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Abstract

In this paper, we continue our study of theo-> fundamental groups of config-
uration spacesssociated to a hyperbolic curve, whéres either the set of all prime
numbers or a set consisting of a single prime number, begam iearlier paper. Our
main result may be regarded either asanbinatorial partially bijective generaliza-
tion of an injectivity theorendue to Matsumotoor as ageneralization to arbitrary
hyperbolic curves of injectivity and bijectivity resultsrfgenus zero curvedue to
NakamuraandHarbater—SchnepsMore precisely, we show that if one restricts one’s
attention to outer automorphisms of such a prdundamental group of the config-
uration space associated to a(n) affine (respectively,epydpyperbolic curve which
are compatible with certainfiber subgroups (i.e., groups that arise as kernels of
the various natural projections of a configuration spaceoteef-dimensional con-
figuration spaces) as well as with certainspidal inertia subgroupsthen, as one
lowers thedimensionof the configuration space under consideration from 1 to
n > 1 (respectivelyn > 2), there is anatural injectionbetween the resulting groups
of such outer automorphisms, which ibgectionif n > 4. The key tool in the proof
is a combinatorial version of the Grothendieck conjectpreven in an earlier paper
by the author, which we apply to construct certaamonical sections
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Introduction

Topological motivation. From a classical topological point of view, one way to
understand thetarting pointof the theory of the present paper is via ehn—Nielsen—
Baer theorem(cf., e.g., [13], Theorem 2.9.B) to the effect thatAf is a topological
surface of typgg, r) (i.e., the complement of distinct points in a compact oriented
topological surface of genug), then every automorphism of its (usual topological)
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652 S. MOCHIZUKI

fundamental grouprf’p(X) that stabilizes the conjugacy classes of the inertia ggoup

arising from ther missing points arises from lmomeomorphisnay: X — X.

Forn > 1, let us writeX;, for the complement of the diagonals in the direct prod-
uct of n copies ofX. Then one important consequence of the Dehn—Nielsen—Baer t
orem, from the point of view of the present paper (cf., elge, proof of Corollary 5.1,
(i), is that @ extends to a compatible automorphismy@?p()(n). Indeed, this follows
immediately from the fact tha&y induces a homeomorphisiay, : Xy 5 X,. Note,
moreover, that such an argumentnist possible if one only knows thaty is a homo-
topy equivalence That is to say, although a homotopy equivalente— X is, for
instance, ifr = 0, necessarily surjective, it isot necessarily injectiveThis possible
failure of injectivity means that it is not necessarily thase that such a homotopy
equivalenceX — X induces a homotopy equivalenég, — X;,.

Put another way, one group-theoretic approach to undelisiguthe Dehn—Nielsen—
Baer theorem is to think of this theorem as a solution to @kistence portiorof the
following problem:

THE DISCRETE COMBINATORIAL CUSPIDALIZATION PROBLEM(DCCP). Does
there exist a natural functorial way to reconstruat’®(X,) from 7;°(X)? Is such a
reconstructionunique?

At a more philosophical level, since the key property of iegt ofx v is its injectivity—
i.e., the fact that iseparates points-one may think of this problem as the problem of
“reconstructing theointsof X, equipped with their natural topologgroup-theoretically
from the groupn{"p()()”. Formulated in this way, this problem takes on a somevemat
abelianflavor. That is to say, one may think of it as a sort of problemdiscrete com-

binatorial anabelian geometty

Anabelian motivation. The author was also motivated in the development of the
theory of the present paper by the followimgive questiorthat often occurs iran-
abelian geometryLet X be ahyperbolic curveover a perfect fielk; U € X anonempty
open subschemaf X. Write “my(-)” for the étale fundamental groupf a scheme.

NAIVE ANABELIAN CUSPIDALIZATION PROBLEM (NACP). Does thereexist a
natural functorial “group-theoretic” way to reconstruet(U) from z1(X)? Is such a
reconstructionunique?

