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Abstract
An integral test for some multidimensional Lévy processesis given. A law of

the iterated logarithm of Chover type is derived from it as a corollary. This law was
pointed out by Chover in the case of one-dimensional symmetric stable processes
with discrete time.

1. Introduction and result

Limit theorems have always been of central importance in probability theory.
Among them we study the law of the iterated logarithm (abbreviated to LIL). The
most fundamental result on the LIL for Lévy processes is theLIL for the Brownian
motion : 0 onR1. It is proved by Khintchine [6] in the following form:

lim sup
2 log log

= 1 a.s.

It still holds for in place of , that is, it holds that

lim sup
2 log log

= 1 a.s.

and this also holds for the multidimensional Brownian motion. However, even if we
only consider the one-dimensional case, we cannot extend the LIL for the Brownian
motion to that for strictly -stable processes : 0 . The reasonis that we have

lim sup
2 log log

= a.s.

So Chover [3] paid attention to the classical LIL as follows:Let ( = 1 2 3 )
be independent identically distributed onR1. Set = =1 . If exp( 1) =

2

for all R1, then it follows that

lim sup
2 log log

= 1 a.s.
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In this case the variables satisfy exp( ) =
2

again, so he thought

that these variables must be cut down additionally by the factors 2 log log
1

to
achieve a finite limsup. In the case where the classical LIL does not hold, he expected

the “cut down factors” 2 log log
1

to appear otherwise, and proved the following:
If exp( 1) = for some with 0 2, then it follows that

lim sup
1

1 log log

= 1 a.s.

Keeping this result in our mind, we consider the LIL of Chovertype (for reference,
see [12]). So we deduce an integral test to obtain the limsup behavior of multidimen-
sional Lévy processes : 0 . And we derive the LIL of Chover type from its
result. In the case of the multidimensional non-Gausian Lévy processes, we know a
few result concerning lim sup ( ) for increasing positive functions ( ). We
only know Pruitt’s result [9], which investigates lim sup 1 for 0 (see
Remark 1.5). Here we get back to the LIL of Chover type. Its form is singular, but
the classical LIL can be modified in a similar form, that is to say that its form is no
rare. For example, in the case of the Brownian motion, we can get

lim sup
1 log log log

= 1 2 a.s.

And, for example, in the case of strictly -stable subordinators : 0 with 0
1, we know that

lim inf
1 (log log ) (1 )

= a.s.

where is a finite positive constant (for example, see [2]). Hence, as we have 0
a.s., it follows that

lim inf
1

1 log log log

= (1 ) a.s.

In general, for non-trivial strictly -stable processes : 0 on R1 with 0
2, we know an integral test, which shows that the LIL of Chovertype holds (see the
proof of Corollary 1.2 below). Its integral test was first given by Khintchine [7], and
it implies that

lim sup
1 ( )

= 0 a.s. or = a.s.

according as

1 ( )
or =
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if ( ) is increasing and lim ( ) = . This fact can be shown by Yamamuro’s
result [15] for the case where (( 0)) 0 and ((0 )) 0, and a similar result
is reported by Fristedt [4] for ((0 )) 0. Here is the Lévy measure of .
Our theorem is an extension of this fact.

We denote the inner product and the norm inR by = =1 and
= , respectively, for = ( )1 and = ( )1 . By a Lévy process we

mean a stochastically continuous process with stationary independent increments start-
ing at the origin such that its sample functions are almost surely right-continuous with
left limits. Throughout our paper we suppose that the process : 0 is a Lévy
process onR . The characteristic function of 1 is represented as

[ 1 ](1.1)

= exp 2 1 +
R

1 1 1 ( ) ( ) +

where is a symmetric and nonnegative definite real matrix, isa measure on
R satisfying ( 0 ) = 0 and

R
min 2 1 ( ) , and R . Here 1 is the

indicator function of a set . Define the function ( ) for (0 ) by

( ) = R :

We use the word “increase” in the wide sense in this paper. Ourmain theorem is the
following.

Theorem 1.1. Let ( ) be an increasing positive function on[ ) with some
0, and let lim ( ) = .

(i) If there exists a constant with0 1 such that

0 lim inf ( ) lim sup ( )(1.2)

and if

( )
(resp. = )(1.3)

in addition, and if we have ( ) log as for = 1, then we have

lim sup
1 ( )

= 0 (resp. = ) a.s.(1.4)

(ii) If (1.2) is satisfied for some with1 2 and if (1.3) is satisfied, then we
have

lim sup 1
1 ( )

= 0 (resp. = ) a.s.(1.5)
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By using Theorem 1.1 we obtain the LIL of Chover type for multidimensional
Lévy processes as follows.

