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Abstract
An integral test for some multidimensional Lévy processegiven. A law of
the iterated logarithm of Chover type is derived from it asoeottary. This law was
pointed out by Chover in the case of one-dimensional synimetable processes
with discrete time.

1. Introduction and result

Limit theorems have always been of central importance inbgipdity theory.
Among them we study the law of the iterated logarithm (abiated to LIL). The
most fundamental result on the LIL for Lévy processes is ltHe for the Brownian
motion {B, :t > @ onR%. It is proved by Khintchine [6] in the following form:

. B,
lim sup

- @ = 1
1—oo /2t loglogt

It still holds for |B;| in place ofB, , that is, it holds that

a.s.

. B
lim sup# =1 a.s,

t—oo +/2t loglogt -

and this also holds for the multidimensional Brownian motitiowever, even if we
only consider the one-dimensional case, we cannot extemd_tih for the Brownian
motion to that for strictlya -stable processg¥, ¢ > } 0. The redsathat we have

: | X: _
imsup————==00 a.s.

1—oo /2t loglogt -

So Chover [3] paid attention to the classical LIL as follokst Z, (k =1 2 3...)
be independent identically distributed @t. SetS, =Y}_; Zi. If Eexp(iuZi) = e
for all u € R?, then it follows that

Sn

imsup———==1 a.s.

n—soo +/2n loglogn -
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In this case the variables, //n satisfy E exp{uS,//n) = e~ again, so he thought

that these variables must be cut down additionally by theofac,/2 loglogn o
achieve a finite limsup. In the case where the classical Llésdoot hold, he expected

the “cut down factors”,/2log logn o appear otherwise, and proved the following:
If Eexp(iuZz;) =e " for somea with O< « < 2, then it follows that

IS, 1/ loglogn
Iimsup( ”) =V as.

n— 00 nt/e

Keeping this result in our mind, we consider the LIL of Chowgpe (for reference,
see [12]). So we deduce an integral test to obtain the lim&k@ador of multidimen-
sional Lévy processegX, > }0. And we derive the LIL of Choveretyfipom its
result. In the case of the multidimensional non-GausiamylLgrocesses, we know a
few result concerning limsup . |X;|/h t () for increasing positive dtions & ¢ ). We
only know Pruitt’s result [9], which investigates limsup, |X,|/t¥" for n > 0 (see
Remark 1.5). Here we get back to the LIL of Chover type. Itaxfds singular, but
the classical LIL can be modified in a similar form, that is &y ghat its form is no
rare. For example, in the case of the Brownian motion, we egn g

|B | 1/ loglog logt
lim sup(—’) =e¢'? as.
Ji

=00

And, for example, in the case of strictty -stable subordmaf{X, :r > G with O<
o < 1, we know that
X,

liminf = a.s,
1—oc0 t1/%(log |ogt)*(1*0t)/0t ¢

wherec is a finite positive constant (for example, see [2])nd¢e as we havel, > O
a.s., it follows that

X 1/ log log logt
liminf <—’> = ¢ /e g,

t—oo \ tl/e

In general, for non-trivial strictlyx -stable processgs ¢ > } @ R' with 0 <o <
2, we know an integral test, which shows that the LIL of Chotygre holds (see the
proof of Corollary 1.2 below). Its integral test was first givby Khintchine [7], and
it implies that

| X |

imsup——=0 as. or =x a.s.
Hooptl/“h(t)

according as

/m dt < 0 or =0
1 th() ’
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if A(f) is increasing and lim,. & # ) =oo . This fact can be shown by Yanaos
result [15] for the case where (6o, 0} Oapd (@ >) 0, and a simisult
is reported by Fristedt [4] fop ((@c )» 0. Here is the Lévy measof {X,}.
Our theorem is an extension of this fact.