Forn > 1, write X, for the n-th configuration spacassociated tX (i.e., the open sub-
scheme of the product of copies of X over k obtained by removing the diagonals—
cf. [24], Definition 2.1, (i)). Thus, one has a natural préj@e morphismX, 1 — Xp,
obtained by “forgetting the factor labeled + 1”. One may think of this morphism
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Xni1 — Xp as parametrizing a sort ofuhiversal family of curves obtained by remov-
ing an effective divisor of degree n from”.XThus, consideration of the above NACP
ultimately leads one to consider the following problem.

UNIVERSAL ANABELIAN CUSPIDALIZATION PROBLEM (UACP). Does therexist
a natural functorial “group-theoretic” way to reconstrugi(X,) from z;(X)? Is such
a reconstructiorunique?

The UACP was solved for propeX over finite fieldsin [21], whenn = 2, and in [7],
whenn > 3. Moreover, wherk is a finite extension ofQ, (i.e., the field of p-adic
numbers for some prime numbe), it is shown in [22], Corollary 1.11, (iii), that the
solution of the UACP fom = 3 when X is proper or forn = 2 when X is affine is
precisely the obstacle to verifying thalfsolute p-adic version of Grothendieck conjec-
ture”—i.e., roughly speaking, realizing the functorial rectrastion of X from m1(X).
Here, we recall that for such g-adic k, the absolute Galois grou@yx of k admits
automorphisms that do not arise from scheme thdofy[30], the closing remark pre-
ceding Theorem 12.2.7). Thus, the expectation inherenhim “@bsolute p-adic ver-
sion of Grothendieck conjecture” is that somehow the priypef being coupled(i.e.,
within 71(X)) with the geometric fundamental group (X xi k) (wherek is an alge-
braic closure ofk) has the property ofigidifying Gg. This sort of result is obtained,
for instance, in [21], Corollary 2.3, foX “of Belyi typé Put another way, if one
thinks of thering structure of k—which, by class field theory, may be thought of as
a structure on the various abelianizations of the open suipgr of Gy—as acertain
structure on G which is not necessarily preserved by automorphisms @f (€. the
theory of [15]), then this expectation may be regarded asuatig to the idea that
this “ring structureon G¢” is somehowencodedin the “gap” that lies be-
tweens1(X,) and z1(X).

This is precisely the idea that lay behind the developmerthebry of [22], §1.

By comparison to the NACP, the UACP is closer to the DCCP dised above.
In particular, consideration of the UACP in this contextimbltely leads one to the
following question. Suppose further thatis a set of prime numberghich is either of
cardinality one or equal to the set of all prime numbers, drad k is an algebraically
closed field of characteristic zerdNrite “z"(=)" for the maximal prox quotient of
“m1(-)". Note that (unlike the case for more genekalin this caseZ(Xn), 7 (X)

are independent of the moduli of ¥f., e.g., [24], Proposition 2.2, (v)). Thus, in this

context, it is natural to writd1, def 7 (Xn)-

PROFINITE COMBINATORIAL CUSPIDALIZATION PROBLEM (PCCP). Does there
exista natural functorial “group-theoretic” way to reconstrué} from I1,? Is such a

reconstructiorunique?

Here, it is important to note that although the PCCRiirely independent of kand
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hence, in particular, of angalois group actiong an affirmative answer to PCCP im-
plies an affirmative answer to UACP (and hence to NACP). Thabisay:

Despite the apparentlpurely combinatorialnature of the PCCPour dis-

cussion above ofring structures on @” suggests that there iguite sub-

stantial arithmetiacontent in the PCCP.
This anabelian approach to understanding the arithmetic content of thearamply
combinatorial PCCP is interesting in light of the point ofewi of research on the
Grothendieck—Teichmiiller groufef., e.g., [5])—which is also concerned with issues
similar to the PCCP (cf. the OPCCP below) and their relatigngo arithmetic but
from a somewhadifferent point of view (cf. the discussion of “canonical splittings
and cuspidalization” below for more on this topic).

From a more concrete point of view—motivated by the goal of/jprg “Grothendieck

conjecture-style results to the effect tha{(—) is fully faithful” (cf. Remark 4.1.4)—one
way to think of the PCCP is as follows.

Out-VERSION OF THEPCCP (OPCCP). Does there exist a natural subgroup
Out*(I1,) < Out(IIy)

of the group of outer automorphisms of the profinite grdip such that there exists
a natural homomorphism OWfl1,) — Out*(I1, ;) (hence, by composition, a natural
homomorphism OU{I1,) — Out*(I1,)) which is bijective?

