(X,_..»)/3y|,-0 >0 holds, that
is, for all X,.,, y=0 is optimal giving min L(X,_..y) , because of the
monotonicit;y property of 9L/3y with respect to y. Therefore x* must be 0.

In case of P4 >c¢ , then there exists x*satisfying

X 122)/39) 0 = Hao[hF (@) = p(1~ F(x*)}] =0,

that is, z*is equal to F~'((pe, —c)/(p+h)L) . Since AL(X,.-;,7)/3¥|,=0 <0
for all X.-: such that x<gz#, again by the monotcnicity property of 9L/3dy,
y satisfying dL(X,_, y)/d3y=0 must be positive, that is, some amount of

thé product must be ordered.
On the other hand, if x>xz% then dL(X,_,,»)/9y|,.o=0 , that is, not

to order is optimal.
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(Casex,,—,>0): If %,.,(X,-.) satisfying (2.19) does not exist, then
AL( X1y ¥)/ 7] =0 >0 for all X,., By the similar argument to the case
Xpey =0, xi_(X,-,)=0. In case that £, ,(X,_,) satisfying (2.19) exists,
then 8L(X,-1»)/37ly=0 =0 for X,_, such that x,_,==z*_, (X,_,). Again

by the similar argumént to the case Xm-1 =0 , for x _

'w—; Such that

Xyt <x%-(Xn-1) , some amount of the product must be ordered and for

Xpy S@X_(X,_,) , not to order is optimal.

Equation (2.19) would be able to be solved with respect to the

distribution function £, . Then the following relation is obtained:

m—2 I : * . .
.PIV < 9Jl(] —a)er—l(x —I(Xm—Z) I X —2) p—¢
* = .
‘Fl ,'§| X +xm—'l(xnl—2)) (h +p)20 <p+h
Further, the following inequality is hold.
m-2 y

fP—c '
zl xptxh (Xp-2) < F '(;;r;)- (2.20)

The right-hand side of the above inequality represehts the critical order
point of Nahmias [4] which does not take account of stochastic leadtime.
We conclude this section by discussing the effects of a , It is

easily shown that %£,-,X,-.) is a monotonically increasing function of o

in (2.19).
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Proposition 2.1
L(X,,-y) is a nondecreasing function of .

Proof.

The partial derivative of L(X,_,y) with respect to o is as follows.

_a_[_:g_a'r_'_'.f_).z —SL,ry{Qm_,((l — )y + Xy | Xpm2) = @@y | Xpmi + (1 a)yen—1)

-.I-j;ayfo"qm_y(v—f-xn.—n +(—a)y X _z)fm(u—v)dudu}

(by applying (2.11) to the third temmn in the abowve brace )

= —.zl’y{an—l((l —a)y+x,_, | X,-2)
—[an|~!(v+xnl—l + (1 —-a)y IXm—'Z)./:n(ay— U)dU

+'/o-ay/:n(5)Qm-l(y,+ Xm-l - I Xm—l)ds— in—l((l - (I)y + xm—ll Xm—Z)Fm(ay)}

- —‘Q'l’me—I((l - a)y+ Xm-'Z'Xmaz )(l - Fm( ay)) < 0

(by equation (2.12)).

2.3.2 The optimal ordering policy under an added chance constraint
In order to compensate shortage under varying procurement leadtime,
optimal ordering quantity should be determined taking account of the delay
of product's arrival ordered. For this purpose, the following chance

constraint is added so as to keep the occurrence probability of shortage

less than a given level,i—B, [7].

APr{x—x‘-!-y—(D,—x,)* -D,<0}<1-4. (2.21)
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In other words, the above inequality means that the probability of
which the second period's demand plus the remains of first period's demand
exceeds (x—x,)+y is less than 1-8.

First note that inequality (2.21) is equivalent to the following
ine;;uality of service level: |
Bty = (0 =x)" =B >0) 24 (2.22)
Further (2.22) is equivalent to the condition that , satisfies at least
one pair of inequalities (2.23) and (2.24) when 8, changes within the

range 0<B,<j .

Pr{D,<x+y—x)} o Pr(D,<x,)=p8,, (2.23)

Pr(Dz <x+y—Dl’Dl>-"l}>ﬁ—ﬁ|- (2.24)
(2.23) and (2.24) are transformed as follows:

y>Fz""(B,/F,(x,))—x+x,, (2.25)

2ty :
F,(zty-d )f (d )dd, 2
Lz 2 1710 %179 =P(y)=p-p, ' (2.26)

In (2.25), as B, increases, lower bound of y increases. For p(y) in

(2.26),
aP(y —fx'l-y : ; .
Gy ) TaFry-dfld)dd; 3o

%1 (2.27)
From (2.27), in (2.26), lower bound of » decreases as 8, increases.

((2.25) and (2.26) are illustrated in Figure 2.2.)
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Thus rwe obtain

y=2(8). (2.28)

where
2(B)= min max(F~'(8,/F(x)=x+x, P8~ y))

and

S 2 {ﬁ, ]‘O<ﬁ, <fbax(ﬁyfl(xl))}t

Inequality (2.28) implies that in order to maintain the service level 8,
at least the quantity z(8) must be ordered. Therefore, the optimal
ordering policy under above constraint (2.28) is summarized as the
following Theorem 2.3.

Theorem 2.3

Optimal ordering quantity y7 under the consideration of chance

constraint is given in (2.29):

o =max{y*(X,_,), z(B)}. (2.29)

Following propositions clarify the influence of x and B on s(8)

respectively.
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Proposition 2.2

Z(B) is a monotonically decreasing function of x;:.

-

Proof. Since x—x,=3I"3'%,. we have

a(P"l(B-—B,))
=0.
ax,
Further,
d Fz-‘(Bl/Fl(Xl))—' igz.a\',' _3(5_'(1‘7;/1‘](1:)))___ )Blfl(xl) 1 <o
ax, = ax, TR AETB/F(D)))

And equality holds if and only if x,=0 . This implies 2z(8) is

monotonically decreasing function of x; .

Proposition 2.2 implies optinﬁl ordering quantity decreases as
increase of the oldest inventory x,.
Proposition 2.3.
2( B) is a nondecreasing function of g8 .

Proof. Letting x=P Y(8—8)),

= apGy <Al R m) B+ [T ) Al dr)ddy 20
dx

and ‘Fi;l(ﬁl/Fx(X;)) does not contain g . This proves Proposition 2.3.

Proposition 2.3 means yé‘ is nondecreasing function of service level 8.
Theorem 2.3 and following Proposition 2.3 together show that if the
service level B becomes high, more quantity than that of minimizing the

total cost must be ordered.
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2.3.3 mmerical example
' This subsection gives an example in order to illustrate results of

subsection 2.3.1 and 2.3.2. In equation (2.5), an experimental datum was
chosen; the cost parameters (¢, h, P, r )=(40,10,200,40), the leadtime
probability ¢, at four levels (2;=0.4, 0.6, 0.8 and 1.0) and the rate « at
three levels (« =0.0, 0.5 and 1.0). The demand distribution function is
assumed to be exponential with mean 20.0. For this datum, each L(X,_1,7)

is illustrated in Figure 2.2 (m=3 in this case). Table 2.1 shows
obtained results and followings are observed:

(1)The optimal ordering quantity with taking the influence of stochastic
leadtime into consideration (% =0.4, 0.6, and 0.8) is more than that of
Nahmias [4], 1i.e., 20‘=l.0. (Inequality (2.20) indicates this
inclination.)

(2)The total expected cost L(X,-..») increases as %, decreases.

(3)At each level of %4, ( % =0.4, 0.6 and 0.8), L(X,-,,») increases as
a decreases, but the significant differences do not appear among the
optimal ordering quantities.

Furthermore, under the chance constraint (2.21), regions of feasible
solutions are obtained with respect to 8 at three levels (=0.85, 0.90 and
0.95). Table 2.2 shows optimal ordering quantity under the above chance
constraint. (For example, in case of £=0.85 and £ =0.8, using Theorem 2.3,
the optimal ordering quantity is 35.36 and the total expected cost is
about 2750 in case * =%2= 5.0.) (See Figure 2.3.)

Note that wusing the chance constraint (2.21), remarkably more
quantities are to be ordered than the optimal ordering quantity obtained

in the equations (2.15) to (2.18).
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Figure 2.2. Total expected cost (x1=5.00,x2=5.00)
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Table 2.1 Optimal ordering quantity

£,=04 £y =0.6

x1=000 x;=000 x;=500 x;=500

X1 =000 x;=000 x;=500 x;=500
X25000 x2=500 x7=000 x3=500

xq =0.00 xq = 5,00 X;=0.00 X2=5.00
a=00 1157 6.58 6.78 1.82 18.03 13.03 13.18 8.22
a=05 1236 7.28 7.44 2.35 18.85 13.81 13.96 8.93
a=10 1247 7.50 7.61 2.72 18.96 13.97 14.10 9.17
=08 £0=1.0

x3 =000 x;,=000 x;=500 x;=5.00

. x;3=000 x3=000 x3=500 x5=5.00
x3 =000 x2=500 x2=000" x2=5.00

X2 =0.00 x2 =5.00 x2 = 0.00 x2 =5.00

a=00 2272 17.73 17.86 12.90 26.46 21.47 21.59 16.63
a=0.5 23.21 18.19 18.33 13.34 26.46 21.47 21.59 16.63
a=1.0 23.26 18.27 18.40 1345 26.46 2147 21.59 16.63




2.4 Some properties of perishable inventory control for perishable
commodities
2.4.1 Properties on the optimal ardering policy

First, g "5” wlX _,) is defined as follows:

Q X ) i
Qm(t) Q/.Ixm-l) B -ay
3Q, 1%, )
—_— T =2, ..., ’m
3T i1

Next ineguality (2.30) which is presented by Nahmias [4] will be used in

order to prove the followings :

() +1
O (ylxm..1)i.>. Q,,(,l )(ylxm_l) (2.30)

This inequality (2.30) and the preceding Lemma 2.1 together show the

following relations.

Proposition 2.4
Ifa =0 or 1, then

x < 0 M L = V_
m-p) S03 t=2, .., e, (2.31)
holds. If 0<ag 3,
-2 < ym(X,,,_J) < y(wl) Koz ) 20 i=1, ..., m2 (2.32)

is obtained, where y(’:) (X7 is defined as follows:

(X, )

) =
m=-1 ax ‘m-1i ’

y(i)(x 1= 1, 2, ces g m—l.
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Figure 2,3 Feasible region of y under ( x1=5.0, x2=5.0 )

Table 2.2 Optimal ordering quantity under chance constraint ( 0=0.5 )

x1 =000 x3 =000 x3=500 x;=5.00
x2 =0.00 X = 5.00 X3 = 0.00 Xy = 5.00

£=085 6744 6245 40.36 35.36
£=090 77.79 - 72.79 44.33 39.33
g=095 94.88 89.88 48.89 43.89

i==29._‘



Proof:
When y(X ) is optimal quantity obtained from the equation (2.9), the

x

partial differentiation of the eguation (2.9) with respect to 1

(2=2, ..., m1 ) becqmes as follows:

BZL(Xm_Jn y(&n-l)) - -. (1:)
oz Lot rip) £y Gty (X, 1)) Qvy x 0

L+] 1
+rQ ) J (%n—l) 'Xm_z)'i'rQ”(’l) (U(xm-l) 'xm-l)y(t) (xm-l)

m
0 (G-0rlQ{ (U-ayX, 4 | X )
R T L PO X CHIp [
- (- ) :
Fn (@ X ) )-edarf, Gy (1 0y P x e (a
Wy X P g X e (U-ady (X))

()
| xm_.z)fm(ay(xm_l))y (Xm_l)

m-1

gyt ) -
+l'j] m {q _1(y(Xm_1)+“= m-1 ~ul xm_g)y(t) (xm—.l)fm(u)

0
w,;f;(y(xm_l)w m-1 -uf Xn-2) (W) du=0 .
(2.33)
Solving the eguation (2.33) with respect to y(i)(xm—l)
(2.34)

L E
y(t) (xm—1)= -z
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where
2= £, (hip) £, =ty (X, _10)40q, (X )} Xl
+£ -
1((1-(1)1"‘7”1_1((1 G)y(xm_l)'h‘t m-1 ' xm-z)[l—Fm(ay(xm—l))]

2
+a rfm(ﬂy(xm_z))Qm_l((Z-G)y(Xm_

+rjay (x’"‘l)

0

Iz

1 m-1 ’ xm—z)

g YKy )45 g -u| X, ) F, (wydus> o0 (2.35)

B= L{ Goip) fy way (X,,_))4rg 1) o

m-1)| X

0

+ {-0re (Gay (4

_*Tjay(xm-l) ()
0 ‘Qm—l (y(xmm-z)‘f‘-t -m__z.'-ul Xm_g)fm(u)du} >0 . (2.36)

meg | A 0-F (X 1))

From (2.34), (2.35) and (2.36), the inequality

@)
y (xm-l) < 0

(2.37)

is easily obtained.
Besides, using inequality (2.30) for each term of the equations (2.35) and

(2.36), the inequality

y(i)(xm—l) > -1 (2.38)

is also obtained.

S~ 3] -



Representing the numerator of y(‘) (X,.;) and y("+1)(xm_1) by E @ and £ (G+1)

)
respectively and using inequality (2.20), the relation between y(t) (X,.) and

y (1+1)(X ;) is obtained as follows:

I)._y(1¢+1)(x )g -

m-1 Z

y ) (x @4) ., (2.39)
R <

where,

- _ (Z+1) . (i+2
Eay™ ey~ 207 @y Ty X DI X, -, )@f(xm-z)' X))

HylU=a0r(1-F, ay (6, _) QS (U-00y X, )4 1 | X )

D)
Qog (@YK Dz X )]

*T[J"y X2 @)

0 oy W= g ~ulX, g5, (odu
Y XD (1)
_ Jo Oy Wyt g ol X G} 2 0

(by inequality (2.30)).
From (2.37), (2.38) and (2.39), (2.31) can be derived.
. . 2 :
When i=1 , the partial derivative, 3@ L(Xm_l. y(Xm_l))/(ay.ax mei )., of the
, . . a
equation (2.9) with respect to* ,_ ; , is obtained similarly. Then y )<Xm—1)

becomes as follows:

1 4
y! )(xm_1)= - £ (2.40)
| z
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where,

Z = 20{(h+p)f1 (x4y (Xm_l))vqm(y(xm_l)l L)

2
R (a-a)?rg @ Ay K IX I I-F @y )]

1 m-

2
g &, -y X DX

) X @y X))

+r Qg G4 omu| X )f Gaddu) 20 (2.41)

m-1 m-1

Joy (Xm_ 1)

E =R, {0op)f; iy X 004 (X )|X )

%n—]

Hll-org, & ¥y K DX ) 1-F, @y (X))

Jmn- 1 m— 1

. X -
0 U1 ¥ % g Ul X f, wdud 2 0 (2.42)

From (2.40), (2.41) and (2.42), the same inequality as the case for i=2,3, ...

m-1, is obtained, i.e.,
1

But the similar relation to (2.38) could not be obtained fori=1. Only for

the case a=0,7 and 0 <& £ 1/2 (2.31) and (2.32) hold respectively.