We denote the inner product and the normBd by (x,y) = Z‘;’zlxjyj and
Ix| = V/{x, x), respectively, forx =xX; )<j<¢ andy =, h<;j<s. By a Lévy process we
mean a stochastically continuous process with stationaaggdendent increments start-
ing at the origin such that its sample functions are almostlguight-continuous with
left limits. Throughout our paper we suppose that the p®¢&s ¢+ > 0 is a Lévy
process orR?. The characteristic function af; is represented as

(1.1) E[¥Y)
= exp[— 2z, Az) +/

(€ =1 =i 20 Ly ey pld) + iz, y)} ,

where A is a symmetric and nonnegative definite etald matrix, a measure on
R? satisfyingp { @ ) = 0 and/g, min{|x|2, 1}p(dx) < oo, andy € R?. Here J, is the
indicator function of a seD . Define the functigif u ( ) fere , & ) by

p*@w) = p({x e R? : |x| > u}).

We use the word “increase” in the wide sense in this paper. r@ain theorem is the
following.

Theorem 1.1. Let i(z) be an increasing positive function die, oo) with some
¢ >0, and letlim,_, o h(t) = oco.
(i) If there exists a constant with < « < 1 such that

1.2) 0 < liminfu®p*(u) < limsupu®p* @) < oo
and if
©  dt
1. - =
(1.3) /c ) < oo (resp.=00),

in addition and if we havei(t)/logt — oo ast — oo fora =1, then we have

(1.4) lim sup X

=0 (resp.= a.s.
M SUP ) (resp. = o0)

(i) If (1.2)is satisfied for somer with < o < 2 and if (1.3) is satisfied then we
have

. X, —tEX
(1.5) Ilmsup| d d

mst W =0 (I’eSp. = OO) a.s.
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By using Theorem 1.1 we obtain the LIL of Chover type for ndittiensional
Lévy processes as follows.

Corollary 1.2. If (1.2) is satisfied for somex witl) < o« < 1, or if (1.2) is
satisfied for some&r with < o < 2 and E£X, = 0, then we have

1X,| 1/ loglogr
(1.6) lim sup( L ) =Y as.

t—00 tl/e

ExampLe 1.1. Our theorem shows a very interesting property for some- o
dimensional Lévy process: Let the characteristic fumcid X, be represented as

E[e'*X1] = exp [/ (e'“ —1—izx(1 +x2)1)x2dx] .
0

Then we have liminf,, X,/ { log ) = 1 a.s. by Proposition 4 in [8]. Ands
we have EX; = oo, it follows that lim_. X;/t = oo a.s. from Theorem 36.6
in [10]. Hence we haveX, > 0 for any sufficiently large a.s. We cémaio that
liminf,_ (1X;|/7)Y/ 09109 = ¢ a.s. Therefore, from Corollary 1.2, we have

X 1/ log logr
.7 lim <u> =e¢ as.

t—00 t

Remark 1.2. Let{X,} be non-trivial and strictlyg -stable with® « < 2. Then
(1.2) is satisfied for thisx . Here we note thAtX; = 0 if 1 < o« < 2. Hence our
theorem and corollary apply.

Remark 1.3. There are examples such that limsup |X;|/ ¢ (16§ ¥ o a.s.,
though (1.6) holds. Such examples are one-dimensionaltlgtri-stable subordina-
tors with 0 < @ < 1. Indeed, as we havgc(t log?)™tdt = oo, it follows that
limsup_, . |X:|/ ¢ logt }/* = ¢ a.s. from Theorem 1.1.

Remark 1.4. Suppose that (1.2) is satisfied for some  withc v < 2. Then
it automatically follows thatflezl |x]p(dx) < 0. Hence the characteristic function of
X, —tEX; is represented as

(1.8) E[e”Z‘X’_’EXl)]:eXp[t <—Zl<z,Az)+ (e“”)—1—i(z,x))p(dx)>:|.

RY

Remark 1.5. Let the condition (1.2) be satisfied for some  with<Oa < 2.
Then we have

X
(1.9) lim sup¥ =00 as.