From the point of view of the DCCP, one natural approach tondefi“Out™” is to con-
sider the condition of quasi-speciality as is done by many authors (cf. Remarks 4.1.2,
4.2.1), i.e., a condition to the effect that thenjugacy classes of certain inertia sub-
groupsare preserved. In the theory of the present paper, we takiglatlgldifferent,
but related approach. That is to say, we consider the conddf “FC-admissibility,
which, at first glance, appeargeakerthan the condition of quasi-speciality, but is, in
fact, almostequivalentto the condition of quasi-speciality (cf. Proposition 1(@j), for
more details). The apparently weaker nature of FC-adniig¢gitenders FC-admissibility
easier to verifyand henceesasier to work within the development of theory. By adopt-
ing this condition of FC-admissibility, we are able to shdvatta certain natural homo-
morphism Out(I1,) — Out'(I1,—;) as in the OPCCP ibijectiveif n > 5, injective if

n > 3 when X is arbitrary, andinjectiveif n > 2 when X is affine (cf. Theorem A
below).

Main result. Our main resultis the following (cf. Corollary 1.10, Theorem 4.1
for more details). For more on the relation of this result &olier work ([10], [29],
[32]) in the pro-l case, we refer to Remark 4.1.2; for more on the relation &f tbsult
to earlier work ([14], [26], [5]) in theprofinite case, we refer to Remarks 4.1.3, 4.2.1.
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Theorem A (Partial profinite combinatorial cuspidalization)Let
U—S

be a hyperbolic curve of typed, r) (cf. 80) over S= Speck), where k is an alge-
braically closed field of characteristic zero. Fix get of prime numbers which is
either of cardinality one or equal to the set of all prime nwers For integers re 1,
write U, for the nth configuration spacassociated to U(i.e., the open subscheme
of the product of n copies of U over k obtained by removing tlagahals—cf.[24],
Definition 2.1, (i));

def
IT, = 7T12(Un)

for the maximal proX quotient of the fundamental grougf Uy;
out™(I1,) < Out(l1,)

for the subgroup of FC-admissible” €f. Definition 1.1, (i), for a detailed definition
Proposition 1.3, (vii),for the relationship to“quasi-speciality”) outer automorphisms
a—i.e, o that satisfy certain conditions concerning tfiber subgroup®f I, (cf. [24],
Definition 2.3, (iii)) and thecuspidal inertia groupsf certain subquotients of these fiber

subgroups. If U isffine, then set g d=ef2; if U is properover k then set g %3, Then
(i) The natural homomorphism

ouf(11,) — Out“(I1,_4)

induced by the projection obtained Wjorgetting the factor labeled mis injective if
n > ng and bijective if n > 5.
(i) By permuting the various factors of,Jone obtains a natural inclusion

Sn <> Out(Ily)

of the symmetric group on n letters in@ut(I1,,) whose imageommuteswith Out™(I1,,)

if N > ng and normalizes OUE(I1,,) if r = 0 and n= 2.

(iii) Write I1""°d for the maximal prox quotient of the fundamental group oftapod
(i.e,, the projective line minus three poiftever k Out(I1,)°UsP c Out (11, for the
subgroup of outer automorphisms which determine outerraatphisms of the quotient
[T, — I1; (obtained by‘forgetting the factors of |Jwith labels> 1”) that induce the
identity permutationof the set of conjugacy classes ofispidal inertia group®sf I1;.
Let n> ng; x a cusp of the geometric generic fiber of the morphism_U— U, »
(which we think of as the projection obtained Hiprgetting the factor labeled & 17),

where we take dezef Speck). Then x determineaup to I1,-conjugacy an isomorph
Mg, C I, of "o, Furthermore this IT,-conjugacy class istabilizedby anya €



656 S. MOCHIZUKI

Out™(I1,)®s?, the commensuratoland centralizerof g, in T, satisfy the relation
Cn,(Tlg,) = Zn,(T1g,) x g,. In particular, one obtains anatural outer homomorphism

Oqu(Hn)cusp_) Oqu(Htripod)
associated to theuspx.