Corollary 1.2. If (1.2) is satisfied for some with0 1, or if (1.2) is
satisfied for some with1 2 and 1 = 0, then we have

lim sup
1

1 log log

= 1 a.s.(1.6)

EXAMPLE 1.1. Our theorem shows a very interesting property for some one-
dimensional Lévy process: Let the characteristic function of 1 be represented as

[ 1] = exp
0

1 (1 + 2) 1 2

Then we have lim inf ( log ) = 1 a.s. by Proposition 4 in [8]. And,as
we have 1 = , it follows that lim = a.s. from Theorem 36.6
in [10]. Hence we have 0 for any sufficiently large a.s. We can obtain that
lim inf ( )1 log log = a.s. Therefore, from Corollary 1.2, we have

lim
1 log log

= a.s.(1.7)

REMARK 1.2. Let be non-trivial and strictly -stable with 0 2. Then
(1.2) is satisfied for this . Here we note that 1 = 0 if 1 2. Hence our
theorem and corollary apply.

REMARK 1.3. There are examples such that lim sup ( log )1 = a.s.,
though (1.6) holds. Such examples are one-dimensional strictly -stable subordina-
tors with 0 1. Indeed, as we have2 ( log ) 1 = , it follows that
lim sup ( log )1 = a.s. from Theorem 1.1.

REMARK 1.4. Suppose that (1.2) is satisfied for some with 1 2. Then
it automatically follows that 1 ( ) . Hence the characteristic function of

1 is represented as

[ 1 ] = exp 2 1 +
R

( 1 ) ( )(1.8)

REMARK 1.5. Let the condition (1.2) be satisfied for some with 0 2.
Then we have

lim sup
2 log log

= a.s.(1.9)
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Indeed, if the condition (1.2) be satisfied for some with 0 2, we have

= sup [0 2] :
1

( )

Here we note that 1 ( ) = . Now has the decomposition = + ,

where and are two Lévy processes such that 1 = exp[ 2 1 ]
and 1 = exp

R
( 1 1 1 ( )) ( ) + . Then we have

lim sup
2 log log

a.s.,(1.10)

while, by virtue of Pruitt’s result [9], we have

lim sup
sup0

1
= 0 a.s. (resp. = a.s.)(1.11)

if 0 (resp. ). Now we have, for 0,

lim sup 1 sup
0

= lim sup 1

Hence, taking with 2, we obtain (1.9) from (1.10) and (1.11).

2. Preliminaries

The lemma of the following type is pointed out by Toshiro Watanabe (see [13,
Theorem 2]). There is another Watanabe’s result [14] as paper related to [13]. Since
we do not need his theorem in its full generality, we only state the fact in a simpler
form without the proof.

Lemma 2.1 (Toshiro Watanabe). If (1.2) is satisfied for some with0 2,
then there are two positive constants1 and 2 such that, for any 1,

1 ( ) ( 1 ) 2 ( )

Lemma 2.2. Let ( ) be an increasing positive function on[ ) with some
0, and let lim ( ) = . Then we have( 1 ( )) 1 0 in probability

as if it satisfies one of the following two:
(i) (1.2) is satisfied for some with0 1, and, in addition, lim ( ) log =

for = 1;
(ii) (1.2) is satisfied for some with1 2 and 1 = 0.

Proof. Define the function by 1 = ( ). This is called the charac-
teristic exponent (see [1]). Furthermore, we define two functions 1 and 2 by the
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real part and the imaginary part of ((1 ( )) 1 ), respectively. Here we note that
( 1 ( )) 1

= ( 1( )+ 2( )). If we have lim 1( ) = 0 and lim 2( ) = 0,
it follows that lim ( 1 ( )) 1

= 1. Hence, as we have (1 ( )) 1 con-
verges in law to 0 as , we can get (1 ( )) 1 0 in probability as

. Here 0 is a probability measure concentrated at 0. Therefore we shall show
lim 1( ) = 0 and lim 2( ) = 0. In the first place we estimate 1( ). We
have

1( ) 2 1 ( 1 ( )) 2 +
R

1 cos (1 ( )) 1 ( )