1—oo /2t loglogt -
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Indeed, if the condition (1.2) be satisfied for some  witk @ < 2, ave

o = Sup{n e [Q 2]: [x|"p(dx) < oo} .

|x|>1
Here we note thaylx|>l |x|“o(dx) = co. Now X; has the decompositio, ¥ 4
where {¥;} and{Z;} are two Lévy processes such tRat®"" = exp[-21(z, Az)]
and Ee'%1) = exp| [pu (€' — 1 — i(z, x) Ljx <y (x))p(dx) + iz, y)]. Then we have

. Y,
(1.10) Ilmsup# < o0 as.,

t—oc /2t lOoglogt

while, by virtue of Pruitt’s result [9], we have

Suﬂ)gvfl |ZS| _

(1.11) lim sup T =0 as. (resp.=0 as.)

11—

if 0 <n<a(resp.n >« ). Now we have, fon > 0,

limsups =" sup |Z,| = limsupt~Y"|Z,].

1—00 O<s<t t—00

Hence, takingy withe < < 2, we obtain (1.9) from (1.10) and (1.11).

2. Preliminaries

The lemma of the following type is pointed out by Toshiro Wethe (see [13,
Theorem 2]). There is another Watanabe’s result [14] as rpegdated to [13]. Since
we do not need his theorem in its full generality, we only estdte fact in a simpler
form without the proof.

Lemma 2.1 (Toshiro Watanabe). If (1.2) is satisfied for some with < « < 2,
then there are two positive constant$; and M, such that for any u > 1,

Myp*(u) = P(IX1| > u) < Map™(u).

Lemma 2.2. Let i(r) be an increasing positive function du, co) with some
c > 0, and letlim,_, o i(f) = oco. Then we havet*“h(t))~X, — 0 in probability
ast — oo if it satisfies one of the following two
(i) (1.2) is satisfied for some with < « < 1, and in addition, lim,_ 4(t)/logt =
oo for o =1;
(i) (1.2) is satisfied for some  with < « < 2 and EX; = 0.

Proof. Define the functiont byEe! =X = ¢~¥() This is called the charac-
teristic exponent (see [1]). Furthermore, we define two fions Wl and ¥?2 by the
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real part and the imaginary part ot +¥(*h(¢))~1z), respectively. Here we note that
Eei @ hO) X = o~V @+HYE) | If we have lim_ ., W(z) = 0 and lim_,, ¥2(z) = 0,

it follows that lim_, o Ee!@0"* "0 X) = 1. Hence, as we have(*h(r))~1X, con-
verges in law tody ast — oo, we can gettt/“h(t))~1X, — 0 in probability as
t — oo. Heredg is a probability measure concentrated at 0. Therefore w#é shaw
lim, o ¥X(z) = 0 and lim_, W?(z) = 0. In the first place we estimat&'(z). We
have

Wi 2) < 274 (M h(t)) (2, Az) +1 / (1 - cogz, Y*h(t))1x))p(dx)

R¢

271z, Az)

- l71+2/ah(l)2

_ 27Nz, Ag)

- l71+2/ah(l)2

27Uz A7) | 27Nz

- t71+2/oth(t)2 (tl/oth(t))z
= I, (say)

wr [ (L= cosz, (@) )oldx) + 210" (VN ()
[x|<t¥h(t)

1/a -1
+t / 2 sirf Mp(dx) + 2t p* (tl/“h(t))
[x|<t¥h(r) 2

f I Pp(dx) + 210" (Yh(r))
|x|<tYh(t)

As we have
Y h(r)
/ 1x|%p(dx) = / 2up ({x StYn(r) > (x| > u}) du,
|x|<tYh(t) 0

then we can get, for all > ¢ withY*a(r) > 1,

< 274z, Az) N 27zt
1= =12 p(1)2 (1Y p(r))2

o1 Az : 2 1 Y h(r)
(2. Az) Il (/ +/ up*(u) du + 2t p* (¢ h(r))
o J1

Y h(r)
/ 2up* (W) du + 2 p* (Yh(1))
0

= =12 ()2 (1 h(r))2
I; (say)

