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0. Introduction

Let X be a paracompact complex manifold of dimension # and 7: E—X be
a holomorphic vector bundle. We denote by 27(E) the germ of E-valued
holomorphic p-forms, and by H (X, Q?(E)) the sheaf cohomology group of X of
degree ¢ with coefficients in 27(E). In 1955, Serre showed the following basic
theorem with respect to complex analysis.

Theorem (Serre duality, cf: [15]). If H(X, Q?(E)) (=0, 1) are
Hausdorff, then H/(X, Q*(E)) is a Fréchet space, and its dual space and
HP (X, Q" *(E*)) are isomorphic. Here, E* denotes the dual of E, and
Hi(X, Q(E)) denotes the compactly supported sheaf cohomology group of X
with coefficients in Q'(E).

If HY(X, 2?(E)) is finite dimensional, then it is Hausdorff (cf: [15]). But,
in general HY(X, Q*(E)) is not Hausdorff (cf: [8], [15]).

The cohomology groups of open manifolds were studied by Grauert [5] for
solving Levi’s problem, and his result played a fundamental role in the theory of
singularities and hyperfunctions. As a natural extension of Grauert’s work, it has
been known that the finiteness of the cohomology groups results from on the
convexity of manifolds :

X is called strongly g-convex (resp. strongly g-concave) if there exists an
exhaustion function @ : X— R of class C* whose Levi form has at least z—¢g+1
positive (resp. #—¢+1 negative) eigenvalues outside a compact subset K of X.
We call K an exceptional set. In 1962, Andreotti and Grauert established finiteness
theorems for cohomology groups which include the following theorem as a special
case.
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Theorem A-G (cf : Théoréme 14 in [1]). Let X be a strongly g-convex
(resp. strongly g-concave) manifold of dimension n, and let E be a holomorphic
vector bundle over X. Then

dim H*(X, Q7(E))<o for s=q (resp. s<n—q).

They showed this theorem, using homological algebra and sheaf theory.
Andreotti and Vesentini [3] showed this theorem for g-complete manifolds (i.e,
g-convex manifolds with K = @), using so-called “Bochner-technique”. Moreover,
they proved that when X is strongly g-convex (resp. strongly g-concave), Hi(X,
R27(E)) is finite dimensional for s<#—gq (resp. s >¢) by using the method of [1].
At almost the same time, Hormander [7] generalized the method for the 0-
Neumann problem by J.J. Kohn, and proved Theorem A-G. Ohsawa [10] general-
ized the method of [3], [7] and gave an alternative proof of Theorem A-G. For
further results, see [12], [13].

Andreotti and Vesentini [3] stated the following.

Theorem A-V. Let X be a strongly g-concave manifold of dimension n,
and let m: E—X be a holomorphic vector bundle over X. Then

H" X, Q7(E)) is Hausdorff.

This theorem has been extended by Andreotti and Kas [2], and Ramis [14] in
the case where X is a complex space and E is a coherent analytic sheaf, by using
homological algebra and sheaf theory. In 1988, Henkin and Leiterer [6] gave a
proof of Theorem A-V in case X is a g-concave domain of a compact complex
manifold by integral formula.

In this paper, we use the method of L? estimate for @ and give a straight-
forward proof of Theorem A-V. Moreover we show Hausdorffness of a certain
cohomology group of a compact complex space by using the method. Particularly,
we utilize not the basic estimate for differential forms satisfying o-Neumann
condition on a relatively compact g-concave domain with a smooth boundary, but
one with respect to a complete hermitian metric on a strongly g-concave manifold.
Application of such a method has not been well known since [10].

The L? method seems to have advantages since infinite dimensional co-
homology groups seem to be better understood in the L? context. For instance,
Takegoshi showed a harmonic representation theorem for some cohomology group
by using an L’ estimate for the d -operator, and proved the torsion freeness theorem
for higher direct image sheaves of semipositive vector bundle in [16].