2 1

1+2 ( )2
+

1 ( )
1 cos (1 ( )) 1 ( ) + 2 ( 1 ( ))

=
2 1

1+2 ( )2
+

1 ( )
2 sin2 ( 1 ( )) 1

2
( ) + 2 ( 1 ( ))

2 1

1+2 ( )2
+

2 1 2

( 1 ( ))2 1 ( )

2 ( ) + 2 ( 1 ( ))

= 1 (say)

As we have

1 ( )

2 ( ) =
1 ( )

0
2 : 1 ( )

then we can get, for all with1 ( ) 1,

1
2 1

1+2 ( )2
+

2 1 2

( 1 ( ))2

1 ( )

0
2 ( ) + 2 ( 1 ( ))

=
2 1

1+2 ( )2
+

2

( 1 ( ))2

1

0
+

1 ( )

1
( ) + 2 ( 1 ( ))

= 2 (say)

Furthermore, we shall use the following:

1

0
( ) = 2 1

1

2 ( ) + 2 1 ( : 1 )

We put 1 = 1
0 ( ) . As (1.2) is satisfied for some with 0 2, we can

take a positive constant2 such that

( ) 2(2.1)
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for any 1. Hence we have, for any sufficiently large ,

2
2 1

1+2 ( )2
+ 1

2

( 1 ( ))2
+ 2

2

( 1 ( ))2

1 ( )

1

1 + 2 2 ( )

2 1 + 1
2

1+2 ( )2
+ 2

2

2
+ 2 ( )

Thus, since we have lim ( ) = , it follows that lim 1( ) = 0.
In the second place we estimate2. We shall investigate the case of (i). Suppose

that (1.2) is satisfied for some with 0 1, and, in addition, lim ( ) log =
for = 1. Then we have, for any sufficiently large ,

2( ) =
1

sin ( 1 ( )) 1 ( 1 ( )) 1 ( )

+
1

sin ( 1 ( )) 1 ( ) + ( 1 ( )) 1

1
( 1 ( )) 1 2 ( ) +

1 1 ( )
sin ( 1 ( )) 1 ( )

+
1 ( )

sin ( 1 ( )) 1 ( ) + ( 1 ( )) 1

2
1+2 ( )2

1

2 ( ) +
1+1 ( ) 1 1 ( )

( )

+ ( 1 ( )) +
1+1 ( )

= 3 (say)

Put 3 = ( : 1 ). Here, from (2.1), we have

1 1 ( )
( )

=
1

0
: 1 1 ( ) +

1 ( )

1
: 1 ( )

3 + 2

1 ( )

1

= 3 + 2(1 ) 1 ( 1 ( ))1 1 if 0 1

3 + 2 log( ( )) if = 1

Hence, in the case where 0 1, we have

3

2

1+2 ( )2
1

2 ( ) + 3
1+1 ( )

+
1+1 ( )

2(1 ) 1( 1 ( ))1 + 2

( )
+

1+1 ( )
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=
2

1+2 ( )2
1

2 ( ) + 3
1+1 ( )

+ 2
(1 ) 1 + 1

( )
+

1+1 ( )

where we used (2.1) in the first inequality. And, in the case where = 1, we have

3

2

( )2
1

2 ( ) + 3

( )
+ 2

(log + log ( )) + 1

( )
+

( )

Hence it follows that lim 2( ) = 0, because we have lim ( ) = for = 1
and lim ( ) log = for = 1. Secondly, we shall investigate the case of (ii).
Suppose that (1.2) is satisfied for some with 1 2 and that1 = 0. Then,
since we have 1 = 0, the characteristic function of 1 is represented as (1.8) in
Remark 1.4. Hence we have

2( ) =
R

sin ( 1 ( )) 1 ( 1 ( )) 1 ( )

1 ( )
sin ( 1 ( )) 1 ( 1 ( )) 1 ( )

+
1 ( )

sin ( 1 ( )) 1 + ( 1 ( )) 1 ( )

1 ( )
( 1 ( )) 1 2 ( ) + 2

1 ( )
( 1 ( )) 1 ( )

2

1+2 ( )2 1 ( )

2 ( ) +
2

1+1 ( ) 1 ( )
( )

=
2

1+2 ( )2 1 +
2

1+1 ( )
2 (say)

Now we investigate 1 and 2. Using (2.1), we have, for all with1 ( ) 1,

1 =
1 ( )