Furthermore, we shall use the following:
1
/ up*(u)du = 2_1/ Ix12p(dx) + 27 p({x @ |x| > 1}) < oo.
0 [x]=<1

We putC; = folup*(u)du. As (1.2) is satisfied for some with @ @« < 2, we can
take a positive constar, such that

(2-1) ;O*(M) < Cou™“



A LAw OF THE ITERATED LOGARITHM 373
for anyu > 1. Hence we have, for any sufficiently large ,

271z, Az) |z|t |z|%
= 1 +C2
t71+2/0th(t)2 (tl/oth(t))z (tl/oth(t))z

271z, Az) + C1|z)? |z|?
< +C +2 h(t) .
112/ p(r)? ? (2 —«a ) k)

Yp(r)
2 / ul™ du + 2Coh(t)™
1

Thus, since we have lim, h () so , it follows that ljm., \I/,l(z) =0.

In the second place we estimai¢?. We shall investigate the case of (i). Suppose
that (1.2) is satisfied for some with©« < 1, and, in addition, lim A(z)/logr =
oo for « =1. Then we have, for any sufficiently large

W2 (z)| =

(RO ) () ) pa)
[x]<1
wi [ S 0plan) ), y>‘
|x|>1

<1 / (Y R() 2, x)1Pp(dx) +1 / [Sin(Yh(1)) 1z, x) p(dx)
x| <1

1<|x|<tVh(r)

* t/ | sin( (Y h()) "z, x) p(dx) + 11 {7 h (1)) 2, )]
|x|>tYeh(t)

[z]“2 / 2 |z]
< —— 1x|7p(dx) + —g 7~
1712 n(1)? Jy<1 =YY h(t) Jicp<ton)

[z|ly|
L ——
TV p) 3 (say)

Ix|p(dx)
+1p* (Y h(1)) +

Put C3 = p({x : |x| > 1}). Here, from (2.1), we have

| xlp(dx)
1<|x|<tVen(r)
tYh(r)

1
/ p({x l< x| < tl/"‘h(t)}) du +/ p({x Tu < x| < tl/"‘h(t)}) du
0 1

tYh(r)
< (C3+ Cz/ u “du
1

_ | G+ Co(1— ) H((Mon(r) o —1) fO0<a <1,
B { Cs + Colog(th (1)) if =1

Hence, in the case whereba < 1, we have

|z|2 / 2 Cslz]
LR < ——— dx) + —220
P )2 fya el =14 (r)
|z] Ca , _ lzllvl

—17.1/a l-a
WCZ(]-_“) (7 h(e)) = + n@)ye T Vap(r)
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|z|? / 2 Cslz| (1—a)tzl+1 |z||y]
= dx) + + ,
T Zap(r)? [ ¥ %o(dx) T lap) 2 h(t)* T ap(7)

where we used (2.1) in the first inequality. And, in the casenslx =1, we have

- |z|? 2 Cslz| |z] (logz +logh(t))+1 |zlly|
= T /Md pldx) 50y + € %) )

I3

Hence it follows that lim. +, ¥2(z) = 0, because we have limht () for / =1
and lim_h ) logg =oo fore = 1. Secondly, we shall investigate theeca$ (ii).
Suppose that (1.2) is satisfied for some  with<le < 2 and &t = 0. Then,
since we haveEX; = 0, the characteristic function o, is represented as (1.8) in
Remark 1.4. Hence we have

|W2(2)|

t/ (sin( ¢ h(1) "z, x) — (Y R(1)) " 2, x)) p(dx)
Rl’

IA

i / [SInCEY ()2, x) — (Y R() Lz, x)p(dx)
|x|<tYh(t)

+1 f (I'sin(E*n(t)) *z, x)| + (/1 (2)) 'z, x)]) p(dx)
|x|>tYh(r)