The author expresses his hearty thanks to Professor T. Ohsawa who led him to
this subject.
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1. Preliminaries

(1) Hermitian Geometry

Let X be a paracompact complex manifold of dimension # and let E be a
holomorphic vector bundle over X with a C* fiber metric #. Canonically, %
induces metrics along the fibers of E*, E, A™E, ®™E. We also denote by <+, *>
(resp. |*|) the pointwise inner product (resp. norm) with respect to the induced
metrics. Let ds* be a hermitian metric on X and let @ be the fundamental form

1 n-times

associated to ds® and we denote the volume element by dv=—"7wA--Aw. Let A
be the adjoint of the multiplication L : u —— @ A u with respect to ds>. We call
L the Lefschetz operator with respect to ds”.

We denote by C”Y(X, E) the space of E-valued (p, q)-forms of class C™ on
X and by C§?(X, E) the space of the forms in C*%( X, E) with compact supports.
As usual we denote the exterior differentiation by d and the (1, 0) part of d by @
and the (0, 1) part of d by 8. We set De: =0 +h'0h, Di: =h'0h=0
+hYoh), 9c: =— % h'oh *, 9 : =— %%,

Theorem 1.1 (cf: [10], [4]). We set t=[A, dw)], and denote its adjoint by
t*. Then

[Di, Al=—V=1(9:+ 7*), [ 3, A]=V=1(J +*),,
J=1[D% A)=[3, 8:]1—[D:, 81+[3, r*]—[r* Dsl.

We set 71=r* and Tz=1*. 7\ and the adjoints 7% of 7} (i=1, 2) are called
the torsions of ds?. D% is a multiplication of a Hom(E, E)-valued (1, 1)-form. We
set Di=e(0,), 0, C (X, Hom(E, E)). O, is called the curvature form of E
with respect to 4.

(2) Basic estimate

Let H: and H: be two Hilbert spaces and 7 : Hi— H: a closed linear operator
with dense domain. We denote its domain, range and nullity by Dz, Rr, Nr, and

the adjoint of T by T*. We set (f, g)=/);<f, @dv for f, gC&UX, E).

C8X, E) is provided with the structure of a pre-Hilbert space with a norm | /]|
=/(f, /). L»(X, E, h, ds*) denotes the space of integrable E-valued (p,
q)-forms with respect to ds®> and 2 on X. We denote by 0 : L% X, E, &,
ds®)— L»"*N(X, E, h, ds®) the maximal closed extension of the original 0. Other
operators are naturally extended to closed linear operators on L”%(X, E, h, ds?),
we denote D3 by D% and so on. In general, D%‘CD3;?. But it has been known
due to Gaffney and Andreotti-Vesentini (cf: [3]) that if the hermitian metric ds*
is complete, then 0 *=9¢ and D=3

We say that the basic estimate holds at bi-degree (p, ¢) if ds® is a complete
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hermitian metric on X and there exists a compact subset K of X and a constant
Co, satisfying

1< I T* AP +1 371+ [<7, f>d) for all FEDsN D3¢

Proposition 1.2 (cf: [7], [10]). Assume that the basic estimate holds at
bi-degree (p, q). Then R%* and R%°" are closed and dim N%°/R%*<co,

2. L? estimate on strongly q-concave manifolds

DEFINITION 2.1.  Let X be a complex manifold of dimension n, and let q be
a positive integer. X is said to be strongly g-concave if there is a real valued C*
function @ on X satisfying 1) X.: ={x€X|0(x)<c}CCX or =X for any c
ER, 2) the Levi form of @ has at least n— q+1 negative eigenvalues outside a
compact subset K of X.

We call @ an exhaustion function and K an exceptional set. A strongly
g-concave manifold admits a bounded exhaustion function. In fact, if @ is an
unbounded satisfying 1) and 2), then @=—exp(— @) is a bounded exhaustion
function satisfying 1) and 2). From now on let X be strongly g-concave, and @
be an exhaustion function, and we assume sup O(x)=: d<+oo, and ilel)f( o(x)=

0. Moreover we assume that at least #— ¢ +1 negative eigenvalues of the Levi form

of @ are smaller than — N, and positive eigenvalues of the Levi form of @ are

smaller than 1/N for a positive integer N =g +3 with respect to ds® (cf: [10]).
Lemma 2.2. Let ¢ be a C” function on [0, d) with 1(0)=0, 1/(¢)>0, and

di t

ltiff} u(t)=o00, j)‘ w(s)ds=>C,, 1}5}{[; /J(s)a’s/;z(t)}=0. Then one can find a C*

function p; on [0, d) satisfying w(t)=p(t) on [0, d) , p(t)=wm(t) on [di, d),

ﬂ;(t)é%l{ﬂi(t)}Q on [d, d) for i=1, 2. Here, we can take ﬂz(t)Z%l

t
[)‘ {a(s)Y2ds+ L, where L is a constant.