0
2 ( : 1 ( ) )

1

0
+

1 ( )

1
2 ( )

2 1 + 2

1 ( )

1
2 1

2 1 + 2(2 ) 1
2( 1 ( ))2

Using (2.1), we have, for all with1 ( ) 1,

2 =
1 ( )

0
( : 1 ( ) ) +

1 ( )
( : )
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2 1
( 1 ( )) +1

Thus we obtain that, for all with1 ( ) 1,

2( )
2

1+2 ( )2
2 1 + 2(2 ) 1

2( 1 ( ))2

+
2

1+1 ( )
2

1
( 1 ( )) +1

= 1
2 2

1+2 ( )2
+ 2

2(2 ) 1 2 + 2 ( 1) 1

( )

Hence we have lim 2( ) = 0 in both cases of (i) and (ii). We have completed the
proof.

Lemma 2.3. Let = 1. Let be an arbitrary positive integer. If is a sym-
metric Ĺevy process, then we have, for any 0,

sup
0

2 ( )(2.2)

Proof. As is right continuous in and has independent increments, we
can obtain (2.2) by virtue of Lemma 1 in [11, p.372].

Lemma 2.4. Let and be arbitrary positive integers with . We have,
for any 0,

sup 3 3 sup ( )(2.3)

Proof. Let 1 2 be independent random variables. Put ==1 for
1. Then it follows that

max
1

3 3 max
1

( )

Indeed, this is shown by using [10] Lemma 20.2. Hence, as is right continuous and
has indepedent increments, we can get (2.3).

A theorem similar to the following two lemmas is proved by C.C. Heyde in the
case where = 1 with certain conditions (see [5]). We cannot extend his theorem to
the multidimensional case. But, if we suppose (1.2), then Heyde’s proof is applicable
to the multidimensional case without his conditions and we can get two lemmas.
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Lemma 2.5. Let ( ) be an increasing positive function on[ ) with some
0, and let lim ( ) = . We suppose that ( ) 0 in probability as .
If (1.2) is satisfied for some with0 2, then we have

lim sup
( ( ))

(2 1 ( ))
(2.4)

Here runs through positive integers.

Proof. Set = , where and are independent, and and
are identical in law. As we have ( ) 0 in probability as , then it

follows that, for any sufficiently large ,

( 2 1 ( )) ( 2 1 ( )) ( ( ))

2 1 ( ( ))

Here we define, for = 1 2 ,

= 1 if 1 ( )
0 otherwise

Set = =1 . Hence we have, for any sifficiently large ,

( ( )) 2 ( 2 1 ( ))

= 2 ( 2 1 ( ) 1 ( ) for some with 1 )

+ 2 ( 2 1 ( ) 1 ( ) for all with 1 )

2
=1

( 1 ( )) + 2 ( 2 1 ( ))

= 2 ( 1 0 ( )) + 2 ( 2 1 ( ))

2 ( 1 1 ( )) + 2
=1

2 1 1
( )

4 ( 1 2 1 ( )) + 2
=1

2 1 1
( )

where = ( 1 2 ). Furthermore, let = (1 2 ). Here
we shall use the following equality: For and with = ,

= = 0

Then we have

2 1 1
( )

4

( )2
[ 2]
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=
4

( )2
=1

( )2 4

( )2
[ 1

2]

=
4

( )2
( )

2 ( 1 )

Hence we obtain, for any sufficiently large ,

( ( ))

( 1 2 1 ( ))
4 + 2

=1

4

( )2
( )

2 ( 1 )

( 1 2 1 ( ))

= 4 +
8 2

( )2

( )
0 2 ( 1 ( ))

( 1 2 1 ( ))

4 +
16 2

( )2

( )
0 ( 1 1 )

( 1 2 1 ( ))

4 +
16 2

( )2

( )
0 2 ( 1 2 1 )

( 1 2 1 ( ))
= (say)

Fix an integer such that ( ) 2. From Lemma 2.1 we have, for all with ,

4 +
16 2

( )2

( )
0 2 ( 1 2 1 )

( 1 2 1 ( ))
+

16 2

( )2

( )
( ) 2 ( 1 2 1 )

( 1 2 1 ( ))

4 +
16 2

( )2

( )2

1 (2 1 ( ))
+

16 2

( )2

2
( )
( ) 2 (2 1 )

1 (2 1 ( ))

4 + const.
1

( )2
+ const.