IA

t / (Y n(t)) " 2, x)|Pp(dx) + 2 (Y n(t)) "z, x) | p(dx)
|x|<t¥/eh(r)

|x|>tY2h(t)
|z|? / 2 2|z
< — o [x[p(dx) + —p7 s
l71+2/°‘h(l)2 |x|<tYeh(t) t71+1/ah(t) |x|>1Y/eh(r)
_ oz 2|z
T apy2t T e ()

x| p(dx)

J2  (say)

Now we investigate/; and J.. Using (2.1), we have, for all > ¢ with*a(r) > 1,

J1

1Yh(r)
/ 2up(x i u < |x| < tYh(t)}) du
0

1 tYh(r)
/ + / 2up*(u)du
0 1

Y h(r)
2C, + Cy / 2ut du
1

IA

IA

IA

201 +2(2— a ) XCo(t Y h (1)),

Using (2.1), we have, for all > ¢ with/*a(r) > 1,

[e.¢]

Y h(r)
I = /O p({x 2 x| > h(1)}) du + / p({x : |x| > u}) du

1Y (r)
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< Co—— (i h(2)) ™,
a—1

Thus we obtain that, for al > ¢ with/“h() > 1,

|z|? _ « o
WA =~z (201 + 22— @) Co(tY*h(1)*™ )
t h(t)
2\z| a g Catl
C YR ()
t— Ve p(r) 2a — 1( ®)
2|z|? ‘C 22— a) Hz|?+ 20 (@ — 1) Yz
1t_1+2/"‘h(t)2 2 n(r) :

Hence we have lim, -, ¥2(z) = 0 in both cases of (i) and (ii). We have completed the
proof. O

Lemma 2.3. Letd = 1. Letn be an arbitrary positive integer. kfX,;} is a sym-
metric Levy processthen we havefor any a > 0,

(2.2) P ( sup X; > a) <2P(X, > a).

O<r<n

Proof. As X, is right continuous im anflX;,} has independent incresyeve
can obtain (2.2) by virtue of Lemma 1 in [11, p.372]. [l

Lemma 2.4. Letn andm be arbitrary positive integers with < m . We have
for anya > 0,

(2.3) P < sup |X,| > 31) < 3 supP |X;|>a )

n<t<m n<t<m

Proof. LetZq, Z,,..., Z, be independent random variables. Bt Z%:l Z; for
k > 1. Then it follows that

P (max [Sk| > 3a> < 3 maxP(|S| > a).
1<k<n 1<k<n

Indeed, this is shown by using [10] Lemma 20.2. HenceXas gl gontinuous and
{X,} has indepedent increments, we can get (2.3). U

A theorem similar to the following two lemmas is proved by Cldeyde in the
case wherel = 1 with certain conditions (see [5]). We canntgnek his theorem to
the multidimensional case. But, if we suppose (1.2), thegdds proof is applicable
to the multidimensional case without his conditions and e get two lemmas.
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Lemma 2.5. Letl(¢r) be an increasing positive function ¢n, co) with somec >
0, and letlim,_ , I(f) = co. We suppose thak,/l(n) — 0 in probability asn — oo
If (1.2)is satisfied for some& with < @ < 2, then we have

, P(IX,| > 1(n))
(2.4) Ilznﬁsogpinp*(z_ll(n))

Here n runs through positive integers.

Proof. SetS, =X, — X, , wherdX,} andX,} are independent, ahd and

X, are identical in law. As we have)/l n()» 0O in probability as— oo , then it
follows that, for any sufficiently large

P(IS,| > 27Y(n)) = P(X| < 27Y(n))P(1X,| > I(n))
271 P(1X,| > (n)).

v

Here we define, fok =1,2...n ,

7, = Sk — Sk—1 i [Sk — Sk < I(n),
ke 0 otherwise

SetS,, =Y i1 Zx.n- Hence we have, for any sifficiently large

P(1Xu| > 1(n))