This proposition implies that the optimal ordering quantity is more
sensitive to the increase of newer on-hand inventory than that of the
older on-hand inventory, and also implies that the increase of on-hand
inventory by one unit induces the decrease of order quantity by less than
one unit as shown in inequality (2.31), or by less than two units as shown

in inequality (2.32).
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>0 (2.44)

Proof: Lety (X _;)i satisfies

(X _

1 ny) =0
By l y=y (X ;)

?

then the following is obtained by the use of equation (2.9).

3 (33(&,,_1, y))
CEM Iy

~LOp)F (mvy (X 0)-pwrQ, &y (X _ )i )]

m-1

l y=y (Xm_l)
Ha-rq, s, o +-0dy K, X, )
Y (xm-l)
EC <x,,,_1>>}+rJ0 On-1¥ Kog)
4+ m-1 —u‘&n_z)fm(u)du]

, |
- g et flGmrg @, HLy X, D 8 IF, (X))

m-1

wjay(x’"'l)

, Qm_1 Y (X )tz 1 -—ulxm_z)f (u)du]}

H-a)rq, (@, +-ady &y ) Xy H1-Fy oy (X N}

m-1°7"
Y (xm—l) |
+1ﬂf , Qm_l(y(xm_1)+:: 1 -ule_z)fm(u)du]

1
= I’.: {c+[(1—a)er_1(x mei +(1~u)y(Xm_1)|Xm_2){1_pm(uy

y (X )
(X1} ) Q. WX g kX p)f, (wdul} >0
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It may be interpreted that the increase of the probability of occurring
procurement leadtime 1 enlarges the partial derivative of L(Xm_ 1Y) with
respect to the dptimal ordering quantity. By direct calculation, we have
inequality (2.45).

Proposition 2.6

WX .5 Y)

(2.45)
3(-a) 7 '

This proposition indicates that when (7-a) ,i.e., the rate of excess
perishability under the occurrence of leadtims 1, becomes closer to 1, the

total expected cost increases.

Lemma 2.3. ([4])

()
-[ O X, pddu=q (X _,)- -t gl i Ko g J(yly ), 1=2,3,,..,m.
) A , (2.46
vhere Xm—j (x Mmel ? F g s cess T Mg+l ), and : )
H @)= F, @)
‘ y v +r -
Boix® =J (e m-1 " m-1 _
§ Y3 0F ¥V g )jo f-1®% meg ¥ omeg U ez )

v L.t .
O A AL (v e — )
0 m-j+2° m-j+2 m-j+2 m-j+1

. v . . .
ﬁmﬂﬁ_mﬂlﬂmﬂﬂ)@mﬁﬂ ”'wmq'

(1)

Now we define I (m-l’ y) as follows.
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LXK, ;s ¥)

3 ;1:=1,2’ .,,,m-—l
: % m-i '
P Ly -
LXK _1» ¥)
—gy i
Lemma 2.4.
L8 oy () e
X P 2 A Sy y)-c »Qoria_]Qm _; X J)HJ(y!X
*
+2, {(htp)F_(x)-p- r[EJ~1 s X i 1)H (- g ixm’j_l)

+J m-1 Q(’“%(qu _p)du-aQ, ;= g +(I-e)yiX, o)

4 Y,
+£ 22%m7 Kne J)Hacayax D+aly g (x g H(I- ¥ X 2) P (o)1} (2.47)

where X . ; rewriting form of Xm-j when X _; is replaced by X, _;+(l-a)y.e, ;
*
Y * . ; rewriting form of Xm-j when X _ ; 1is replaced byxm_l-i—(l-a)y.e -1,

m-J
Proof: For i=2,3, ..., m~1,the partrial derivative of L(Xm_l, y) with

respect to = _; is obtained as follows:

) | Y .
L X g 9=, Unp)F, (x+y>—p+rJ OQ,,(,”Z’ (uf X, _) du

(I-a)yt x .
+21 [ (th) Fm(;z:)-p+r J m=1 Q('L) (u| Xm-Z) du

z m-]

W (i1
+rJO 9;1 )(“'xm_1+<1-a)y e, pdul . (2.48)
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And substituting the partial derivative L("f) (Xm . y)of L(X g ¥ with
respect to y,i.e., (2.9) into (2.48), the equation (2.48) is rewritten as

follows:

28 (x

y .
T y)=L(m) (xm_l, y)—c-l-ﬂor[JoQ”(:f*l) @iX, 1) du~Qm(y|Xm_1)]

(1-a) s
Y (”) ) (upx,,_prdu

x
m-1

+2_ [ Urtp) Fy () -ptr J

ﬂy .
+rJa e N L

~(1-0)rq (= +(a)y|X ) {1-F (o)}

m-1

oy
—I‘Jo Qm_l(v-**:’-' o1 +(1—a)yfxm_2)fm(ay—v)dv

=™ (x y-c- ZrZ Q  .(X_ H.C X*)
m-l’,y g=1"m-g "m-g Jy'm-.i

*

+2 [(h+p)F (z)-p-r{Z (X )H ((I-a)y+z )

5 1%-5-1%51 me1 Vhaojoz

)

m-1 m-2

Y >
@, (X )HJ(G-y x B O S L CR R

mg m-g

o m1 o X yduma@ . (x +(1-0)y: X
0 *“m-2 o m-1 m-1 @y:

(2.49)

(by using Lemma 2.3)

Im '2-5.
(z,m) 0 ie1 2
L (xm-l’ y) 20,1=1,2, ..., m,

where

)
L(i:"ﬂ (x - oL (Xm-1' y)
m-1’° ¥ ay
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Proof:

For =1,2 ..., m-1 ¢

oy 2 «
d
L m-i Y Qm(umﬂ-lﬂl'a)y’em-l)d“

ay 32 u

(by the equation (2.7))

oy 3 [ u gy
=('1-OL)J , P -/, Dneq vtz . '*‘(l-a)ylxm_z)fm (u-v)dvdu
y 3 fa-t
=(I-a) T | g O g FAy|X ) S () dsdt
0 mn~r Jg

(2)

M=

e ¥ 0@ —£4X )lf (£)dt- (1-0)
= (I-a) 0 1l m-1 A2 -

(setting t=u-v ,s=v),

Differentiating, both sides of the equation (2.49) with respect to y ,

(Z,m) .
L (Xm—l’ y) = z'o[hfl L'”'.‘ﬂ'*?f] (-'Cﬁj)'*I’QnSLH) WX

1]

- ()
2, LU-drg P ((-odyter X )

L+1
+0J"Q”(1'L ) (:ay|xm_1+(1 ~a)y. e )

~1

oy
+rJ Q@ WX _+@-o)y.X _)du)
0 3T Mt dy m 'm—l m-1
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Substituting the equation (2.50) into the last term of the equation

(2.51),
O '

12 (@0’ (-aypte 1 IX, ) (1-F, )}

+1
+(1rQ,f‘1'+ ) (ay[Xm_l-i- (1-a)y. em_l)

Q

ay .
+(1-a)rJ ) (i g HIXF, @)dt] 20
-1 H N

0 m

For i=m, differentiating both sides of the equation (2.9) with respect to

Y,

(m, /
g @m K, )= L[ p) 1, (ﬂy)“rrq,f,n wiX, ]

12, (1-a) 2er(_11) (= g FO-Y|X_I{I-F, ()}

-szrQ

m-1 & m-1 +(1—u)yp(_m—-2)fm (qy)

SN
tr-J Qg Utz g X _OF, 6ddu] 2 0
0

Given the fixed ordering cost k¥ and y (X m-1’ ¢ there exists s(X _,)

(¢ y(X__,)) satisfying the equation (2.50).

(X - X (2.52)
LCX_ s (X )= DXy (X 00+

Here, if s(Xm__l) >0, y(Xm_l) should be ordered and if S(Xm_J) <0 , the

opitmal policy is not to order .
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Differentiating both sides of the equation (2.52) with respect to ¥ p-1
and notivng
.r,"")cxm_i, y(X__,))= 0 from equation (2.9), the following equation (2.53)
is obtained.

y (Xm_l))—L (1:) (Xm_z y 8 (Xm-l))
2O %, g, 0 ()

ey

s M X, = (2.53)

where g (X ;) is defined as follows:

5 ,
S ) ie1,2, ..., mo1.

ox .
m-t

s @) (%_n-l) -
Proposition 2.7

(1) (i+1) - S
s (Xm_;) <8 (Xm_l) <0, i=1,2, , M (2.54)
The two cases of lower bounds for 3(1 )(Xm—l) are given as follows:

1
8 )(xm-l) >2-1 ; a=0,1.

g Kpg) 2-2 5 0<az 1/ (2.55)

Proof:

N : @) i
Since y(xm-l) >s(Xm_1) from the equation (2.52) and 1 (xm_l, y) 1is
increasing function from Lemma 2.3, the numerator of the equation (2.53)
is larger than or equal to 0. Since L(’”)(Xm_7,y) is also increasing function
from Lemma 2.5, considering L"”) (xm i,'y(xm_l))g.-o ,the denominator of the

equation (2.53) is less than or equal to 0. Thus,
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sPx <o (2.56)

holds.
Further the relation between 4 (%) x__» and s(i"l)(xm 7 is obtained as
. -
followes:
() (Z-1) A
a (X .)-e X )=
Lo (X, _g» 8 _3))
where

() (i-1) (%) |
A=L ("m-;' yX _0-L CPT S D IS ASq O SUPPRY S S}

1 -
(£-1)
+ (xm-l' s(Xm_l))
X *
=2 g X M (e DN D-H GX DX )

. *
+erq X ILH g ((1-e)sK_ Dtz X
*
g, (@=yX e [ )

Y Y, Y,
+g1er_i(Xm_1){H1: (as (Xm_l) 'Xm—i)-‘qi (ay(Xm_l) )Xm_i)}’ <0
(using ILemma 2.3 and Lemma 2.4).
Taking the fact that L_Qﬂ) (Xm__l. s(X _ 1)) X 0 into consideration, the following

relations are obtained:

(-1 (0
g’ (Xm_l) < 8 (Xm—l) (2.58)
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In order to obtain the lower bound of s @) (X,_7) , it is sufficient to

examine the lower bound of 3(1)(xm—1)

(I -
87 Xy = (2.59)

where

Vet s D @ K E GO )-F (s (X

m-1

N}

+£1m{(1—Fm(ay(Xm_1))Qm_1 I +(1—u)y(Xm1

X,y

~G-F Ge(X_NQ & +0-a)s (X)X

m~1 m—2)} ’

W x s )

-1

- 2’0[ (P+h){F1 (=t+s8 (xm—l))_Fl Cr+y,(Xm_1))}

+r{o (X P (s(X

m-1

N-@ X IF @& )}

m~1""m-1

s(X )
+r{J0 " epy -1 W g)En (8 By _p)-0ddv

I IF, @& )-vddv}]

(x )
_Jy o i ]
0

Ha-w)s (X X P U-F (s (X )))

+e,[r-0){q ;= . 1

(x m-1 +(1_a)y X

%) (1-F oy (xm_l)))]]-

—Qm— 1

It is easily shown that in equation (2.59),

&8 (X, > -1 if a =0 orl, (2. 60)
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(2.61)

Do

s(i)(xm_l) >-2, ifag

But for 12— <a<1,the lower bound of s (V) (xm 1) could not be obtained.

Inequalities (2.56), (2.58), (2.60) and (2.61) prove Proposition 2.7.

This proposition means that the increase of newer on-hand inventory
reduces the optimal ordering quantity more than that of the older one.
This proposition is very similar to Proposition 2.4 with respect to y(i_) (Xm—l)

and implies that the increase of on-hand inventory by one unit leads

to the decrease of s(Xm_l) by less than one unit for a=0,7 , and by less

than two units for ¢ < a < 7/2.

Proposition 2.8

For S(anl) >0,

X

>
= o {Gap)F G)pl+a {G-o0rg_ (X

y X

1S X _7)

3T . (2.62)

Proof: From the convexity of L(Xm 22¥) it is clear that the

following inequality holds.

(2.63)

| = > I s )
y(Xm~1)—s(Xm_1) = m_l’s m~1 ).
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Since an order is placed when g(Xm 1) > 0, the following relationship is

establ ished:

(2.64)
LX,_7:0) > LX__,y(X _ D)+k .

So an interesting relation between ¥ _p)-s(X _,) and I-¢ is derived

as follows:

-X -X
y(X _)-s(X ;)2 2
medt Tt = MW e 0 T ™ L0
q+lo{ (h+p_)F1. Cr)—pPer { a-orq (Xm_l )1

The last equality comes from Lemma 2.3.

Inequality (2.62) clarifies the following relation between y(Xm_ ) =

1
s _;)and I-a ;
if the rate of excess perishability, I-a , increases, the lower bound of

y (Xm_l)—s (Xm—l) also increases.

2.4.2 Nurerical example
This subsection provides an example in order to illustrate the
results of subsection 2.4.1. The cost parameters (e, h, p, r} =(40,10,200,40)
and the maximum lifetimem =3. The demand distribution function is assumed

to be gamma with parameters A and Y in equation (2.65).