Proof. See [9].

(1) Basic estimate for E-valued (0, p)-form
Given a C® function z on [0, d) satisfying the conditions of Lemma 2.2, we
set
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A): =mD) )
ds?: =ds*+A(0)00® 30
D(x)
i =h exp{—BA‘ A(t)zdt}

where B is a positive number. We denote by wa the fundamental form associated

to dsi. As for the curvature form with respect to /i, we have @,=06,
+ B{A(0)?00 0+ 2A(Q)A(D) 00 A 3 D}.

_ Lemma 23. Let [1>>1} be the eigenvalues of AD)3d P+2A(D) 00 ®
0 @ at x= X with respect to dsi. We assume Xa, DK, C1=2 in Lemma 2.2. Then

q+1
1) glﬂs—/l(@(x)) for x€E X — Xa,.
2) e(O.) and e(dw.) are locally bounded with respect to hi and ds;.
Proof. 1): See [10], Theorem 4.2.
2) : By Schwartz’s inequality,
|e(01) @11, 1 <|Onlh, asl @|s. as for &€ TEL ® Ex.

As induced metric on Hom(E, E)=~E ® E* with respect to ds} is /. ® ‘hi'=
h®'h™*, we have |Onli, «s=|Onls, 41<|On|n.as2. Therefore, we have

su [€(61)¢]s. a1 SSUEl@hlh,ds2<oo for any compact set KCX.
xe Plhs, dst xe

On the other hand, we have for any ¢& T4 ® Ex,

|e(dws) gl s=|{dw+V=T1A(®) §00(3 O —00)}- ol us
< {l dCU|%x,ds2 + 27’!/1( d))| 0 a@'i,dsz} . |¢7|i‘, ds?

Therefore, we have
sup L0 < up (|0, +204(0)| T30, e} < 0.
q.ed.
The following proposition is basic for our purpose.

Proposition 2.4. Given a C* function y on [0, d) such that

1) u satisfies the conditions of Lemma 2.3

2) _sup MMQ&KL‘Y for any t€[dy, d)
xe@-1(t) |¢|hl, dst

e(dau)qa b as 2
D S0 for any 1€l @)
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d
4) ﬁ J(F)dt =00
2

then the basic estimate holds at (0, p) (p<n—q—1) with respect to h, and ds}
for sufficiently large B, where A(t)=p(t) in Lemma 2.2.
Proof. See [10], Theorem 4.2.

(2) L? convergence for E-valued (0, p)-forms
We denote by L%4(X, E) the space of locally square integrable E-valued (2,
q)-forms on X. L%¥(X, E) is a Fréchet space under the ordinary topology.

Proposition 2.5. Given f;, fE L% X, E) with fi—f in L% X, E), we can
find a real valued C* function v(t) on [0, &) such that there exists a subsequence
{Fu) with fu—f in L?(X, E, ds®, ). Here h.=hexp(—v(D)).

Proof. For any measurable set Y C X, we denote by [+l¥,. the norm with
respect to ds? and % exp(—v(®)) on Y. We fix any sequence {d.€R|/=1, 2, ---}
with d./d.

1

We can find a real valued C function v; on [0, d) with “fj_f"X,uj<7.

Consider a real valued C* function v on [0, d) with u(x)zrlg:i)l({uj(x)} on
[0, d) (=1, 2, -++), and ||fllx,. <o°. We can select subsequences {f;} D{f1,:}D
{fk—l,i}D{fk,i}D"' such that

Xar u<%, "fk,k_f”X\Td., ,,<%.

| fai— f

Then we have
| fee = Fllx,o <%.

Therefore, fir: =frux—f in L)X, E, ds®, h.).
q.e.d.