IA

2P(1S,| > 27Y1(n))
2P(|S,| > 27(n), |Sk — Si—1| > I(n) for somek with 1<k <n )
+2P(|S,| > 27Y(n), |Sy — Sk_1| <I(n) for all k with 1 < k < n)

n

23 P(ISk = Sical > 1(n)) + 2P (1S,.] > 2 M1(n))
k=1

21P (1S — Sol > 1(n)) + 2P (Sy.n] > 271(n))

IA

d
20P(1X1— X5 > 1)+ 23 P(1S],| > 272Vd " 1(n)

S n.n
j=1
d 1
< 4nP(X1] > 27H(n) +2) " P(IS],1 > 27Vd i),
Jj=1
whereS,, =6r,.82,....,8¢,). Furthermore, letZ,, =4;,,Z2,....,Z{,). Here

we shall use the following equality: Far amd  with/ k=
EZ],Z] ,=EZ],EZ], =0.
Then we have

. 1 A .
P(|S/ 27Yd 1 < —E[IS/ |?
(1571 > 27Vd i) = 7o ENIS; 1)
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= o )2 [Z( . }_l( )ZE[|21,1|2]

4d
= 4 Ix[2P(S1 € dvx).
l(n) |x|<l(n)

Hence we obtain, for any sufficiently large

P(1X,| > I(n)) Sisi<imy 1XIPP(S1 € dx)
nP(Xal > 2 () = 4T 22 l(n)2 " aP(1Xa1| > 2-U(n))

8d2 f"”) 2uP(u < |S1| < I(n))du

=4+

I(n)2 P(1X1| > 27(n))
g 168 9y P(1X1 — X4| > u)du
T In)? P(|X1| > 27Y(n))

1642 3" 2uP(1X1] > 27 1) du

ST P(X > 2 ()

=1 (say)

Fix an integerm such thdtm( 3 2. From Lemma 2.1 we have, fonall thwi> m,

1642 [y 2uP (X1 > 2 ') du , 164 f/(fiii 2uP(X1| > 2-Yu) du

()2 P(IX1| > 2-U(n)) I(n)2 P(X1l > 2-(n))
_ g tea In? 167 Mo S 2up* (27 u) du
= Im)? Mipr(27U(n)  I(n)2 T Mip*(2-U(n))

|

1(n) —a
1 /;(m) l du
< 4+ const.x ——— + const.x < 00.
[n)> < RO
Here we used (1.2) in the last inequality. We have proved ¢hania. O

Lemma 2.6. Let h(t) be an increasing positive function dw, oc) with some
¢ > 0, and letlim,_, « h(r) = co. If one of the two condition§) and (ii) in Lemma 2.2
is satisfied then we have

- P(1X,| > n**h(n))
(2.5) O — o @A)

Here n runs through positive integers.
Proof. Putl ) =n'*h(n). SetZ; =X; — X,_ for i = 1,2 ...,n. Denote by

A; and B; the eventd|Z;| > [2(}) andl Z:‘:Lj;i Z;| < l(n)}, respectively, for
i =12...,n. We denote the complement of the evéht by the synihollhen
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we have

P(|Xy| > 1(n))

v

n n i—1
P <U(A, n B,)) = Z P (ﬂ(AJ N Bj) n (A, N B,))

i=1 i=1 j=1

v

n i—-1 n i—1
ZP (ﬂA_jm(A,- ﬁB,-)) > Z {P(A,- NB;)—P (UA,- ﬁA,-) }
i=1 j=1 i=1 j=1

D P(A)(P(Bi) — (i — 1)P(A1))
i=1
nP(A1){P(B1) —nP(A1)} =1 (say)

v

v

From Lemma 2.1 and (1.2), we have, for any sufficiently latge

nP(A1) = nP(IX1| > 2n"*h(n)) < Monp*(2n**h(n))