A

Y A-1 .
f(z) = F—(—BTI ezp (-yz) . (2.65)
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Table 2.3 represents the relations between on-hand inventory and
optimal ordering quantity whena =0.5 and £; =0.4. Figure 2.4 illustrates
the total expected cost for on-hand inventory x=0, 2 and 4 when\=1 and
Y=0.05. Figure 2.5 illustrates the relaf;ion between the age distribution
of inventory on hand x and optimal 6rdering quantity y(X2) for x=4, i.e.,

@y =) =(0,4.0),(1.0,3.0),(2.0,2.0),(3.0,1.0),(4.0,0) whenA=1 and
Y'=0.05. Result asserts the increases of newer inventory on hand makes
more influences upon the decrease of the optimal ordering quantity than
‘that of older one.

Table 2.4 represents the relation between the leadtime probability
and optimal ordering quantity for a=0.5 andcré, x1)=(2.0,2.0). Figure 2.6
illustrates the case of A=1,Y=0.05 in Table 2.4. As ; increases, the
total expected cost increases and optimal ordering quantity reduces.

Table 2.5 represents the relation between the rate of excess
perishability (I-a) and the optimal ordering quantity for£;=0.4 and
(g -'81)=(2.0,‘2.0). Figure 2.7 illustrates the case of A=l, Y =0.05 in
Table 2.5. When (I-0) increases, total expected cost increases and optimal
ordering quantity decreases, but the significant differences are not

observed when (1-a) approaches to 0 .
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Table2.3 The relation between the age distribution of inventory on

hand (.'x:], x2) and optimal ordering quantity y(Xg)

y(Xz)
X (:x:l, -’L‘2) A=5 y=0.25 A=l y=0.05
(u=20 0©=9) (p=20 0=20)
0 (0, 0) 21.793 18.855
1 (1, 0) 20.789 17.861
(0, 1) 20.784 17.839
(2, 0) 19.806 16.858
2 (1, 1) 19.795 16.846
(o, 2) 19.790 16.838
(3, 0) 18.804 15.884
3 (2, 1) 18.800 15.84Y
- (1, 2) 18.788 15.834
(o, 3) 18.780 15.826
(4, 0) 17.810 14.91Yy
(3, 1) 17.804 14.873.
4 (2, 2) 17.804 14.845
(1, 3) 17.796 14.833
(0, u) 17.796 14.812
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35

34

L(Xg-’y) xlO-2

g

]
5 10 15 20

Figure2.4.Total expected cost when on-hand inventory x=0,2,4



N z
’ 10 2)"(0, l‘)
2899.5 .
Ty, ,)=(1, 3)
2899.0L
(T, ,)=(2, 2)
2898.5p
2898.0}=
2897.5}0- @,%0=06, 1
2897.0"
2896.51~
L )=
\Z, 2) (4, 0)
I
C i 1 . 1 o
oM -
14.80 14.85 14.90 y

Figure 2.5. Total expected cost when status of inventory on hand
(2,,2,)=(0,4), (1,8), (2,2), (3,1), (4,0)
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Table 2.4. The relation between the leadtime probability £;

and optimal ordering quantity y( x2)

21 0.0 0.2 0.4 0.6
A=s y=0.25
(=20 o0=9) 21.u477 19.968 17.806 14.174
Y(x.)
27 A=l y=0.05 22.486 19.228 14.851 8.321
{p=20 ©=20)
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['(Xg-’ y) xlO“2

A ' 4 -
£1=0.l¢
25 p- "R .
1 0.2
£l=0
20
Ty 1 L _ i R
o 7 s 10 15 20 25

Figure 2.6.Total expected cost when the leadtime probability £,=0.0, 0.2, 0.4, 0.6



L(Xg,y)

A e 1-a=1.0

}

2915.0

2910.0 -

/ 1-0=0.8

|
|

2905.0 -

/

\ e 1-0=0.6

i

2900.0

1-0=0,4

\\ T 1"'a=0.2
2895.0 = i .

e 1-0=0,0
~. ' .
T , r—
0 14.0 14.5 15.0 Y.

Figure2.7.Total expected cost when the rate of excess perishability
l-a= 1.0, 0.8, 0.6, 0.4, 0.2, 0.0
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Table 2.5. The relation between the rate of excess perishability occurring

(1-«), and optimal ordering quantity y(xz) when leadtime 1.

l-a 1.0 0.8 0.6 0.4 0.2 0.0
(Ai;oyzglgg 17.0644 17.754 17.802 17 .806 17.806 17.806
Y pE =
) A=zl v=0.05 ‘ _
( Ton 6=20) 14.056 1u.u477 14.765 14.908 14.963 14.993
u: =
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2.5 Conclusion

In this chapter, we discussed the determination of the optimal
ordering policies and their properties with respect to a  perishable
cammodity with predetermined fixed 1lifetime subject to (0 or 1)
procurement leadtime.

It was shown that the critical ordering point under the stochastic
leadtime is less than that of the ordinary model withouﬁ taking the
stochastic leadtime into consideration. In addition, the probability level
that the shortage does not occur is given and the optimal ordering policy
was again derived. Further influence of the oldest inve;qtory x, and g on
the optimal ordering policy was clarified. |

Sensitivity of some important factors such as the influences of
leadtime probability, the rate of excess perishability and the status of
inventory on hand upon the optimal ordering policies were analyzed. Next,
set-up cost for placing an order was introduced and some characteristics
were shown.

It is important to consider with respect to more general assumptions
of procurement leadtime and excess perishability, though its
generalization may make analysis more complicated and difficult.

Inventory depletion policy discussed in this chapter had been assumed
to be FIFO issuing. But, in order to cope with the increase of customer
serivice in need, customer-oriented inventory depletion policies, e.g.,
LIFO and etc., might be better than FIFO. From these point of view, we
could develop our theme in using LIFO issuing policy for more general

stochastic leadtime and stochastic excess perishability.
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CHAPTER II

INVENTORY CONTROL FOR PERISHABLE COMMUDITIES WITH
STOCHASTIC LEADTIME SUBJECT TO DIFFERENT SELLING PRICES

3.1 Introduction

In the recent situation of low economic development, competitions
among companies are becoming severer. Under these circumstances,
companies must consider not only the quantitative service but also the
qualitative one when we discuss the problems of minimizing cost or
maximizing profit. As for inventory problems, especially when taking
account of fresh commodities or process foods, the quality of commodities
has become an important factor as well as the amount of their inventory.
Bulinskaya [1], van Zyl [6], etc., treated the cases where lifetimes are
one period or two, respectively. Nahmias [3] introduced perishing cost
into the determination of optimal ordering policy for m periods lifetime
model. 1Ishii et al. [2] and Nose et al. [5] generalized their model with
respect to the relationship between the length of the procurement leadtime
and the value of the commodities accepted. Generalizing the one period
horizon models of Ishii et al. [2] and Nose et al. [5], this chapter
discusses an inventory management for perishable commodities under two
different selling prices and 0 or 1 leadtime in order to obtain more

realistic optimal ordering policy and to derive its properties.
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Section 3.2 states the assumptions and formulates our model. In
Section 3.3, the optimal ordering policy is obtained. Section 3.4
discusses the influences of leadtime, rate of excess perishability and
on-hand stock upon the optimal ordering policy. Section 3.5 gives a
numerical example in order to illustrate the results of Sections 3.3 and
3.4. Finally, Section 3.6 concludes this chapter and discusses Ffurther

research problems.
3.2 Problem formulation

The following assumptions are made throughout this chapter:

(1) A periodic review inventory model is considered for one planning
period and single item. The period length is arbitrary but fixed.

(2) Ordering takes place at the start of a period and unit purchasing cost
is charged.

(3) Maximum lifetime of the perishable commodity discussed in this chapter
is m periods. If the commodity has not been depleted by demand until
the period it reaches age m , then it perishes and must be discarded

at a specified per-unit cost r .

(4) Stock is depleted by demand at the start of each period according to a
FIFO policy and after commodities are placed into stock, deterioration
proceeds by one stage at each period.

(5) Demand Dj in successive periods j=1,2 is independent nonnegative

e oo

random variables with known distribution function Fj( ) (Fi(o);'o) and

density function fj( +) that is continuous everywhere.
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(6) When procurement leadtime ; is 0, the fresh stock with maximum
lifetime m arrives and wheng=1, the stock with lifetime m-1 or m-2
arrives. Leadtime 0 and 1 occur with probability ¢, and ; ,
respectively, where *,7¢,=1 £,>0, 2,20, and when =7, the stock
with lifetime m-1 arrives at a constant rate a(0<0<?) and m-2 at I-a .
Here, 1-a corresponds to the rate of excess perishability under the
gccufrence of leadtime 1. A

(7) Shortage cost p and holding cost 4 are charged for unit short and unit
carried over, respectively.

(8) The commodity whose remaining lifetime is only one period is sold at
selling price }?1 and the other commodities are sold at Fg .

It may be reasonable to assume By 2 B, |
In stocking perishable commodities, it is necessary to keep track of the
amount of inventory on hand at each lifetime level. We list the

following notations; x, , X, o Bp 9, (ulx, ;) and Lix, 129

z. ; the amount of commodity on hard with i periods of usable lifetime
left,
X : inventory level in stock, i.e., xps(zl’xZ“_"”Ip)JP-‘-l, 2""'3777-1"
B; ; after depleting all of the commodities I R T the total
unsatisfied demand until period ; which should be satisfied by the
inventory cammodities whose remaining lifetimes are greater than j,
i.e.,

"B.=[D+B.  -x.1"
[D 4B - Ib]

J 3 7 » 3=1,2,....,m-1 4 (3.1)

where BO=0 and [b]+=maz(b, 0).

Q (ujX

n n-1 1

) ; the probability that the sum of Dﬁ and Bﬁ— is less than a
real number y , i.e.,

Qn(u'xn_ )=Pr{Dn+Bn_1;y}, n=1,2,....,m . (3.2)

1
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LiX 1y) i the total expected cost function,

UcX ou)i the expected sales function.
m~-

The expected outdating quantities are obtained for the cases of z=¢ and

£ =1 from the literature [2] as follows:

(1) The case of =0 Using the equation (3.2), the expected number

of units of y scheduled to perish after m periods is derived;

. | -
J:udu-qmry-u1xm_l)}=qumru.ixm_1)du : (3.3)

(II) The case of t=1: From the assumptions (6), remaining lifetime of

oy is m-1 periods and that of (1-q)y is m-2 periods.

(i) The arrivals of m-1 periods lifetime commodities; The expected
number of units, ay, scheduled to outdate after m-1 pericds is

derived as follows ;

ay oy )d
JO Qm(ay—ufxm_l*l-(l—cz)yem_l)du:Jo Qm(ulxm-l-”l_a)yem-fl u ,

(3.4)

=}

n-1

where, em—1=(0’ 0,...,1) -
(ii) The arrivals of m-2 periods lifetime commodities; The expected

number of units of (I-q)y scheduled to outdate after m-2 periods is

derived ;
(1-a)y
(1-a)y+z
jo 9.1 ((l—a)y+xm_l-u [Xm_g)du=L- m-lQm_l (u |Xm_2)du
m-1

(3.5)
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Then the total expected cost function is expressed fram the equations
(3.3) to (3.5) together with the other costs as follows:

L0X,_gpd=eyreyth )]

(z+y-ul) f.(u)d r
uflu)u+p 7

m*y{u-(xf-y)}fl(u)du+r D(;>m(u|Xm__

€

*4, [hj (;c—u)fl (u)du+pr(u~:r)f1 (u)dutr -1
0 z

(1-aly+x
j Qm;J (u IXm__z)d'u

Im—l

oy
+rf Q@ (ulX +{1-a)ye Jd
o 1 ye, 17du] , (3.6)

where, 251 2.
=1 "1

In order to obtain the profit function , we begin with oconstructing
the sales function U(xm—l’y ) . First of all, two cases of iz =pand ;=7 are
distinguished to constitute urx_-..y) and U,(v,) is defined as the sales
quantity of y whose remaining lifetime is one period ; (greater than or
equal to two periods).

(I) The case of £=0:
Uland 112 of this case are denoted with U‘g and UZ respectively.

B =[D - +
o0 B 1By, ) s B
Y B >
* w1 (3.7)
The cumulative distribution function of Ug is
0
Pr(U, ;u)=Qm‘1(u+:z:m_1 xm—Z)' (3.8)

Then, the expected sales quantity of u'g is expressed as follows :

0 Yy
E =Y~
[Uz]_y JOQm“l (u+:cm_1}Xm_2)du . : (3.9)
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And the corresponding expected sales quantity of which the lifetime

of commodity is one period,E[Ug] , is shown as follows :

.

0 Y
B[V 1=y-E[0)) -[ KRG

Yy , Y
::.-JOQm_l (u+:1:m_1 { Xm— Z)du—JUQm (u.* Xm_l)du | . ( 3. 10)

(II) The case of £ =1:

To obtaining the expected outdating quantity in the case of £=7 , two

types, i.e., m-1andm-2 periods lifetime caommodities' arrivals are

formulated each other.

(i) The arrivals of m-1

UJ and Ug of this case are denoted with Ui and U‘; respectively.

periods lifetime commodities ;

’

Since
‘ B =[D 4B -z ~(l-a)y]’, B <oy
UJ _ m1 Y“m-1 "m-2 m-1 m-1
2 ay (3.11)
the cumulative distribution function of U; is |
Pr'(U; =9 ((1-a)tz #ulX o) . 5.1

Then, the expected sales quantity, E[U';] , is expressed as follows:

1 oy
E[U ']=uy-J Q_ . ((1-a)y+z_ _+ulX _Jdu
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And the expected sales quantity, EIU';] , is shown as follows:

1 ay
E[U, l=ay-E[U} _f
1 2 ] , Qm(ulxm_1+(1“°‘)yem_1)du

ay
=l @ _((1- i
[0 m-1 u)yv‘xm_1+ulxm_2)du—fo Qm(u 'Xm-l"'(]-“)yem-])du .

(3.14)
(ii) The arrivals of m-2 periods lifetime commodities;

In this case, U] and 0'2 are denoted with Uf and Uj , respectively.