( )
( )

1

( )2

Here we used (1.2) in the last inequality. We have proved the lemma.

Lemma 2.6. Let ( ) be an increasing positive function on[ ) with some
0, and let lim ( ) = . If one of the two conditions(i) and (ii) in Lemma 2.2

is satisfied, then we have

lim inf
( 1 ( ))

(2 1 ( ))
0(2.5)

Here runs through positive integers.

Proof. Put ( ) = 1 ( ). Set = 1 for = 1 2 . Denote by
and the events 2 ( ) and =1 = ( ) , respectively, for

= 1 2 . We denote the complement of the event by the symbol. Then
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we have

( ( ))
=1

( ) =
=1

1

=1

( ) ( )

=1

1

=1

( )
=1

( )
1

=1

=1

( ) ( ) ( 1) ( 1)

( 1) ( 1) ( 1) = (say)

From Lemma 2.1 and (1.2), we have, for any sufficiently large ,

( 1) = ( 1 2 1 ( )) 2 (2 1 ( ))

const.
1

( )

Hence it follows that lim ( 1) = 0. And we have

( 1) = ( 1 ( )) ( 2 1 ( )) + ( 1 2 1 ( ))

As we have ( ) 0 in probability as from Lemma 2.2, it follows that
lim ( 1) = 1. Take 0 0 with 1 2 0 0. Then there is a positive integer
such that ( 1) 0 and ( 1) 1 0 for all . Thus we obtain that, for all

,

( 1) (1 2 0)

Therefore, from Lemma 2.1, we have

( ( )) (1 2 0) ( 1) 1(1 2 0) (2 ( ))

for all , which implies (2.5). The lemma has been proved.

Lemma 2.7. Let ( ) be an increasing positive function on[ ) with some
0, and let lim ( ) = . If one of the two conditions(i) and (ii) in Lemma 2.2

is satisfied, then there is a positive constant such that, for any sufficiently large in-
teger ,

(2.6) sup
2 2 +1

2 (2 ) 2 (16 ) 12( 1) (2 1)
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Proof. Set ( ) = 1 ( ). Let = ( 1 2 ). From Lemma 2.4 we have

sup
2 2 +1

(2 ) 3 sup
2 2 +1

3 1 (2 )

3 sup
2 2 +1

3 1 (2 1 )

3
=1

sup
2 2 +1

(3 ) 1 (2 1 )

= 3
=1

sup
2 2 +1

(3 ) 1 (2 1 )

+ (3 ) 1 (2 1 )

First, we shall estimate ( (3 )1 (2 1 )). Denote by the symmetrized ran-

dom variable of . Here = , where and are independent and
identically distributed. Letting ( ) be a median of , we obtain

(4 ) 1 (2 1 ) = (4 ) 1 (2 1 )

( ) (4 ) 1 (2 1 ) ( ) 0

2 1 (4 ) 1 (2 1 ) + ( ) = (say)

Now ( ) (2 1 ) is a median of (21 ). Hence, since (21 ) 0 in proba-
bility as from Lemma 2.2, it is obvious that lim ( ) (21 ) = 0.

Consequently we have, for any sufficiently large ,

2 1 (3 ) 1 (2 1 )

In the same way we have, for any sufficiently large ,

(4 ) 1 (2 1 ) 2 1 (3 ) 1 (2 1 )

Therefore, from Lemma 2.3, it follows that, for any sufficiently large integer ,

sup
2 2 +1

(2 ) 6
=1

sup
2 2 +1

(4 ) 1 (2 1 )

+ (4 ) 1 (2 1 )

6
=1

sup
2 2 +1

(4 ) 1 (2 1)

+ sup
2 2 +1

( ) (4 ) 1 (2 1)



380 K. YAMAMURO

12
=1

2 +1 (4 ) 1 (2 1)

+ 2 +1 (4 ) 1 (2 1) = (say)

Now we have (8 )1 (2 2 ) 0 in probability as from Lemma 2.2.
Hence, by using Lemma 2.5, it follows that, for any sufficiently large ,

= 12
=1

2 +1 (4 ) 1 (2 1) 24
=1

2 +1 2 1(4 ) 1 (2 1)

24 ( 2 +1 (8 ) 1 (2 1))

const. 2+1 ((16 ) 1 (2 1))

Therefore we got (2.6). We have completed the proof.