< const.x .
- h(n)*

Hence it follows that lim_. . nP A1) =0. And we have
P(B1) = P(1X, — Z1| = I(n)) < P(1X,| = 27 (n)) + P(1Za] = 27 '1(n)).
As we haveX,/l £ > 0 in probability a8 — co from Lemma 2.2, it follows ttha
lim,_ o P(B1) = 1. Takedo > 0 with 1 — 25, > 0. Then there is a positive integé¥
such thatn P 1) < 8o and P (B1) > 1—§p for all n > N. Thus we obtain that, for all
n>N,
I > }’lP(A]_) X (l— 280)
Therefore, from Lemma 2.1, we have
P(1X,| > 1(n)) = (1 — 20)nP(A1) = M1(1 — 250)np™(2 (n)).

for all n > N, which implies (2.5). The lemma has been proved. U

Lemma 2.7. Let h(r) be an increasing positive function dp, co) with some
¢ > 0, and letlim,_, o, h(f) = co. If one of the two condition§) and (ii) in Lemma 2.2
is satisfied then there is a positive constaM  such thiar any sufficiently large in-
tegerr,

(2.6) P( sup |X1|>2”“h(2*))sMZp*((lmlzv1>/«h(zr1)).

r<t<2tl
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Proof. Set/ {)=Y“h(r). Let X, = (X1, X2,..., X9). From Lemma 2.4 we have

P< sup | X;| >l(2’)) <3 sup P(|X,| > 3‘11(2’))

2r<t< o+l r<t< o+l

<3 sup P(X,|>3'(@2"))
2»-5152”1
d .

<3)  sup P(1X/|>(3d)H(@2™M))
j=1 2r<t<2tl
d .

=3)  sup {P(X]>(3d) "2 "))
j=1 2r<t<2tl

+P(X] < —(&d)y @)}

First, we shall estimate® X(,’ > (B*}Z(Zflt)). Denote byW,j ~ the symmetrized ran-
dom variable ofX/ . HereW/ =X/ — X/, where X/ andX, are independent and
identically distributed. Letting: #( ) be a median &f , we obtai

P(W/ > (4 (27 %))

P(X! =X > (4d) (2 1))
P(X! —a(t) > (4d) 1127 )) P(X] — a(r) < 0)
27tP(X] > (4d) M@ M) +alt) =1 (say)

v

v

Now a(¢)/1(27Y) is a median ofx/ /I (21t). Hence, sinceX!/l (2¢) — 0 in proba-
bility as t — oo from Lemma 2.2, it is obvious that lim. a ¢ () %) =0.
Consequently we have, for any sufficiently large

1>27'P(x] > (3d)7 (27 Y)).
In the same way we have, for any sufficiently lange
P(W/ < —(4d)™M(274)) = 271 P(X] < —(3d) k(27 n)).

Therefore, from Lemma 2.3, it follows that, for any suffidigniarge integerr ,

d
6)  sup {P(W/ > (4d)(27"))

j:1 2»-5152”1

IA

P( sup |X,| > l(2’))

r<t<2+l

+P(—W/ > (4ay (2 %))}

d
GZ{P< sup W/>(4d)—ll(2f—l)>

j:1 2»-5152-+1

IA

+P ( sup (—W/) > (4d)_ll(2’_l)>}

r<t<2tl
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d

< 12)° {P(sz,ﬂ > (4d) (2 Y)
j=1

P (-Wj, > (4d)‘11(2"1))] =J (say)

Now we haveX,/ (8 )(2%1) — 0 in probability asn — oo from Lemma 2.2.
Hence, by using Lemma 2.5, it follows that, for any sufficigrarge r,

IA

d d
J=12) " P(IWyul > (4d) (2 1) < 24) " P(1Xgul > 2714d) 12
j=1 J=1

IA

24d x P(Xy| > (84)7H(27Y)
const.x 2*1p*((16d4)71(2°7Ly).

A

Therefore we got (2.6). We have completed the proof. O

3. Proof of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. From now on, in the case where & < 2, we sup-

pose thatEX; = 0 without loss of generality, becausg — tEX; is a Lévy process
with mean 0. And we suppose that (1.2) is satisfied for same h @ik o« < 2, in
addition, that lim &k () log =0 fora =1.