2 Bm— 2<=xm—1

A B o Gt

(1-aly s B T t(1-aly .15

. . . . 2 .
The cumulative distribution function of 02 is as follows;

2 —
Pr(U, _;u)—Qm_Z(uhr:m_z‘Xm_s) ~(3.16)

Then, the expected sales quantity E'Wﬁl is shown as follows;

(1-a)y+z
2 m-1 X _Jdu .
E[U.)=(1-a)] -J Qo lutz ‘ -
E[ P ] a/y : m-2 m-21 " m-3 (3.17)

And the expected sales quantity of F[Ufj is obtained as follows;

m-1

e 2 (I-a)y+x
BV, 1=(1-a)y-E(1F)- ]

_Qm_J(u|Xm_2)du

xm— 1

1~ .
=J( u)y-f*.cm_l .

. _Qm_ 5 ( wte | xm_3 )du-

J(l-a)y-i-x
m~-1 Fm-1

Qm_J(u|Xm_2)du .

(3.18)
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Taking account of the price assumption (8), from the equations (3.9),
(3.10), (3.13), (3.14), (3.17) and (3.18), the expected sales function

U(Xm-J’y) becomes as follows;

UK y)= 2R EWIIHR E W1 )42 (R, (BB 021)

7 2
+R,(E[W31+E1U,1)] (3.19)

Thus, the expected profit function J( xm—]’ y) is written as follows;

J(Xm_l,y)=U(xm_1,y)—L(Xm_l,y) , 5,209

where y and [ are given in (3.6) and (3.9) respectively.
3.3 The optimal ordering policy

In order to prove the concavity of the profit function (3.20), i.e.,
J(xm—l’ y) , the following Theorem 3.1, Corollaries 3.1 and 3.2 are fully
utilized. And next proposition demonstrates the exisi:ence of an optimal
ordering quantity y( Xm__._,) under inventory level X ..

Theorem 3.1 ({3])

u
Q, (u.an_ 1)=I0Qn—1 (v+:cn_1,| Xn- Z)fn (u-v)dv, (3.21)

n=1,2,...,m,

where Qo (u)=1.

Corollary 3.1.

u
Q (uiX  ;*+(1-aly, em_1)=f0Qm_1 (v+xm_1+(1—a)y|Xm_z)fm(u—v)dv . (3.22)

- 62 -



Corollary 3.2

Assume that each demand distribution Fk possesses density T p
that is continuous everywhere. Then the functions aQn (),(n)/ 3-'?.,: are
continuous over n dimensional real spaceR”. If fn has a junp at O, |
then 3@ ( Xn)/ 3z, are all continuous over R? for isn-1 and BQn(Xn) /3%,

is continuous in all its arguments but possesses a jump at O.

Proposition 3.1
wWhen o= and 1,the expected profit function, J( Xm_ 7 y) , is a concave

function of . y(X 1) maximizing J(Xm_z,y) exists in (-»,»), that is

ST ylX )= mazld (X ,y)].
(3.23)

Proof:
The convexity of the total expected cost function, L( Xm- z,y) , has
been already proved by Ishii et al. [{2]. Thus, only the total

expected sales function, U( Xm_ 7 y) , needs to be considered.

X 15y X
3y

)

=2, [Rz{l-Qm_J(y+xm_1

+R1{Qm-1 (y+xm__.1 I Xm—2)—Qm(y{ xm-l) N
+21[Rz{l-qm.l(y+zm_lixm_2)

+(1-u)Qm_1((J—u)y+xm X o)

-1 "m-2

—(J-a)Qm_z((l-u)y+xm_ +x )}

1 m-2|xm-3
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+HAQ . (ytz_ | Xm_z)— (J—Q)Qm_l ((1—a)y+a:m_1 l Koo’ (2-F (ay))

[y

~J0 U1 (Yt g ulX )7 (wdu

+(1—u}Q,'n_2((1—u)y+xm_1+a:m_2I‘Xm_s))] , ‘ (3.24)

Note that the equation (3.24) is already arranged by the aid of

Corollaries 3.1, 3.2 and the following transformation:

ay (u
fo JanJ (v+:rm_v1+(1-u)y | Xm_z)fm(u-v) dvdu

m_

ay :
=J0 fm(u)Qm_J(y—xm_l—uIX g)du-Qm_l(xm_JHJ—-a)y]Xm_Z)Fm(ay)

Then,

220X .y
oy = 2,0-Rea, o (yz 1% o)

m-1
L, [RZ{_qm~1 (y+:cm_'1 | Xm—2)
+(1-0)%q (x +(I-a)y|X )

~(1-a)%q_,((malyte bz X )
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*+R, {qm_j/yhrm_llx )

m-2

X

~(2-F (oy))(1-a)?
' (ay)) (1-a) Ing (1-alytz_ |X )

ay
-JO Qm_z(y+xm_1—u|Xm_Z)fh(u)du

+(J—a)Qm_2((1~u)y+xm +x

-1 m-2,xm—3)

2
+(1-a) A ((Z—a}y+xm_=1-kz:m_2 [Xm_ 3

J11 (3.25)
By the relationZ®. <R 9r the concavity of Uf Xm-— 1Y ) has been proved with
respect to the case o=0, 1.

After all, the concavity of Jf Xm

Y ) has been proved from the knowledge

of the convexity of L( Xzﬁ Y ) (2]1. Moreover, from the equation (3.26),

aJ()Sn >yl
-7 _ _
— " 9,0[1?2{1 Qm_l(y+xm_1|xm_2)}

+R1{Qm~1(y+xm-—1'Xm—ZJ—Qm(lem-l)}]
24 [RZ{J—Qm_l (y+z__ , Xm_2)+(1—a)Qm_1 ((J—u)y-fxm_l lxm-Z)

- (z_a)Qm_2((1-—a)y+:z:m_1+:cm_2 | Xm_~3)}

+R1{Qm_1(y+:nm_1 ‘ X _9l- (l—u)Qm_J((1~u)y+:x:m_._1 | Xm—Z) (2-F_(ay))
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oy
‘[0 Q1 445, ] X, )5 ()

+(1—a)Qm_2((1—u)y+:zm +x h

-1 m—2,xm—3

oty .
Fo(u)du-p f,(wdutrQ (y|X_ )]
0 1 Py 1 m m-1

—O_ZU(hJ

X

m—-z)

-2 [(J—G)er_J ( (.’I-—d)y+:cm_1l

| oy
+cxrj0 @ 7 (v+n:m_ It (1-a)y| Xm_z)fm(uy—v)dv

oy
+(1-a)rj0 joqm_l(v+xm_1+(1—a)ylXm_g)fﬁ(u—v)dudv]

=0, (3.26)

the following inequalities (3.27) and (3.28) are obtained.

‘m BJ(.Xm_l,y) <

1i

3e —12= (3.27)
aJ (X syl

éigm———égil——->o , (3.28)

Inequalities (3.27), (3.28) and the concavity of J(X .,y) together

prove Proposition 3.1.
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Proposition 3.2
The configuration of the optimal ordering policy is described for the
cases of o=1 and a=0.

(1) The case of a=1 :

when :z:m_1=0 , the following critical order policy is optimal;

orde? , if c;ﬁz-hzo or
c>32-h2 0 x<x®, (3.29)
not order ., otherwise ,

where the critical order-point, % is obtained uniquely as follows:

2 f if-F (2)=(Ry-cipt ) /12, (h#p)) and c<Rips, ,

0 5 otherwise. ‘ (3.30)

when =« >0

m-1 ’

order , if c;ﬁl—hﬂo or c>ﬁa—h£0 and
11 -2/ (3.31)

not order , ~ otherwise ,

is optimal where the critical order point x#* 1( X 2)>o is derived as
m- ==

m-
follows;
N e p I . .
Im-l(xm—Z} , if ?m-]rxm-Z) satisfying
at )= ™S i I
2 y=0=0 exists,
0 , otherwise ,

(3.32)
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(2) The case of a=0:
In this case ,
order, if c;(RJ—h)ﬁo—rzl or

c>(R1—h)£0—r£ and, = _<x* _(X )

1. m-1 m-1 "m-2""'
not order, otherwise, (3.33)
-where
xm—l(xm-2)’ if xm-z(xm-Z) satisfying
x* Z(X 2)= BJ(Xm_l,y) =0, exists,
m=-1 "m- ———————ay y=0
0 , otherwise,

is the optimal ordering policy.
Proof:

(I) Case of a=1

I-1) :z:m_1=0 s

As long as the relation c<R2—hZ 0 holds, the following inequality
(3.34) is derived from the equation (3.26). |

aJ(Xm_l,y) oo
3y a=7 =
z 170 | | (3.34)
y=0

From the inequality (3.34) and the concavity of J()(’77 J,y) » the optimal
ordering policy is to order g(xm_J) so as to satisfy aJ(Xm l,y)/ay=0 .
On the other hand, as the relation c>R2—h£0‘ holds, & is defined so as to

satisfy the relation,
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3J (X 124/

ay G:J =0 ’
Tm-1=0
y=0
that is,
R ~c+pk
Foa)e 2P0 (3.35)
1 Lo(hip)
Considering the property of distribution function, O;Fl (3);1 ., the
following condition is obtained.
- : (3.36)
R2 71!2,0<c<}?2+p20 ) ‘

As the case R2+p20>c , there exists z . Furthermore, when <X , the
inequality (3.34) holds. This means that the optimal ordering policy is
to order y( ,Xm—l) . In turn, when xgj , the optimal ordering policy is not
to order.

As the other case, 32+p2: 0;-3. » the value of the left side in inequality
(3.34) is always to be negétive. So there dose not exist ;'{:'. This means
that the optimal ordering policy is always not to order.

I-2) mm—l

Setting a=1 and y=0 in the equation (3.26), the following eguation is

>0 :

obtained.

BJ(:Xm—l’ yJ) .
Ty |9 T Rt Ry R (e )
y y=0
~le-pt j#2, {h+p)F1 (z))

(3.37)
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And the partial derivative of the equation (3.37) with respect to x m-1

is as follows.

3J (X ’y)l
3 m-1 __]<0 (3.38)
3x 2y lU:J

-1 y:.-D

As z_ .+, the equation (3.37) becomes to be

L Lim, aJ(Xm_J,y)
m-1 3y

= - 2 (3.39)
y=0) }?1 {e+h 0].

From the inequality (3.38) and the equation (3.39), the optimal
ordering policy is obtained as follows:
As long as the relation c;RJ-hlo ~holds, the left hand side in the
equation (3.39) is positive.
This means that the optimal ordering policy is to order ¥ ( Xm_ 1) so as
to satisfy the equation (3.26) ino=l.
On the other hand, as the relation c>]?1~h £0 holds, £ 1( X_m_ 1) exists
so as to satisfy the equation (3.37).
Furthermore, if = _<& _(X ) , taking the inequality (3.38) into

m-1 m-1 "m-2

.‘IJ is ordered. Amgd if z 1—>'=£m-1( Xm— 1) , the optimal

ordering policy is not to order.

consideration, y( an

(II) Case of a=0
Substituting ©=0 and y=0 in the equation (3.26), the following

equation is obtained:

BJ(Xm_J, y) ,
oy ;:_5 =% [RZ{J_Qm—l {mm-l IXm—Z) }+R1Qm—1 (:Cm—l I Xm—Z)]

FIR11-Q 2

-1 1L"’rm— 2 ! Xm— 3
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-0 (= D P A L R
- let %, {(htp)F, (m)—p}-l-lll-er_l (1 ]Xm_z)}
=0. (3.40)

And the partial derivative of the egquation (3.40) with respect to

T ..11is as follows:

aJ (X _ ., )l
C m-1Y <0 (3.41)
T 4 3y o=0
! y=0
As T,_17%, the equation (3.40) becomes as follows :
aJ(Xm_l,y)
Lim \——T2 | )= B2 —(cths +re_ ). .
1" 3y y= 170 0" "1 (3.42)

From (3.41) and (3.42), the optimal ordering policy is summarized

as follows :
As long as the relation ¢(R;-h)L,-r%; holds, the optimal

ordering policy is to order y(Xm_ 1) so as to satisfy the eguation
(3.26) in a=0 .

On the other hand, as the relation c>(RJ-h) ﬁo-r holds, there

1.
exists g:cm—l(xm—z) so as to satisfy the eguation (3.40).

~
2

Furthermore, if -’r-'m_1<xm_ 1( Xm_ 2) , taking the inequality (3.41) into

consideration, y( Xm- ) is orcered. And if x >&( xm—l)' the

1
optimal ordering policy is not to order.
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3.4 Properties on the optimal ordering policy

) and y{t) (Xm_‘_l) are defined as follows;

an(y|xm_1) e
3y
() .
Qm (ijm-lj
an(yl Xm-—J)
T 1=3, S
' m-1+1
. 3y (X )
(i) _ m-1 _
y (Xm_l)- —5e s  1=1,2,...,m-1
m-i

Next inequality (3.43) which is presented by Nahmias [3] will be 'used in

order to prove the following proposition 3.3,

() (2+1) : (3.43)
Qm (ylxm—l);Qm (y| xm-J)
Proposition 3.3

when o=0 or 1, then

(i) =2, 3, ... m=2
-1y (xm—l) s = B

(3.44)
and

y(l) (X );0 s

m-1

hold.
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Proof:
(I) Case of a=1

Since J(X _,y) achieves its maximum value at y=y(X .47, the

following equation is obtained with respect to i=2,3,-"*,m-1.