We set 7.=hexp(—u(@(x))), and dsi=ds*+u(P(x))00® dP. By the
diagonalization for ds? and dsZ, one can choose a basis {01, ***, 0} of T%, which
denotes the holomorphic cotangent space to X at x, so that

M

ds*=20:® G; and dsi=ds’+ u(P)B(x)o1® G, at xEX

1

i

where {01, -**, 0x} are the orthonormal basis of T%:% with respect to ds?, and B(x)
is the non-negative C* function on X.
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Proposition 2.6. Let p(t), (1), 1(t) be as Lemma 2.2, satisfying p(®(x))
>max{l, B(x)}. Then we have |f[iaum, row=<2 sup{m(2)*-exp(—m(£)}-Ifl. 7.

<o, Here, ||*|latu), iewy denotes the norm with respect to dsi, and hau,
Proof. For fEL*(X, E, ds?, h.) with =0 on Xa,,

A s, = [ <F. S ex0( =21 D))

< [( {1+ (@) BE)IS, Fasen exp(—2( O(x)))dv
<2 sup{u(0(x))*-exp(— r( O(x)))}

/X F, rasen exp(— (O (x)))dv

where dv (resp. dvy,) is the volume element with respect to ds® (resp. dsZ,).
In view of Lemma 2.2, 12(#)=> ()= p(t) for [di, d). Therefore,

[ Wt i <2 DSSItJBi{#I( )2 exp(— ()} f |z 5 < co.

3. Proof of Theorem A-V

For u€L%4( X, E) and vE L% (X, E), we denote d u=v if the equation
(u, 9:¢)=(v, @) holds for any p= C§?*(X, E). In view of Chapter 2, Proposi-
tion 3.1 in [10] and Proposition 4.5 in [17], we have only to show that for any g
e L%A(X, E) such that there exists a sequence {/;}C L% (X, E) with df—g
in L% %X, E), there exists f€ L% (X, E) such that df=g.

In view of Proposition 2.5, there exists a real valued C* function v on [0, d)
such that there exists a sequence {0 £} with df,—g in L %X, E, ds, h.),
where % ,=h-exp(—v(®(x))).

Consider a real valued C* function « on [0, d) with

{/z(t)}ZZxESql;l_Rt)l@h[h,dsz for Ife[d1, d)
(P> _sup {dofaee+20(1)|93 O} for t€[di, d)

u(t)=max{l, B(x)} for x€X
w(t)=v(t) for t<[0, d)

dy d . t
/; u(s)ds=>2, 'é Ju(s)ds=co, ltlgil{/; ;z(s)ds/pz(t)}=0
where B(x) is the eigenvalue of 00 ® 9 @ with respect to ds® at x.

We set A(t): =m(¢), and dsi: =ds?+A(D)o0® 0D.  hi: =hexp
(— Bua(@(x)))= h pu,, where 1u1(#) and 2(#) are in Lemma 2.2 and B is a constant.
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Then there exists a subsequence {3} with 9 f;,—g in L>"" (X, E, ds}, ha) in view
of Proposition 2.6, and the basic estimate holds at (0, n—q—1) with respect to dsi
and /. for sufficiently large B in view of Proposition 2.4. Therefore, there exists
fEL "X, E, ds}, h)) with df=g by Proposition 1.2.

q.ed.

4. Application

In this section, by using the basic estimate with respect to a complete hermitian
metric we show Hausdorffness of a certain cohomology group.

Let X be a compact complex space of pure dimension =# whose singular
points are isolated and X™* be the nonsingular part of X. Let 7: E—X™ be a
holomorphic vector bundle over X* with a C* fiber metric 2. We denote the
canonical bundle of X* by Kx:. Suppose that the singular points consist of
nonempty sets S1 and Sz. Let @ be a family of closed subsets of X* defined by @
={CCX*; there exists a neighborhood U of S such that UN C=¢}.

For any p»ES: (1<k</) we have a holomorphic embedding of the germ (X,
p)=>(C", 0). We fix in the followings a holomorphic coordinate z(=z%?)=(z,
..., 2v)E C" and the euclidian norm |z| of 2. We set XF=X N U,<<{0<]2?|<
c} for 0<c<1. We set Fe(z)=—log((c—|z)-(log(c/|z]))) and F(z)=Fi(2).
Then X& is a complete Kihler manifold with respect to 90 Fe.