First, we suppose tha,fcoo tHt €Y 3dt < oco. Letn, = 2 for any positive inte-
gerr. Lets > 0. Put

B, = {|X,| > 6nY*h(n,) for somer withn, <t < n,41}.

Setl ¢) =6tY“h(t). By virtue of Lemma 2.7 we have, for any sufficiently largee-
gerr,

P(Br+1) = P( sup  |1X,| > l(nr+l)) = Mn,+1p*((16d)7ll(n,)).

N+l <E<N,+2

From (1.2) we obtain that, for any sufficiently large integer

> - > (16d) 8“2 h (2 Yp* (16l Y1527 /*h(2'))
D P(Br)=2M ) (164 ) 8*h (2 )

r=m r=m

<constx§: ! <const></Do du :constx/oo du < 00
- ’ h(2’)"‘ - ’ m—1 h(2“)"‘ ) om-1 I/lh(lxl)a

r=m

Hence, by virtue of the first Borel-Cantelli lemma, we obt#iat P (limsup_, ., B, ) =
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0. Thus,
o0 o0
1=r (U ﬂ {[1X,| < 8nM“h(n,) for all t with n, <t < n,+1})
m=1r=m
o0 o0
<P (U ﬂ {1X,| < 8tn(r) for all r with n, <1 < n,+1}> )

m=1r=m

Therefore we have

lim sup | Xi| a.s

1—oo 1YYR(t) T ’
As § — 0, we have

. X

lim sup Xl _ o as

oo 1YN(1)

Secondly, we suppose thz;ftcOc th(t { Ydt = oo. Leta > 0. By virtue of
Lemma 2.6 there is a positive constafi§ such that, for any sufficiently large inte-
gern,

P(1X,| > an¥*h(2n)) = Conp*(2an**h(2n)).
Setting D, =X,,., — X,,, we obtain that, for any sufficiently large integer

P(ID,| > an¥*h(n,+1)) = P(1X,,,| > an¥*h(2n,)) = Con, p*(2an>*h(2n,)).

Hence we obtain that, for any sufficiently large integer

> > 1 > du

P(ID,| > an**h > const.x >const.x/ —— =00
Z D] > an;""h(nys0)) = Z h(2n, ) = ot wh(u)?
r=m r=m
By virtue of the second Borel-Cantelli lemma, we almost Bufeve

1D,| > any/*h(n,+1)
for infinitely many r . Thus we almost surely have either
|Xn,.+1| > 2_lan3/ah(nr+1)

for infinitely manyr, or

| X, | > 2_lanr1/ah(n,+1)
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for infinitely many r . Therefore, sincé is increasing, we adisurely have
[ X, | > 2*1*1/°‘an,1/°‘h(n,)

for infinitely many r . From the inequlity above, we obtain that

. 1X| 11
lim su > 21V, as.
MU Taney =

As a — oo, we have

lim sup Xl _ o as
oo 1YRn(t) A

The proof has been completed. ]

Proof of Corollary 1.2. Le# > 0. Také ¢ () = (lag?y®’*. As we have

/00 dt _/00 i
e th(t) J, 1(logr)t+ ’

limsu ¢
5P i1 (log YAV

it follows that

=0 a.s.

from Theorem 1.1. Then the limsup above implies that thera positive constani/
such that

1X, | 1+6
7o < Mexp| — loglog?
1/ o

for any sufficiently larger . Therefore we have

|X | 1/ log logt
lim sup( d ) < Ve g,

t—00 ti/e

As § — 0, we have

|X| 1/ log logt
lim sup( ! ) <" as.

f—00 ti/e

We prove the reverse inequality of the above one. Take () gtft¢*(loglogz ).
As we have

/"c dt _/00 dt - 0o
2 th(t)® J. t(logr)(loglogr)
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it follows that

. | X
limsu =00 a.s.
=00 P tYe(logt)t/e(log logz Y/«

from Theorem 1.1. Hence we have

1X,| 1/ loglogr
Iimsup( ’) > Y as.

=00 t1/e

We have completed the proof. [l
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