9 (aJ(xm—Z’ y)l

_ (i)
2 = L {-RQ
i %y ly=y(xm-1) v2 m“lfyfxm-l)vtxm—llxm-y
Py WX, e 1%y () (X )
(i) '
ra g e Xy ex )
Tn-1¥ -1 "1 2’ e

(i+1) (1) (<) :
_.Qm (y(xm_l) | Xm_l)-Qm (y(Xm_l) | Xm_l)y (Xm—i)}]
2 -R.0 X ez X )

e Y A T 1 Vo e
R ty(X_ iz Xy x )

-1 e 1/ e 1 - 27 m-1
R AP X e X L)
1 " m-1 m-1 m-1""m-2

(Z)
+qm— 1 ly (xm—l)ﬂ:m—l ! Xm—- Z)y (Xm-J)

-Q

| (1)
m-1 (:cm_1] xm—Z)fm(y (xm—.‘l))y (Xm-.'l)

ot e X ™ e »
_0 U-1'Y 17 ™™ m-Zy_ m-1""m

@y e ulX)f (wdu))

))

' (Z)
-—Ila{(h}+p)f1(w+y(Xm__1))(1+y (X

m-1

JiX 1)+rQ(1)(y(X

1 m- m

(i+1) (i)
QT Yy (X PP LR S P
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0y, (3)
HyrlQ otz X IF X oy ex )

m-1
% g’ (i)
+Jy m-1 (q, 4 (y (Xm_1)+xm_1-—u | Xm_z)y (Xmal)fm(u)
0

W@ yx e, ulX, ), (x)d0), e

Solving the equation (3.45) for yh')(Xm_lj' , the following is

gained :
E1
1

(1)

y R =g 20 (3.46)

fia

where,

2+xm—1 | Xm-2)

Bo= R UR Ryl v (X,

)X /- (htp) £ (xy (X))

RS LICAC TR 1

-rq (y(X X )]

m-1

. _ _
+ 1[(1?1 RZ)qm~1 (y(Xm_1)+:rm_1‘| xm—2)

—ngmd (’rm-1 | xm—2)fm(y(xm-1))

¥0%-1) )f (u)d
"RJJ Uy 1Y KX g H Ry g/ ()
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—er_l(::m_JIXm_z)f(y(Xm_J))

¥ o) : )f (w)d
—r[o qm_l(y(Xm_J)-fxm_J-ulxm_z fm u)du)

<0 (:RyER,), (3.47)

(

- i),
E = zot(RJ-Rz)Qm (y(xm_l)mm_] ]xm_z)

(1+1) v
-R.Q (y(Xm_l)IXm_J)—(h+p)f3(x+y(Xm_1))

(i+1)
-rg Ty X 1% )Y

1 m-1

. (i)
# 1 [(RJ—R2)Qm (y(xm—l)ﬁrmal | Xm—2)

(R_+1) =Y (C)ex. ez —ulX_ Jf (wdul
B | r 0 Qm Y m-1 m-1 m-2"°m
20 (:'ng?z)

(3.48)

Fram the inequalities (3.46) and (3.48), considering the following

relationship by Nahmias [3],

(i) (i+1)
o (ylxm_l);gm (y| X ;) s (3.49)

the inequality (3.50) is obtained.

yx a1, (3.50)
Representing the numerator of y{i) ( Xm— 1) and y(iH) ( Xm-l) by Egi)
and E’?’LU respectively and using inequality (3.49), the relation between
(i)(xm_lj and y(i+l)(Xm_1) is obtained as follows :
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p(i)_p(i+1)

- - 1 1
xm_1 y (Xm_])— - ——'—'ZJ———;O . (3.51)

Thus, together the inequalities (3.46),(3.50) and (3.51),

the following relations are obtained :

O

(1+1)
m—l);y * (X

<0, i=2,3,...,m-2. (3.52

The relationship for the remained case {=1 is obtained asrfollows:

where,

z?:z 3 R)Q”)(( Jrz X )

m—l m-1'" "m=-2

R, Q(l)( (X

X ) (hep)f ey (X))

m1

M yx Ix 0

m-1

| (1)
+ L - +
1[(}?1 RZ)Q (y( )tz

-1 1% 172 X3

Q”)(y(xm iz X

1 m-1 m-2)

_rQ(l) (y(Xm_1)+:z:m_1 | X _2)]<0,

0 (1)
Lre L URSRIQII X Sz X )

(2)

“RQZ (y(X IIX_)-(hap)f (zry(X__))
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(27
-rQ “ (y(X ;) Ixm—l)]

(1) _
+2, [(Bl-RZ)Qm_Z(y (Xm_1)+xm_1+:cm_2| Xm-4 3)

(1)
-R,Q "7 (y(X

m-1

)+:z:m_1I Xm_z)

gV

rd "7 Jtzx

(y (X X )10,

m-1

This proposition implies that the optimal ordering quantity

sensitive to the increase of newer on-hand inventory than that of the

older on-hand inventory, and also implies that the increase of on-hand

inventory by one unit derives the decrease of optimal order quantity by

less than one unit.

Proposition 3.4

Expected profit increases according to the increase of the ratio a .

Proof:

From the equation (3.22), the relation

Qm_z((l—'a)yﬁz:m_l'Xm_z) hy Qm_z((J—a)y+xm_1+:cm_2.l Xm-—3) 7
(3.53)

is obtained.
From the equation (3.20) and the inequality (3.53),

3J (X .,y)

———-{}5L——— 29. (3.54)

s 3

is obtained.
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This proposition indicates that when 1-a , i.e., the ratio of excess
perishability under the occurrence of leadtime 1, becomes closer to 1, the
expected profit, J( Xm-l’y) decreases.

Given the fixed ordering cost X , and the optimal order quantity yl Xm___ .

1
there exists s(X _) (;y(X' )) satisfying the following equation,
m-1 m-1

J(X l,s(Xm_l))=J(Xm_1,y(Xm_ J)-K (3.55)

m- 1

Here, if s(Xm_1)>0 , then y(Xm_I) should be ordered and if s(Xm;:,);O ,
then the optimal policy is not to order.

Differentiating both sides of the equation (3.55) with respect to z. i
and noting

(X .y)

L S =0
3y y=y( Xm_ 1)

the following equation (3.56) is obtained.

,(1) (i) :
s(i)(x ) J (Xm_z,y(xm_l))-J (Xm—z’S(Xm—l))
m-1 g™ x stx )
- m- (3.56)
(1) X ) . (z) :
where s (m—l and J (de,y(xm 1)) are defined as follows:
(7:) BS(X _ )
S (X . 1)= Y 777‘1 5 1::])2’ :m_l
-1
(1) aJ (X _J,S(X oy
I K s )= ’"ax — 1 s i=1,2,...,m-1 .
-1
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Proposition 3.5
When o=0 or 1, then

(1 .

-1<s %) (Xm_l);s(1'+1)(xm_1);0' s, 1=2,3,...,m-2
and

3(1)(x )<0 (3.57)

m-1"=
hold.
Proof:
(I) Case of a=1 :
Since the relation,
(m)
J(”'»"’)(x s 3J (Xm_l,y)
m_l:y = ay
(1) (1)
= (R -R,)Q "3 (y+x X, g)-R,Q T (ylX )
(1),
-2, U(htp) £ (zhy)irQ (y) X 1

¢
__zlrJOQm_l(y+xm_1—uixm_2)fm(u)du 20,

(3.58)

holds, J('") ( Xm_ 1:9) is a non-increasing function with respect toy .

On the other hand, since the relation,

(i,m)
gty RG34, 11X 2R 14, m-1

m—l‘y)= (R

-1 [hfz(m+y)+pf1(x+y)+rQ(1'+1)(ylx

-2 rQ“”LJ)(lem )2 )20,

(3.59)
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is derived, J () (X 22 y) is also a»non-—increasing function with

m_
respect to y.
From the equations (3.58) and (3.59), using the relationship

y(.Xm_j);s(.Xmﬁl) and the equation (3.56),

s(i}(x )<0 > i=1,2,-".’m—13 (3.60)

m-1" =

is derived.

Furthermore, denoting the numerator of sh) (X  _)-s (i-1) (X )
Sm-1 m-1
with Ay then
Ay = R,Q (X HH.(y(X__ )N _J-B.(s(X___JIX. )}
2m-1i" w1 7T m-1"" "m-1

+rQ -(Xm_z){Hi(y(X }]'Xm_l)-Hi (s (xm_l)lxm_j))w,

m-1 m-1

(3.61)

is derived from the equation (3.56),

where X’e ={x x
m

) J, and A. is the same meanings
-z m=-1""m2’ T

ST i
in the Lemma 2.3.
From the equations (3.58) and (3.59),

(i) (i-1) -
(X_ _)zs (X ) 1=2,3,...,m ,
Tmrs ml (3.62)

is obtained.
(I1) Case of o=0:

Similar to the case of a=1, since the relation

(m, m) '
J (X 430, (3.63)

{m)

holds, J "' ( Xm_ 12 y) is a non-increasing function with respect to y .

On the other hand, since the relation,

(i,m)
J (X 124050, (3.64)
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holds similar to the case of o=1, _J“’) (Xm-l’y) is also a
non-increasing function with respect to y.
From the equations (3.63) and (3.64), using the relationship

y(X _,)zs(X ,) and the equation (3.56),

m-1
s(‘b) (Xm_l);o s 1=1, 2,.-.,777"1 > (3.65)
is obtained.
. (i) (i-1) X )
Furthermore, denoting the numerator of s ( Xm_z)-s A ( e 1
with Ao, again
Ap= 1L [(RZ Rl)Qm ,L( m—i){Hi—J (y(Xm_l)IXm“i)
_J(S(Xm_l)le_l)}+R1Qm_i(Xm_i){Hi(y(Xm_l).[Xm_i)
—H (s(X J)IX .}
#,UR,-RJQ (X _IE, (y(X )z X )
_z(s (Xm—Jme-Jlxm-i))+R1Qm—i(xm—i){H1;-J(y(xm-1)+xm~1'xm—i)

-H _J(S(X Itz IR}

m~1 m—]lxm-_'l
* *

+2,0Q (X I (XX I-H(s(X, o) X _2)
v *

| Ix )
+orQ (X IH (YK )4z _1|.m_1
-H_J(s(x )tz llx )10,

(3.66)

is derived fram the equation (3.56) similar to the inequality (3.61).
From the equations (3.63) and (3.66),

s(i)(x ), 7:=233".".’m) ‘3.67)

m-1"=

m-1

is obtained.
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. 3.5 Bxample

This section provides an example in order to illustrate the results
of Sections 3.3 and 3.4. The price and cost parameters are (R,,R,,c,h,p,r)
=(300,350,100,10,100,20),£, =0.3 and the maximum lifetime is m=3 . The
demand distribution function is assumed to be exponential with mean 20.

Figure 3.1 illustrates the total expected profit for on-hand
inventory -'rl=15 and x2=5 when o=0.2, 0.4, 0.6 and 0.8. The result shows
the validity of Propositions 3.1 and 3.4. That is, the increase of «
derives the increases of the expected profit and the optimal ordering
quantity.

Figure 3.2 illustrates the wvalidity of Proposition 3.2 on the
restriction of a =1,%,=0 and (Ri’RZ’h) =(200,250,250). In this case, the
optimal ordering policy is determined by taking the inequalities (3.29)
into consideration. Since the inequality, c=100>}?2~h£ =75 , holds, the

0
order of quantity y( Xm_' ) is placed according to the equality (3.30)

1

iff =z<Z*=50). The result shows that the optimal orders y( X2)=18 and 11
are placed when T =5 and 15 respectively, and that no orders are placed
when z,=50 and 60. |

Figures 3.3, 3.4 and 3.5 illustrate the relation between the age
distribution of inventory on-hand z and optimal ordering quantity y( X2)
fqr T =20 ,i.e., (:cz,:r:l) =(0,20), (5,15), (15,5),(20,0) with respect t0u==0,
0.8 and 1.0 respectively. These figures assert the increase of newer
inventory on-hand makes more influences upon the decrease of the optimal
ordering quantity than that of older one. The results coincide with
Proposition 3.3.‘

Figure 3.6 illustrates the validity of Propositions 3.3 and 3.5.
Fram the results of this figure, we can cbserve that the increase of older
on-hand inventory makes more influences upon the increases of y(X 2) and

s( X2) than that of newer one. And the discrepancy between y(X and s(X,)

Y
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inclines to decrease according to the increase of the proportion of the
older on-hand inventory to the newer one. In addition, the solid line in
Figure 3.6 shows the acceptable maximum fixed ordering cost for releasing
order of guantity y(X 2) . This curve shows that the increase of newer
on;hand inventory makes more difficult to raise fixed order cost than that

of older one.

3.6 Conclusion

In this chapter, we discussed the determination of the optimal
ordering policies for perishable commodity under different selling prices
and stochastic leadtime. Same properties of this model such as the
existence of the optimal ordering policy and its conditions, the
influences of the rate of excess perishability, I-a , and the status of
on-hand inventory upon the optimal ordering policies were analyzed.
Furthermore, a fixed charge cost for placing an order was introduced as a
set-up cost and some additional characteristics were obtained. = But
unfortunately, except for the Proposition 3.4, any useful results could

not be obtained with respect to O<a<1,
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CHAPTER N

LIFO/FIFO ISSUING INVENTORY CONTROL FOR PERISHABLE
COMMODITIES SUBJECT TO STOCHASTIC PROCUREMENT LEADTIME

4.1 Introduction

Problems associated with the perishable products arise in many areas
of inventory and production management. Important works have been done
for describing optimal ordering policies for item with predetermined
maximum lifetime. Nahmias [2] has included explicitly the effect of the
expected amount of perishable items among the ordered incoming commodity m
periods ahead, by noting the above expectation depends upon the age
distribution of inventory on band and the realizations of the demands over
the next m preiods. Ishii et.al [1] and Nose et.al [3] described the
model for perishable product with stochastic leadtime under the assunption
of FIFO issuing policy. We have not discussed LIFO issuing policy for
perishable inventory with stochastic leadtime.

In this chapter, inventory control policies for perishable
commodities are considered with zero or one period stochastic leadtime on
both LIFO and FIFO. Blood, photograhic £ilm and fresh commodities are
typical examples of our model. In Section 4.2, we describe some
assumptions and notations which will be used throughout this chapter. 1In
Section 4.3, we establish the LIFO model and clarify the existence of the

unique optimal ordering policy.
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In Section 4.4, we establisn FIFO model and derive the similar
properties with LIFO model. In Section 4.5, influences of fluctuation of
the probability of leadtime %, , inventory on hand, cost of unit holding,
shortage and perishing of commodity in connection with the optimal
ordering for elevating up to the desired level, are investigated on both

LIFO and FIFO issuing policies.