3. Proof of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. From now on, in the case where 1 2, we sup-
pose that 1 = 0 without loss of generality, because 1 is a Lévy process
with mean 0. And we suppose that (1.2) is satisfied for some with 0 2, in
addition, that lim ( ) log = for = 1.

First, we suppose that ( ( ) )1 . Let = 2 for any positive inte-
ger . Let 0. Put

= 1 ( ) for some with +1

Set ( ) = 1 ( ). By virtue of Lemma 2.7 we have, for any sufficiently large inte-
ger ,

( +1) = sup
+1 +2

( +1) +1 ((16 ) 1 ( ))

From (1.2) we obtain that, for any sufficiently large integer,

=

( +1) 2
=

(16 ) 2 (2 ) ((16 ) 1 2 (2 ))

(16 ) (2 )

const.
=

1

(2 )
const.

1 (2 )
= const.

2 1 ( )

Hence, by virtue of the first Borel-Cantelli lemma, we obtainthat (lim sup ) =



A LAW OF THE ITERATED LOGARITHM 381

0. Thus,

1 =
=1 =

1 ( ) for all with +1

=1 =

1 ( ) for all with +1

Therefore we have

lim sup
1 ( )

a.s

As 0, we have

lim sup
1 ( )

= 0 a.s

Secondly, we suppose that ( ( ) )1 = . Let 0. By virtue of
Lemma 2.6 there is a positive constant0 such that, for any sufficiently large inte-
ger ,

( 1 (2 )) 0 (2 1 (2 ))

Setting = +1 , we obtain that, for any sufficiently large integer ,

( 1 ( +1)) = ( 1 (2 )) 0 (2 1 (2 ))

Hence we obtain that, for any sufficiently large integer ,

=

( 1 ( +1)) const.
=

1

(2 )
const.

2 +1 ( )
=

By virtue of the second Borel-Cantelli lemma, we almost surely have

1 ( +1)

for infinitely many . Thus we almost surely have either

+1 2 1 1 ( +1)

for infinitely many , or

2 1 1 ( +1)
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for infinitely many . Therefore, since is increasing, we almost surely have

2 1 1 1 ( )

for infinitely many . From the inequlity above, we obtain that

lim sup
1 ( )

2 1 1 a.s.

As , we have

lim sup
1 ( )

= a.s.

The proof has been completed.

Proof of Corollary 1.2. Let 0. Take ( ) = (log )(1+ ) . As we have

( )
=

(log )1+

it follows that

lim sup
1 (log )(1+ )

= 0 a.s.

from Theorem 1.1. Then the limsup above implies that there isa positive constant
such that

1
exp

1 +
log log

for any sufficiently large . Therefore we have

lim sup
1

1 log log
(1+ ) a.s.

As 0, we have

lim sup
1

1 log log
1 a.s.

We prove the reverse inequality of the above one. Take ( ) = (log )1 (log log )1 .
As we have

2 ( )
=

2 (log )(log log )
=
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it follows that

lim sup
1 (log )1 (log log )1

= a.s.

from Theorem 1.1. Hence we have

lim sup
1

1 log log
1 a.s.

We have completed the proof.
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[1] J. Bertoin: Lévy Processes, Cambridge Univ. Press, 1996.
[2] L. Breiman: A delicate law of the iterated logarithm for non-decreasingstable processes, Ann.

Math. Statist.39 (1968), 1818–1824; Correction,41 (1970), 1126.
[3] J. Chover:A law of the iterated logarithm for stable summands, Proc. Amer. Math. Soc.17

(1966), 441–443.
[4] B. Fristedt: Sample functions of stochastic processes with stationary, independent increments,

Advances in Probability 3 (P. Ney & S. Port ed., Marcel Dekker)(1974), 241–396.
[5] C.C. Heyde:On large deviation problems for sums of random variables which are not attracted

to the normal law, Ann. Math. Statist.38 (1967), 1575–1578.
[6] A. Khintchine: Asymptotische Gesetze der Wahrscheinlichkeitsrechnung, Springer, 1933.
[7] A. Khintchine: Zwei Sätze über stochastische Prozesse mit stabilen Verteilungen, Mat. Sbornik

3 (1938), 577–584 (in Russian with German summary).
[8] P.W. Millar: Some remarks on asymmetric processes, Ann. Math. Statist.43 (1972), 597–601.
[9] W.E. Pruitt: The growth of random walks and Lévy processes, Ann. Probab.9 (1981), 948–956.
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