We set LEY(X* E, 00F, h): ={f€L%i(X*, E); there exists a neighbor-
hood U of Si such that f]us is square integrable with respect to 90 F and h}. A
sequence {;}C L&Y (X*, E, 00F, h) converges to fELSY(X*, E, 00F, h) if
f—f in L%4(X*, E) and there exists a neighborhood U of S; such that f;—f in
L?(U\S,, E,00F, h), and we write fi—f in L% X* E, 00F, h). We set H
84%(X* E, 00F, h): =Kerd NL&(X* E, d0F, h)/Imd NL%Y(X* E, d0F,
k). H$? denotes the cohomology with supports in @. Then the sequence

—HEU(X*, E)-H&Y(X* E, 00F, h)—*@ H&W(U\NSy, E, 00F, h)—

is exact. We set

HH (X* E, 00F., h): =Kerd NL""(X#, E, ddF., h)/Imd NL»(XZ, E,
00 F, h).

Proposition 4.1 (cf: [11]). Assume that Kx+® E is extendable to X\S: as
a holomorphic vector bundle. Then

lim HS*(U\Sy, E, 39 F,h exp(—mF))=0 for ¢=1

and for sufficiently large m.
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Proof. We may assume Si={p}. We set c=1. As the curvature form of Kx+
® E is, by the assumption, bounded with respect to the euclidian induced metric
and h, there exists an integer 71 such that the curvature form of Kx+® E is Nakano
positive with respect to % exp(—mF). We set m=mi+1. Then

(e(Onm)Au, )m=|ul’ for us CPUX*, Kxi®F).

Here, @, denotes the curvature form of Kx+® E and hn: =h exp(—mF) and
I*llm, (¢, *)m, A denote th_e norm, the inner product, the adjoint of Lefschetz
operator with respect to 09 F and /%n. Then we have

I 0wl Ommulz=]ulf for € C9 (X, Kxt®E)

by Kodaira-Nakano inequality. Therefore fl?z’)"(Xl*, E, 00F, hexp(—mF))=0
for ¢g=1. Similarly we have H3(X¥, E, 00 F¢, h exp(_— mcFe))=0 for g>1 and
any 0< ¢<1 and sufficiently large integer m.. Since 0 Fc and % exp(— mcFc) is
quasi-isometric near S to 0 F and /m, we obtain th HY (XX E, 00F, hexp
(—mF))=0 for g>1.

q.e.d.

Theorem 4.2. Assume that Kxi® E is extendable to X\S» as a holomorphic
vector bundle. Then H3" '(X*, E) is Hausdorff.

Proof. By Proposition 4.1, we have only to show that for any g& L& '(X*,
E, 40F, hm) such that there exists a sequence {(HIC LY % X*, E, 030 F, hn) with
0fi—gin LY (X*, E, 00F, hn), there exists fE LY A X* E, 0 F, hn) such
that df=g.

Let o be a C” function such that 0=1 on X¥ and =0 on X*\X{*. Then
there exists a complete hermitian metric 52 on X* and a fiber metric % of E such
that

1) 0fwx—gin L Y(X* E, d3?% h).
2) there exists a compact subset K of X* and a constant Co, satisfying

0= o)ulP< Collulk+1l dul?+195ul?) for u€ C(X*, E), n—22¢
3) there exists a constant Ci, satisfying

loulP< Ci(l el + || @ ul? 4|9 72e]?) for us CO"*(X*, E)

where ||| denotes the norm with respect to 52 and 7.

Indeed, we set dS2=00F and % =hn near S: in Proposition 4.1. Then we
define 5% and % near S: in the same way as in the construction of s and %; in
Section 3 because X* is strongly 1-concave (cf: [1]). By patching these metrics
defined near Si and S» with any metric inbetween we obtain a complete hermitian
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metric d52 on X* and a fiber metric %z of E enjoying the above mentioned
properties. In fact , condition 1) and 2) are satisfied because supp[(1—p)u]C X*\
X1* and, by the assumption and Proposition 4.1 in [11], condition 3) is satisfied,

too.
Therefore the basic estimate holds at bi-degree (0, n—2).
g.e.d.
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