4.2 Preliminaries

The following assumptions are made throughout this chapter.
(1) LIFO and FIFO issuing policies for a perishable commodity are
considered subject to one time planning per cycle with respect to single
kind of commodity, assuming periodic review of ordering.
(2) Unit purchasing cost ¢, unit holding cost %, unit shortage cost pand
unit perishing cost r are introduced. Ordering is given at the start of
each period, while other costs are incurred during each period.
(3) Maximum lifetime of the perishable commodity is assumed to be 2
periods in this chapter.
(4) Maximum inventory level is z and order is given 0 that the inventory
level is kept to be 2.
(5) Each demand in successive periods is independent and identically
distributed nonnegative randam variable with known distribution function F(+)
with continuous probability density f(+).
(6) When leadtime % is 0, new stock arrives with maximum lifetime 2, and
when %=1 , the stock arrives with remaining lifetime 1. Leadtime 0 occurs
with probability %, and leadtime 1 occurs with L , where %, + &; = 1.,

2,0>0, 21>0,
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(7) The. stock remained at the end of each period puts on one age
monotonically.

(8) No backlogging is permitted.

Wwe list the following notations;
xj : the amount of commodity on hand which will perish at the
end of j th periad.
3= ; : the amount of new commodity whose lifetime is two periods.
The following cambinations are possible fram the jth period to j+I st,

concerning the leadtime required, i.e., leadtime 0 or leadtime 1.

Table 4.1 Model of occuring leadtime

Probability
of occurence

2o Case 1 23
%o <

2, Case 2 Lo,

Lo Case 3 Lo,
23 <

£, Case 4 23

1

Jth period J+lst period Case

ch(z, x.) : r.v. representing the amount of new cammodity z—acj which
T J
will be perished if remain unsold at the end of j+1 st

period, using policy ¢ (LIFO or FIFO) for case {.

_ peiAd -
cg(mz,xj) = P({E] (2, w;) <ub).

ERQ(z, x.):expected outdating of Rg(z, z.).
T J dJ
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4.3 LIFO model

The LIFO assumption is equivalent to the freshest commodity first
issuing doctrine. LIFO issuing policy gives the following transfer

functions:

[(z-z.) -p.1T
' ( .7> J) leadtime 0

J+1 ' (4.1)

z"-'UJ- ¢ leadtime I

+
where, (@) = max (a, 0) ,

R LIFO LIFQ.
By the use of the equation (4.1), ‘g (z:_ xj ), Gi (ylz,mj) .and

LIFO

ER7, (g,xj) with respect to case 1 (i=1,,...,4) are obtained as follows:

Case 1:

" LIFO _ +.+
- o + _ - o + 4.+
[(z = Dj) {Dj+1 zH(z-z; Dj) 1
.GILIFO(ulz,:rj) = 1 - FwF(z-z ).
_ z-x . ,
ER;LIFO(Z, x.) =J J F(z-u)F(z-x.-u)du,
J 0 J (4.2)

Similar to the Case 1, the other cases are gained as equalities (4.3) to
(4.5).
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Case 2:

z-:cJ z-—:x:j-u
0 0
Case 3:
2= .
ERsLIFo(z_,:z:.) = Y P(z-u) du
J ; ' (4.4)
Case 4:
LIFO 2T
ERy (2 =) =S Flo-z;-u)du ' (4.5)
0
Proposition 4.1
LIFO . ' , . . .
Each ER (z, xj), i=1,...., 4, 1s an increasing convex function

with respect to z for all Ij€[0, =),
Proof {
For the casez = 1, partially differentiating the equation (4.2) with

respect to z once and twice result as follows:

2~
3 LIFO _ 8 [P ) Y
3z ER, (=2, :x:j) 32,{0 { F(z-u)F(z @ ul)}du
= F(@)F(z-x,) 2. 0. (4.6)
32 :
37 ERJLIFO {z, a:j) = f(z)F(z—:z:j) + F(z)f(z-xj) 20, (3.7)
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For the casei = 2 partially differentiating the equation (4.3) with

respect to z once and twice result as follows.

Z2-xr . ,z-T.-U

J J
3 LIFO =2 -z _.~u-d_.)f(d.)dd .du}
— ER (z, :::j) =52 {So 50 F(z :J:J u dJ)f( .7) ; u
I fld)F(z-z,-d)dd; > 0 (4.8)

2% pp LIFO (5, z) = S Flamz A F(d) 3, 4 (-2 F(0) 20 (4.9)

For the case ; = 3, partially differentiating the equation (4.4) with

respect to 2 once and twice result as follows:

=T .
| ; |
2 0 (a, z)) = £ )0 P(z-u)du = F(2)> 0 (4.10)
_3% __ LIFO _
o7 BRTC (2, 2 = £(2) 2 0, (4.11)

For the case { = 4 , partially differentiating the equation (4.5)

with respect to z once and twice result as follows:

3 LIFO

EZ_ER4 (Z, xj) = F(z-xj) 2 0 . (4.12)
a2 » LIFO ‘ (4.13)
322 ERy (2, ) = fla=z;) 2 0 )

Inequalities (4.6) to (4.13) complete the proof.

- 95 -



Then the total expected cost function for the LIFO model becames as

follows fram the equations (4.2) to (4.5) together with other costs.

LIFO Z-Ts

= — J - .-a. . .
I (2, =) = e(zz)) + lo[hs (-2 ;-d)f(d)dd,

0

(-]

+ p}z (d;-2)f(d)dd;]

o

+ 21P ( (dz)F(d )dd,

T,
Jd
Z2-xT .,

J .
+ 2.5 rf P(z—u)F(z—xj—u)du
0

2T, 2-TU
+ 2023 rS S Flz-z ~u-d_.) f(d.)dd .du
0 0 J J J J

Z-T . Z—IJ. ‘
+ 2ol rj : Flz-u)du + JL? rJ' F(z—:r:j—u)du (4.14)
0 _ 0
In order to show the convexity of the cost function LLIF 0 (z_,,:cj) ,

predescribed Proposition 4.1 is fully utilized.

Proposition 4.2

' LLIF 0 (z, x.) is a convex function of 2 under the assumptions of
d
z < F'J((pio-c)/(p—rzﬁatrf.o)) and 1> %, >ec/p > 0.»
z* minimizing [LIFO(z z;) exists in[.z:j: =), that is

LLIFo(z",:cj) = min [LLIFO (z,xj)].

gt
sz

- G7 -



Proof.
The partial derivative of the equation (4.14) with respect to z is as

follows:
aL'~LIF0(z, x.)
r I- = e+ 25[AF(2-2) - p(1-F(2))]
z-x .
+ 23 r{ F(2)F(z-z.) + 25 Y P(z-u)f(z-z_-u)du}
J Iy J
z-z
+ 2.2 DFP(z-xz .-d. .
0 1?3 , f(da) (z ¥ dJ)de

+ 252, » {FP(z2)+ 23 2 F(Z—Ij)}. (4.15)

Differentiating the eguation (4.15) with respect to z once more, the

following is obtained:

LIFO

32L (z, x.)
e = 2o [hf(z-z) + pf (2)]
+ 25 rlf (z)F(z—:cj)+F(z)f(z—:cj)]
Z~T .
+ nosz,rj ) J f(z_:j_dj)f(qj)ddj |
+ Lo2arf(2) + Hrf(z-z) 2 0, (4.16)
This implies the convexity of & LIro (z, 'zj)‘
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Moreover,

BLLIFO (z,z.)
1im

2,
2z, 3z S (rlyt el pIF(z) - pr ke <0 (4.17)

is obtained , when the following two inequalities are held.

Ty < F 7 ((pLo-c)/ (p-r23+r8s)) and 1 > 2%, >c/p> 0.

L
1im PO (2 )

z2 +® P JL‘=C +2_°h+r'>0 (4-18)

Inequalities (4.16), (4.17) and (4.18) complete the proof.

Proposition 4.3
As the occurrence probability of leadtime 0 , £y, increases, the
optimal order-up-to-level, 2z, increases.
Proof.

Fram the equation (4.15), the partial derivative with respect to z of

the partial derivative of 1770 (z, = j) with respect to %1 is obtained as
follows:
LIFO
3%L (z,x.) ,
i = hF(z—zf.)—p(J—F(z))+2£°rF(z)F(z—:r:j)
32;320 :

Z2-T .

+(1-2%¢) rjo 'yf(dj) F(z—-:rj—dj) ddj+ (1-2%9)rF({2)

_g(J-zo)rF(z-—:j). (4.19)
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Rewriting the above equation by the use of the relation
BLLIFO(Z,Ij)/azzo-

2~X . ’
= RorF(2)F(z-z.)-2 Ifd. -z .-d ydd.
o F(2)F (= IJ) ol‘jo f(dJ)F(z :.r:.7 dJ)de

2
-2U-lo)rF(z-:cj)—f.orF(z)— % - —(—J-%—Q)—TF(z—:r.)
0 0 J

<£orF(z)~(F(z-:cj)—J) < 0.

4.4 FIFO model
The FIFO assumption is equivalent to the oldest commodity first

issuing doctrine. FIFO issuing policy gives the following transfer

function:
[z-z .~ (D.-=x .)+]+ : leadtime 0
. = J Ja
J+1 , z—:z:j : leadtime 1 (4.20)
By the use of the equation (4.20), BiFHO(z,;;J;), GiFIFO‘(u}z,xj‘) and

FIFO s . .
ER. (=, T Ywith respect to case i (i=1, ....,4) are obtained as follows:

Case 1: Case 2:

R FIFO

_ o FIFO
1 (z, =z:) = R, (z, =)
= [z. _ - +
(=42 Ds4ql
= [(z-z, - (p.-.z Y1yt _ +
J J .7)) Di111 .
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FIFO FIFO

G ) = .
1 (HIZ,xJ) (;2 (ulz,xJ)
z—:z:j-u
= 1-Fx)F(2-z 1) - 5 fla-d;,m0Fd,, dd.
’ .
FIFO _ .o FIFO
ER, (z, z; ) = ER, (=, z )
2-T
J
.—SO F(dJ.H)F(z“de)dde . (4.21)
Case 3: Case 4:
FIFO - _ o FIFO
Rs (z, xj )*«R4 (z, 3-"7- )
_ +
= [xj+1 Disq]
L +
= [z :r:j Dj-!—l] ]
FIFO FIFO.
Gg (u]z,z3)= G, (u‘lz,xj)
=1~ F(z-z, -~ u) |
FIFO . FIFO z.
-2 .
=$ 7 Fla-z; - wdu (4.22)
0
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Proposition 4.4

Each E RiFI FO

{z, :z:j), 1+ =1, ..., 4, 1is an increasing convex function
with respect to z for all x. € (o, =).

Proof.

For the case 7 = 1 and 2, partially differentiating the equation

(4.21) with respect to 2 once and twice result as follows:

]

FIFO _ 9 FIFO .
E'Z‘ERJ (Z.’ xj) - 3z ERZ .(2’ IJ) ‘
zZ-T, . :
=F(Z"I _)F(:J: _) + J JF(d-+1)f(z"dj+1)ddj+1 =>= 9] . (4.23)
J't 0 J
2 FIFO
3?2 FIFO = 3 _ R (z,2.)
5T R (B =) T 52T By J
z-T.
.24)
= flz-z JF(z) + J Tf(d; ) f(2ds )85 20,
i 0
For the case = = 3 and 4, partially differentiating the equation
(4.22) with respect to z once and twice result as follows:
3 FIFO 3 ., FIFO
3z ER3 (z, xj) = 53 ER4 (=z, -’L‘j)
(4.25)
= F(z-z.) 2 0
(z g) 20
2 2
FIFO - 8__ pg FIFO
a—;'E}?s (Z, IA.) - azz ERg (25 :J)
(4.26)
= f(z-:x:j) 20 _
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Then the total expected cost function for the FIFO model is derived
as follows fram the equations (4.21) and (4.22) together with the other
costs.

. L .
FIFO. - _ 2 (2-d.)f (d.)dd. - Jfed.)dd.
L (z, xj) ez :cj)+ lo[hij(z dJ)f ( l7) 5+ h(z .'cj)jo f(dJ)de

® 2-T .
+PL (dj—z)f(dj)ddj + rS , JF(.dj+1)F(z—dj+1)ddj+1]

©

2T »
+£1[p5xj(dj—mj)f(dj)ddj+% TF(a-z -] | (4.27)

In order to show the convexity of the cost function [FIFO (, .. ,
3 J >

predescribed Proposition 4.4 is fully utilized.

Proposition 4.5
Assuming ;< F1 ((pRo-c)/((p+h)8p)) @nd 12 %0 > ¢/p > 0, then
LFIFO( z,:rj) is a convex function of z . z#* winimizing LF IF 0(2, Ij )exists

in [ICJ-,‘”) , that is LFIFO(Z’*_,:::.)= min[LFIFO(z,:z:.)J.
22T .
Proof. J

The partial differentiation of the equation (4.27) with respect to =z

becomes as follows:

an FIF0 (2 )

I = o + 2o[h{F(z) - p{ 1~-F(2)}

oz

{2~ .
J
+rJ0 f(dj+2)F(z-dj+1)ddj+1]+ z,rF(z—.:z:J.). (4.28)
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Again, differentiating the equation (4.28) with respect to z , the

following is obtained:

22p FIFO (2
332 = %, [(Btp)f(2) + r(f(z-:cj)F(:x:j)
Z-IJ.
d. -
+!0 I J+1)f(z de)ddj“)]
* 0 rfzz) 20, (4.29)
This implies the convexity of LF 1FO (z, .).
Moreover,
F
vim 20z, z) |
2] 3z =U{p+h)F(x;)-p)Lote < 0 . (4.30)

is obtained, when the following two inequalities hold,
_ 1 '

z; < F 7 ((plo-c) /(Lo (p+h))) and 1 2 24> c/p > 0.

BLFIFO

. (z, = .)
lim d
e P = ctlghtr > 0. (4.31)

Inequalities (4.29), (4.30) and (4.31) complete the proof.
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Proposition 4.6

As the occurrence probability of leadtime 1, 2,1 , increases, the
optimal order-up-to-level z increases.

Proof.
From the equation (4.28), the partial derivative with respect to 2 of

the partial derivative of LFIF 0 (z, x.) wWith respect to £, is obtained as
. .7 .

follows:
a2, 1F0 (z, :z:7.) z-:z:j
— = hF(z)—(l—F(z))p+rJ fld. YF(z-d. ,)dd.
3z- 3L, 0 J+1 J+1 g+1

-rF(z—I"j). (4.32)

The above equation is rewritten by the use of the relation,

FIFD
LTz, z;)/3z = 0,

= -rF(z-:r:j)(J+(J-20)/9—o)-c/lo <0,

4.5 Properties of LIFO/FIFO Models
In this section, the properties of the optimal order-up-to-levels on
both LIFO and FIFO models are investigated with respect to on-hand

inventory , xj and cost parameters.
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Proposition 4.7

As the increase of on-hand inventory :cj the optimal

order-up~-to-levels on both LIFO and FIFO models increase.

Proof,
. . . . LIFO
From the equation (4.15), the second partial derivative of T (=, :z:j)
with respect to z and ::;7. is obtained as follows:
azLLIFO(z, sj) z2-x.
32. 9z = -Lohf (z-rj)-ﬂé’chmfcz-:cj)—zozxrf EICRCEIPELS
0
-Mrf(z-a:j) <o, (4.33)
. . . . FIFO '
From the equation (4.28), the second partial derivative of L ~ (z, 5_7-)
with respect to z and 2, is obtained as follows:
2 FIFO
oL (z, =.)
J = ~Lorfz-z ) Flz;)-irflz-z;) £ 0 (4.34)
3z. a:z:j 0 J J J’ = )

Inequalities (4.33) and (4.34) camplete the proof.

Next, the influences of the cost parameters, i.e., costs of holding,
shortage and outdating are investigated upon the optimal order-up-to-level

for both LIFO and FIFO issuing policies.
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Proposition 4.8

As unit holding cost % increases, the optimal order-up-to-levels on
both LIFO and FIFO models decrease.

Proof. _

Fran the equations (4.15) and (4.28), the second partial derivative

ofLLIFO (=, :::j) and LFIFO(z, :z:j)with respect to z and h are obtained as

follows:
2. LIFO
9°L (z, :IZj): 9 F(z-z.) > O (4.35)
3z-9%h o g’ o= "
R (2,2,) (4.36)
3z-oh = 2oF(2) 2 0-
Proposition 4.9

As unit shortage cost P increases, the optimal order-up-to-levels
on both LIFO and FIFO models increase.

Proof.

From the equations (4.15) and (4.28), the second partial derivative
of 'LLIFO (=, xj)~arxi LF 1F0 (z, :r:j)' with respect to z and p are obtained
as foilows:

LIFO

%L (z, =)
d_ = - g2, {3-F(2)} g O. (4.37)
8z-dp
a2 TIFO (5 =) 3
az_ap = - 2'0 {l"F(Z'-)] 9 0. . )
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Proposition 4.10

As unit perishing cost r increases, optimal order-up-to-levels on
both LIFO and FIFO models decrease.

Proof.

From the equations (4.15) and (4.28), the second partial derivative

of LLIFO(z, xj)and_LFIFO(z, :cj)with respect to z and r are obtained as

follows:
| LIFO
32L (z, =.) 2-x .
d. = g2 ~x.)+8%2 J Jr(d.)Flz-z.-d.)dd.;
3z*or QOF(Z)F(Z xJH' ot 0 7 J J J J

(4.39)

+202,F(z)+1}F(g-xj) >0

azLFIFO (z, Ij)

2-T, ,
= J »
o= £0J f(dj+}r(z—dj+1)ddj+1 +2.1F(z—xj) > 0 (4.40)

9z. dr 0 pal

4.6 Conclusion
In this chapter, an inventory control for perishable commodities

subject to stochastic leadtime on both LIFO and FIFO issuing policies has
discussed under zero or one unit leadtime. The existence of _the optimal
ordering policies on both LIFO and FIFO has been clarified and their
uniqueness has been proved. Furthermore, the influences of the change of
occurrence probability of leadime 1, on-hand inventory and costs of unit
holding, shortage and outdating upon the optimal ordering policies have

been considered on both LIFO and FIFO policies.
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CHAPTER V

INVENTORY CONTROL FOR DECAYING COMMODITIES SHBJECT
TO STOCHASTIC LEADTIME AND STOCKOUT CONSTRAINT

5.1 Introduction

When we discuss the inventory problems for deteriorating items,
coping with the stockout due to deteriorations becomes important. There
are two types of deterioration, i.e., perishability and decay. The former
type of commodities possesses a maximum gsable lifetime and the latter
does not. As for perishable commodities, optimal ordering policies under
the chance constraint of shortages were studied by Ishii et al. [3]. But
almost none of works had been concerned with decaying commodities subject
to stockout constraint when procurement leadtime varies.

In this chapter, a (@, r) inventory control system [2] with finite
varying stochastic leadtime is considered for exponentially decaying
commodities whose decaying ratio during the n-th period to the inventory
level at the end of the(n-7)th period is equal to a constant.
Characteristics of optimal ordering decision, 1i.e., optimal ordering
quantity and reorder point, are derived under given probability of
stockout occurrence and their sensitivities of changes in decay are also
clarified.

In addition, the optimal permitted probability of occurring stockout

is investigated in order to obtain the optimal ordering decision.
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5.2 Preliminaries
The decaying inventory model considered in this chapter is so-called
(Q,r) stock control system with variable leadtime for £ inite range and
with a chance constraint for shortages in which a quantity @ is ordered as
soon as inventory on hand and on order reaches to a fixed reorder point r.
(1) Leadtime 1 varies in the range [t Yy TZ] and is subject to probability
density g () and distribution functiong(t).

(2) Probability of stockout occurrence is set not to be greater thanl.a .
0sasl)

PriI{r)S0)S1—aq (5.1)

where, I(t) is given as the inventory quantity at time v and initial

inventory 7(0) is specifed as »r .

(3) Maximum inventory level is greater than reorder point.
PriQ+1Ilr)&r)= 17 (5.2)

(4) Cammodities considered in this chapter are exponentially decaying.

(5) Demand occurs with constant rate A.

5.3 Constraints for Reorder Point and Ordering Quantity

When a time r is set and there does not exist any arrivals of orders
during [r, t+r), the inventory level at r+r, I(r+7), is derived as follows
( [11, [4] ):

T+ 0 =e " (I(2)+ A/8) — A/8, (5.3)

where # is decaying ratio and 1 is demand rate. Setting r=0 in (5.3),

I(r) =% (r+ A/8) — A/8,

is obtained, Using assumption (2) the next inequality holds.
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P’( '2“3}"‘"(,-:/30) )s1-a (5.4)

The value Y which satisfies the relation, G(y)=a r is denoted with K, .

Then, the lower bound for reorder point r is derived fram (5.4), i.e.,

,'.g(exao___ 1)”6. (5.5)

From assumption (3), the following inequality is obtained.

Q2 r—e T (r+ A6+ A/6.

Together with (5.5), the lower bound for ordering quantity Q is obtained

as follows :

Q= e 'N6(1—e"7). (5.6)

5.4 Fornulation of Total Expected Cost Function

The planning horizon considered in this chapter is defined as
duration between a released order point to the next one and its length is
denoted with 77 . Then, the inventory level at time T is représented as

follows :

I(T)=e"*"""le~*"(r+ A/ 6)+ QI—A/§ (5.7)

=7

From the equation (5.7), T is expressed as the function of lead time :

. —ery QO Y\
T=t+3 l"(e T+ ra+/\)‘ (5.8)
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In order to identify the total expected cost function, stock holding,
decaying and shortage costs are constructed in the sequel.

Average inventory holding cost is expressed as follows :

h(Q—AT)/6.

where h is stock holding cost for each commodity per unit time.

Average decaying cost is defined as follows :

where ¢ is decaying cost for each decaying commodity.

The cost for shortages is given by P when a=0 and (l—a)p when a is
in the range [0,1].

From the above descriptions, the total expected cost per unit time,

A(Q. r), can be defined as follows :

A(Q.'r)=fﬁ{ i ek ATl ap —A(c+h/0)]g(r)dr, (5.9)
ro Lo+ 5 In(e™" + QO/(A+ m9)) ]

where K is a fixed ordering cost.

Next, we define Q as follows :

Q051 _eomz0.
e el ' (5.10)

fiv

Q
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Substituting (5.10) into (5.9),A4(Q r) is rewritten as follows :

4G, 1) =ff- [ K+Q(r6+ N(c+h/8)/6+(1—a)p

¢ : -;\(c+h,/o>]gu)dr. (5.11)
T+ ?ln(e'" + Q)

5.5 Properties on Reorder Point r and Ordering Quantity Q
Differentiating (5.11) with respect to r and using the ineguality
(5.10), the following proposition is obtained.
Proposition 5.1
| A(Q. r) is a nondecreasing function with respect to r.
Proof: Differentiating A4 (Q. r) with respect to r, the following relation

is obtained :

3A(Q. 1) f Qlc+h/6) '
= - glrddr=0.
ar n T+ -;—ln(e‘°f+ Q) (5.12)

Next, differentiating (5.11) with respect to @, the eguation (5.13)

is derived.

BAQ, 1) _=f"[(r6+ N(c+h/6)te+1/6 - In(e™* + QI
2Q % o{r+ —gl-ln(e""+ Q)]’
K+1/6 - Q10+ (c+h/O+(1—a)p

e-sr+Q
Ale+1/8 -In(e "+ Q¥

— ig(ndr.
(5.13)
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The numerator of (5.13) is represented by B(é) , that is,

B(Q)=(76+ Nc+h/O(r+1/8 - Inle~*" + §))

_ K+1/6-10+N(c+h/O+(1—a)p (5.14)
e "+ Q

Differentiating (5.14) with respect to(Q,

dB(Q) Q__ Q
20 = (r6+ N(c+h/8 e+ 0r Ty or >0, (5.15)

holds and the following proposition is-obtained.

Proposition 5.2

A(Q. r) is either monotone increasing function with respect to Q or the
function whose first partial derivative with respect to () changes its sign

once from minus to plus. That is, A (Q. r)is pseudo-convex with respect to

0. [_j

Substituting (5.10) into (5.14),
B(1—e ™) 2 (164 N(c+h/60) r— {K+ (1—a)p+ 1/8-(1—e ™) (r6+ N(c+h/O)L
and using (5.5), the lower bound for B(Q) is obtained as follows :

B(Q)=e®%c+h/0)ir—1/8 - (1—e " N—{K+(1=apl. (5.16)

In order to obtain the optimal ordering policy, we could consider two

cases fram (v5.16).
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(I) Case I: e*%c+ h/ﬂ)lt—l/ﬁ-(1—e‘"‘)!—fK+(1—-a)P'20, for any €[, ol
-01’.

From (5.10), 0 is set to be the value of the lower bound, |—e

and

Q=1/0 -(1—e " )( A+ 76), ' (5.17)

is obtained. Since the optimal reorder point, r*=21/6-(eXe%—1) , is gained
from Proposition 1, the optimal ordering quantity, Q*, could be derived as

follows :
Q*=MNE8-(1—e """ )e ke,

(II) Case IT: eX%c+h/8)it—1/8-(1—e=*")—IK+(1—a)p} <O, for some z& [z, n].
Then also, there exists a unique solution for 0. That is, eitherQ*= Q

so as to 04(0.r)/80=0 or Q° which is again given by (5.17).

5.6 Properties on the Probability of Stockout Occurrence
In this section, the probability of stockout occurrence, (I—a) , is
considered with respect to the Case I. Substituting (5.17) into (5.11)

and transforming by .q= G_'(a') for azal1/2, A(Q, r)is rewritten as follows:

" K+(c+h/6)(1—e °")e??/6+(1—G(qg))p _ h/8
Z t+1/6 -In(e "+ 1—e°") glr)dr—Alc+h/0.  (5.18)

A(g)=

Then, first and second derivatives with respect to @ are obtained as

follows :
dA(g) 7 (c+h/8)(1—e °")e’ —pglq)
dq -—-/;o 4+ 1/8 - In(e" T4 1—e7°") gl dr. (5.19)
d*A(g) _ ™ 6lc+h/0)(1—e°")e**—pg'(q)
dgt  "Jn ek 1/8-In(e i 1ee)  BTAT (5.20)
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Cambining the above equations (5.18) to (5.20), the following
proposition is obtained.
" Proposition 5.3

Wwhen lead time density g(q) is unimodal and g'(q)=0 is satisfied
under the assumption G (g)=1/2, a’sz(q)/dq2>0 holds. That is, A(q) is
convex: function with respect to ¢ and the optimal value of 4 ibs obtained

uniquely.

5.7 Properties of Decaying Ratio
As for Case I, the influences of decaying ratio § , upon optimal
reorder point r®and optimal ordering quantity Q° are considered.

From (5.5), optimal reorder point r*{f) is set as follows :

r* ()= (e~ 1) V0.
and the first derivative of r*(f) with respect to 6§ is obtained as follows:

dr*(8)

0~ -b’}—{e"’(Kae——l) +1. (5.21)

From (5.6), optimal ordering quantity Q*(6) is set as follows :
Q*(6) = eY1—e ") 1/0.

Then the first derivative of @°(6) with respect to § is obtained as

follows :
d3‘0(0)= e""—z—(l—e‘”') (K,,—-%-)+ _2_ e " ekl (5.22)

Cambining (5.21) with (5.22), the following proposition is obtained.
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Proposition 5.4
Optimal reorder point r®(f) and optimal order quantity Q+(#) have the
following property with respect to decaying ratio g .

(I) property of 7*(8):

621/Ka

: increasing,
{ 0<1/K. .
exp(K.0){Kab—1141>0 ; increasing,
{ 0< I/Ka
eXP(Kno)[Kaa" 1]+ 10 .
; decreasing.
(IL) property of Q*(6): 6=21/Ka ; increasing,
0<1/Kq
[1—exp{—0r)](Ka—1/6) + tiexp(—81)>0 ; increasing,
{ 8< l/Kc
[1—exp(—80,))(Ka—1/8) + 11 exp(— 811 ) SO ; decreasing.
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5.8 Conclusion
In this chapter, a (g, r) inventory control system with finite varying
stochastic leadtime was discussed with respect to exponentially decaying
commodities. Characteristics of optimal ordering decision, i.e., optimal
ordering quantity and reorder point, were derived under given probability
of stockout occurrence.
- In addition, the optimal permitted probability of stockéut cccurrence

was investigated in order to obtain the more effective optimal ordering

decision.
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CHAPTER VI

ALLOCATION PROBLEM FOR PERISHABLE COMMODITIES

6.1 Introduction

We consider perishable commodities which become obsolei:e and cannot
be used after a certain period of time ([1] (2] (31 [4]). Optimal
allocation policies for perishable commodities were analyzed first by
Prastacos [5], [6]1, [7]. These models were discussed under charging cost
only for shortage and outdating. But, if we discuss the allocation
problem, transportation cost should be also an important factor.

In this chapter, we discuss a single period allocation problem of
perishable commodities for several fixed demand points based on an LIFO
issuing and a rotation allocation policy considering‘ shortage, outdating
and transportation costs. Blood, photographic film and fresh commodities
are typical examples of our model. Section 6.2 gives same assumptions and
notations used throughout' this chapter. Section 6.3 formulates the
problem and clarifies the existence of the optimal allocation policy.
Section 6.4 presents an algorithm for obtaining its optimal solution. 1In
addition, we give an example in section 6.5 in order to examine the
influences of shortage, outdating and transportation costs upon the

optimal allocation policy.
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6.2 Preliminaries

A periodic review inventory model is oonsidered, for one planning
horizon and single item. That is, ordering takes place at the start of a
period and costs are incurred during a period. The period length is
arbitrary but fixed. And the following assumptions are made to construct
the model.
(1) Maximum lifetime of the perishable commodities is fixed and equal to m
periods. |
(2) Inventory is depleted by demand at the start of each period according
to a LIFO issuing policy.
(3) There are n locations where demands occur.
(4) The stock remaining at the end of each period ages one period
monotonously and is returned fram each location to regional center.
(rotation policy )
(5) If the commodities have not been depleted by demand until the period
it reaches age m , then it perishes and must be discarded.
(6) Costs are charged at each location for every unit short, perish or
transported.
(7) Demands at each location are independent random variables with known
distribution Fy (*)and density fk (*) (k=1,2, ,n) .
(8) The following notations are used throughout this chapter.

8 ¢ shortage cost per unit of demand unfilled at location .k

: perishing cost per unit perished at location k

transportation cost per unit shipped fram regional center to

x
X

location k or returned from location k to regional center

allocated quantity not subject to outdating at location k

.
x*

(age 0 to age m=2 )
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B

k
N = (N, N, cee, Nh)
B = (B, B2, ..., B)
n
n
B = L B
k=1 k
ﬂ'
N= L N
k=1 k

6.3 LIFO Allocation Model

when newer units N and older units p are prepared,
expected cost ¢( N,B) is given by

N, +B

k "k

( Ny B,y ~) dFk (x)

(:z:—Nk-Bk)dFk(x) + wy [

N k+B X

n
C(N,B) = I [g
k=1

My

N

+ w,B, F

1% k(Nk) + (Nk+Bk)uk + ukS

and we have

ac(N,B)

9B, (8gtwy )Py (W 4B, ) -8y tuy

32¢(N,B) _ |
_‘ﬁ;fl (8t Ty BytBp) 2.0

3¢ (N,B)
lim 292220 2y, >0
pom Pk K
HAURO N ]
Th (8t Py (N 4B, )-8y tup + (wy w )P (W)
92C(N,B) _
w2 - v WtBy) + () () 2.0
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the total

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)



where,uk > Wy is assumed throught this chapter for each k& .

) ac(N,B)
1im aw, = 2y

N,+c

k

>0

a2C(N,B)Y 32c(N,B)

aﬂkz aNkBBk

= (- wp) (810 ) [ (W) Fp (W #Bp) 2.0 (6.6)
32C(N,B) 32C(N,B) |

BBkEJNk ‘ BBkZ

Together the above inequalities (6.3), (6.5), (6.6) and the property

of convexity, the following proposition is obtained.

Proposition 6.1

Total expected cost function ¢(N,B) is convex with respect to Nk and

6.4 Algorithm for Optimal Allocation Policy
Introducing Lagrange multipliers A and p into equation (6.1), the

following Lagrange function ¢(#,B) is given.

n n
$(N,B) = C(N,B) = A (L By-B)-u(IN-H) . 6.7
) k=1 k=1
Then, we have
3¢ (N,B)
——aBk = (sk-fwk)Fk(Nk+Bk)-sk+uk - A, (6.8)
39 (N,B) _
-T”i— = (st )Fy (M 4By) = 8 g~y (up -0 )F, (W) | | (6.9)
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An - algorithm is developed to solve the following Kuhn~-Tucker

conditions with respect to Nk and Bk. s k=1, ..., n.

n .n
(1) L B,=B, L N,=N
k=1 X k=1 K
3¢ (N,B 3¢ (N,B
(I1I) --—2—3-——)3_ , —q%(ﬁ-’—) >
—k : k
3¢ (N,B) 3¢ (N,B)
i B, /2 =9¢ N, ——————— =
(111) ’
k 3B, k on,,
Algorithm

First, n locations are arranged and serially numbered as in the

following ,i.e.,

uj-sluz—szé ooy <u —Sn, ar)d Set'

I, = (u.-s. ., =S =1, .
7 (u‘b 87+ Uiy S7,+1]’ =1, ..m

~
>

0 £ (_.co, ul—sll’ un+1-sn+1 é"“‘”

Then,our algorithms are given as follows by (i) v (x).
(i) If B=0, execute (ii) and if B'#0, execute (v).
(ii) Set £+0. Then, arrange n locations and put serial numbers numbered
as stated above .

(iii) Set uwe Ii' And the followings are obtained.

* Np=0": R=t41, ..., n.

~

8,—-u ;U .
-1,°0°7% - .
* No=F; "(———") : 2=1, ..., T.
A A s,Q‘,-mQ, ’ s
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-1 59 Wp -8 -1 54 i1 - -
If LoFy (W)é N and LoFo ™ ( 5 ity )> N , there exists y,
n

within I, so that Lo=1Mp=F and terminates the algorithm with N, (2=1,...,n).
Otherwise, execute (iv).
(iv) Set i + i+l and execute (iii).
(v) Set ©2+1.,
(vi) SetAeI,,Mel;. Then,
By =0; L={+1, ..., n is obtained.

Fram the equation (6.8),

¥ 43 -7 8, -u +A0
p p—Fp ( spmp ) ; p=1,2, * s 0y 1:
is obtained. ’

Introducing B_=0 into the equation (6.9),

_1 8 ~U +u0'
N =F (—P—-E—) ; p=1,2, ..., 17
P p sp+up :

is gained
Two kinds of sets, J and X, are defined :
J & {location p | p=1,

veey 1, B 0
p# }

X & {location p | p=1, ..., i, B = 0}

Put each location number p (=1, ..., ) into either type of sets K or J

respectively and if both X0 and U o exist within Ii so that

1 : _ 8 -u_+A s _-u_+y
I (W45 )=IF Tp 9, ;5 p-1 Oy = ws3
p=1 P pes P pYp  pex P S
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then execute (ix).

Otherwise, set g + z+1 and execute (vii).

(vii) Put each location p =1, ..., 7 into either type of sets ¥ or g

respectively and if >‘0 andvo exist within Ii and Iq respectively so that

q _q M =A 8_~u_+u q 8 _-u_+t
R R T I TR Gy p ol 210 Ly,
p=1 P pes PP pek pp  p=tt1 P T
i q ~71.5,7U +Ao w_-u_+u
L (Np+Bp)+ )3 Np= z FP (—g——L——H LF 1(—R—+;L—9-)
p=1 p=i+1 P peJ pp  pek P %pTp.
q 8_~u_+u
+ I F‘J(—B—+5—°) = N+B ,
p=i+1 P sp P
& _-~u_+A U,-A
. ‘p p 0 00
and 1f P 2 uU —w (P”]: 2: 7‘) ’
pp ppr
then the optimal solution is obtained as follows :
§_-~u +A H_-A
B F "H(L_B 0 p - (uo D i1, o, i en
P P P pva ’ P ’

By=0 :p=1, ..., i (pen),

v ~7.8,-u +u
= ( ) . =
b o Popsitl, ..., q,
Pt T ’ ‘
u,~-A
e ~1,0 70 . S -u
Np p (‘*-‘u —w) s p=1, ..., 1 (ped) N =F ’1(_B_.L+E_Q) .
p P p p Sp"‘up ’
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Otherwise, execute (viii).

(viii) Set q +« q+1. If q=n+1, €Xxecute (x). Otherwise, gxecute (vii).

(ix) If
S0 | Yoo
g _+w ~u-w_
pp  Yp'p
then the optimal solution is obtained as follows :
4 H,=A _4 8 _-u_+u ]
Np=Fp-1 (u—a_-l;q-) : p=1, ..., 1 (ped), Np=Fp 1(—5——_'%—9-): p=1,-++1 fpekl,
b p pp '
8_~u_+A TP
-1 g -1,70 0 .
B_=F ( ) -F ( )+ p=1, ..., 1 (ped),
+w U_-Ww
PP 5 P %™p

B,=0 & p=1, ..., i (pek),

Np=0 : p=i+l, ..., n,

Bp=0 : p=itl, ..., N .

Otherwise, set g + i+1 and execute (vii).

(x) If © < ntl , then set { + {+1 and execute (vi).

Proposition 6.2

The increase of perishing cost wk incurs the decrease of Nk+Bk .

(Proof)

From the equation (6.8),

-1 sk-uk-f-A
N, + B, =F (—
k k k sk-mk
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*1s obtained. with respect to the above equation, when Wy
increases, Nk+ Bk decreases. 1f Nk+Bk remains constant, we should
increase ) . Wwhile )\ increases, N o+ B Q (¢#k) increase at other

n

locations. This causes L (N, + B.) > N+B + 5o, we must decrease V) +
1=1
B k instead of increasing A.

Proposition 6.3

The increase of shortage cost ék'_ makes Nk + Bk increase.

Proof :
From the equation (6.8), this proposition could be proved by the

similar way to prove the propoésition 6.2.

6.5 Numerical Example

This section provides an example in order to illustrate the results
of Section 6.3 by the use of the proposed algorithm described in Section
6.4. The demand distribution functions at each location are the identical
uniform distribution from 0 to 10. In this example, we consider n=3
locations and N=6 , B=2 .

The 'cost parameters(gk, Wy uk)at location k are given in Table 6.1.
Table 6.2 shows the optimal allocation policy and its total expected cost.
Table 6.3 shows the influence of shortage cost 8 g upon the optimal
allocation policy at location 1 in order to illustrate the proposition

6.3.
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In this table, cost parameters are fixed except 32, in Table 6.1. Table
6.4 shows the influence of transportaion cost U, upon the optimal
allocation policy at location 1. In this table, cost parameters are fixed
exceptltgin Table 6.1. Table 6.5 shows the influence of outdating cost 102
upon the optimal allocation policy at location 1 in order to illustrate
the proposition 6.2. In this table, cost parameters are fixed except wz

in Table 6.1.

Table 6.1 Cost parameters
ost s u w
X k k k
1 5 10 5
2 10 15 5
3 15 20 5

Table 6.2 Optimal allocation policy and
its total expected cost

location k .N B Cost
1 2.28169 | 2.0
2 2.16901 | 0 | 210.549
3 1.54930 | 0
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Table 6.3 Influence of shortage cost upon
the optimal allocation policy

—
Sy Ny + By

2 2.82132

3 3.08157

4 3.32361

5 4.28169

6 4,46866

7 4.64380

8 4.80818

9 4.,96278

Table 6.4 Influence of transportation
cost upon the optimal
allocation policy

uSL N,@ + BL(’,
6 6.20195
7 5.66771
8 5.17221
9 _ 4.71137
10 4.28169
11 3.10627
12 2.69129
13 | 2.30179

- 130 -



Table 6.5 Influence of cost per unit perished item

upon the optimal allocation policy

W Nb + 32
2 4.,48451
3 4.41690
4 4.34930
5 4.28169
6 4,21408
7 4.14648
8 4.07887
9 4.01162

6.6 Conclusion

In this chapter, the model for a single period a.llocation’ problem of
perishable commodities based on an LIFO issuing policy has been formulated
under the rotation allocation policy and the existence of the optimal
allocation policy has been proved. An algorithm for obtaining its optimal
allocation policy has been proposed. Furthermore, a numerical example is
given for investigating the influences of shortage, transportation, and

perishing cost, upon the optimal allocation policy.
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CHAPTER MI
CONCLUSION

we have discussed some structures and properties of mathematical
models to describe the optimal ordering policies for perishable
inventories. In this chapter, we summarize the main results of the
dissertation.

Chapter II has been devoted specifically to examine inventory model
for perishable commodities under the stochastic leadtime with mixed ages.
Particularly the cases of zero and one period leadtime have been
considered and the optimal ordering policies have been derived.
Furthermore, the effect of certain important factors on the optimal
ordering policies have been analyzed. Next, considering the fixed
ordering cost, some other characteristics on the ordering policies have
been obtained.

In Chapter 1III, we discussed the determination of the optimal
ordering po}icies for perishable commodities with predetermined maximum
lifetime ur;der the different prices and stochastic leadtime. Some
properties of this model such as the existence of the optimal ordering

policies and conditions thereof, the influences of the rate of excess



perishability and the status of inventory on hand upon the optimal
ordering policies were analyzed. Furthermore, a fixed charge cost for
placing an order was introduced as a set up cost and then some additional
characteristics were obtained.

In Chapter IV, we discussed an inventory control for perishable
commodities subject to stochastic leadtime on-both LIFO and FIFO issuing
policies under zero or one unit leadtime. The existence of the optimal
ordering poliéies on both LIFO and FIFO has been confirmed and the
uniqueness has been proved. Furthermore, the influence of the changes of
occurrence probability of leadime 1, inventory on hand and inventory
relevant costs upon the optimal ordering policies have been considered on
both LIFO and FIFO policies.

In Chapter V, the inventory control system with finite varying
stochastic leadtime was discussed in case of exponentially decaying
commodities. Characteristics of the optimal ordering decision, i.e.,
optimal ordering quantity and reorder point were also derived under the
given stockout probability.

In addition, the optimal admissible probability of stockout
occurrence was investigated in order to obtain the more effective optimal
ordering decision.

In Chapter VI, the model for a single periéd allocation problem of
perishable comodities based on an LIFO issuing policy has been formulated
under the rotatable allocation policy and the existence of the optimal
allocation policy is proved. Furthermore, a numerical example was given
and investigated the influences of shortage, transportation, and perishing

costs were investigated upon the optimal allocation policy.
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