Here, we note in passing that, by combining tlggoUp-theoreticity of the isomorph
of the tripod fundamental grodpgiven in Theorem A, (iii), with theinjectivity of The-
orem A, (i), one obtains an alternative proof of [14], Theorg.2—cf. Remark 4.1.3.

In 81, we discuss variougeneralitiesconcerning étale fundamental groups of con-
figuration spaces, including Theorem A, (iii) (cf. Coroifat.10). Also, we prove a
certain special case of thigjectivity of Theorem A, (i), in the case of &ipod (i.e., a
projective line minus three points)—cf. Corollary 1.12).(iin 82, we generalize this
injectivity result to the case oflegenerating affine curvegf. Corollary 2.3, (ii)). In
83, we show that similar techniques allow one to obtain aespwndingsurjectivity
result (cf. Corollary 3.3), under certaiconditions for affine curves withtwo moving
cusps In 84, we combine the results shown in 81, §2, 83 to prove émeaming por-
tion of Theorem A (cf. Theorem 4.1) and discuss how the thedrthe present paper
is related to earlier work (cf. Corollary 4.2; Remarks 4,1421.3, 4.2.1). Finally, in 85,
we observe that a somewhat stronger analogue of Theorema#.bes shown for the
correspondingdiscrete(i.e., usual topologicaljundamental groupgcf. Corollary 5.1).

Canonical splittings and cuspidalization. We continue to use the notation of the
discussion of the PCCP. In some sense, the fundamental imgaleed in the PCCP is
the issue ofhow to bridge the gap betweell, and IT; x IT;. Here, we recall that
there is a natural surjectiofl, — IT; x IT;. If we considerfibers over IT;, then the

fundamental issue may be regarded as the issue of bridgen@dp betweery/; def
Ker(IT, — TI1;) (where the surjection is the surjection obtained by ptapecto the
first factor; thus, the projection to theecondfactor yields a surjectiorTl,;; — I11)
andII; (i.e., relative to the surjectioll,; —> I11).

If one thinks of[1p/; asx{ (X \ {§}) for some closed poing € X(k), then there is
no natural splittingof the surjectionll,;; — I1;. On the other hand, suppose théts
an affine hyperbolic curveand one takesX \ {£}” to be thepointed stable log curve
Z'°9 (over, say, a log schem8°® obtained by equipping def Speck) with the pro-fs
log structure determined by the mondiglo of nonnegative rational numbers together
with the zero maQso — k—cf. 80) obtained as thelifmit” & — x, wherex is acusp
of X. Thus, Z consists oftwo irreducible componentsE and F, where F may be
identified with thecanonical compactificatiof X (so X € F is an open subscheme),
E is a copy of theprojective linejoined to F at a single node, and themarked points
of Z consist of the points#z v of F \ X and the two marked pointg v of E. Write
Ue C E, (X =) Ug € F for the open subschemes obtained as the complement of the
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nodes and cusp/'°? for the pointed stable log curve obtained frafi?9 by forgetting
the marked point oE C Z determined by the “limit o£” (so we obtain a natural map
Z'°9 — Y'°9: X may be identified with the complement of the marked pointsyf
Thus, by working withlogarithmic fundamental groupéf. 80), one may identify the
surjection Tl,/; — I1;” with the surjections(Z'°9) — 7 (Y'9) = 7 (X). Then the
technical starting poinbf the theory of the present paper may be seen in the following
observation:

The natural outer homomorphism

My = 77 (X) = 77 (Ug) = 78Uk xz Z%9) — 7(Z2'%9) = 1,1

determines a ¢anonical splitting of the surjectionz(Z'°9) = My —

P (Y99) = 7 (X) = M.
Put another way, from the point of view o§émi-graphs of anabelioidgletermined by
pointed stable curves (cf. the theory of [20]), this canah&plitting is the splitting de-
termined by the Verticial subgroup (7 (Ug) =) Tg € 77(Z'%9) = I, corresponding
to the irreducible componeri® € Z. From this point of view, one sees immediately that
I1/1 is generated bylr and the verticial subgrouprf (Ug) =) Mg C I15/1 determined
by E. Thus:

The study of automorphisms dil;; that preservellg, ITg, are compat-

ible with the projection 1,1 — I1; (which induces an isomorphisiir =

I11), and induce thadentity on I1; may be reduced to the study of auto-

morphisms ofIlg.
Moreover, by the €ombinatorial version of the Grothendieck conjecturd.e.,
“combGC"—of [20], it follows that onesufficient condition for the preservation of
(the conjugacy classes of)g, I1r is the compatibility of the automorphisms ©f/1
under consideration with theuter actionof the inertia group that arises from the de-
generation & — x”. On the other hand, since this inertia group is none othan ithe
inertia group of the cusp in Iy, and the automorphisms df,/; under consideration
arise from automorphisms dfl,, hence are compatible with the outer actionIof on
I/, determined by the natural exact sequence> 11,/ — I, — T1; — 1, it thus
follows that the automorphisms dil;1 that we are interested ido indeed preserve
(the conjugacy classes ofllg, TTg, hence arerelatively easy to analyzeThus, in
a word:

The theory of the present paper may be regarded dstaresting applica-

tion of thecombGC of [20].
This state of affairs imotablefor a number of reasons—which we shall discuss below—
but in particular since at the time of writing, the author &t aware ofany other appli-
cations of “Grothendieck conjecture-type” results.

In light of the central importance of the “canonical spfigi determined by the

combGC” in the theory of the present paper, it is interestmgomparethe approach
of the present paper with the approaches of other authorshi§oend, let us first ob-
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canonical
splitting

X

serve that since the canonical splitting wagginally constructed via scheme theoiy
stands to reason that if, instead of working withriitrary automorphismsas in the
OPCCP, one restricts one’s attentionaotomorphisms that arise from scheme theory
then one does not need to apply the combGC. This, in effedheissituation of [14].
That is to say:

The “canonical splitting determined by the combG®&kes the place of—

i.e., may be thought of as a sort tdombinatorial substitutefor—the prop-

erty of “arising from scheme theory”
Here, it is important to note that it is precisely in situasomotivated by problems
in anabelian geometryhat one must contend withatbitrary automorphisms that do
not necessarily arise from scheme theéorks was discussed above, it was this sort of
situation—i.e., the issue of studying the extent to which riihg structure of the base
field is somehowgroup-theoretically encoded in thegap’ that lies betweenll, and
I1;—that motivated the author to develop the theory of the prepaper.

Next, we observe that the “canonical splitting determingdthe combGC” isnot
necessanyin the theory of [5], precisely because the automorphismdiatl in [5] are
assumed to satisfy a certasgmmetry conditiorficf. Remark 4.2.1, (iii)). This symmetry
condition is sufficiently strong to eliminate the need focamstructing the canonical
splitting via the combGC. Here, it is interesting to notetttids symmetry condition
that occurs in the theory of th@rothendieck—Teichmller group motivated by the goal
of “approximating the absolute Galois groupy@®f Q via group theory. On the other
hand, in situations motivated by anabelian geometry—fetaince, involving hyperbolic
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curves ofarbitrary genus—such symmetry properties are typicalipavailable That is
to say, although both the point of view of the theory of tBeothendieck—Teichmuiller
group, on the one hand, and tlabsolute anabeliamoint of view of the present paper,
on the other, have the common goal aintaveling deep arithmetic properties of arith-
metic fields(such asQ, Q,) via their absolute Galois groupsthese two points of view
may be regarded as going apposite directionsn the sense that:

Whereas the€ormer point of view starts with the rational number fie@@

“as agiverm and has as its goal thexplicit constructionand documentation

of group-theoreticconditions (on Out(T;), when @, r) = (0, 3)) thatap-

proximate G, the latter point of view starts with the ring structure @,

“as anunknowri and has as its goal the study of the extent to which the

“ring structure on G, may be recovered from an arbitrary group-theoretic

situation which isnot subject to any restricting conditions”.

Finally, we conclude by observing that, in fact, the idea apglying anabelian re-

sults to construct canonical splittings that are of use ifviswg various cuspidalization
problems—i.e.,

Grothendieck canonical application to
conjecture-type result splitting cuspidalization

—is not so surprisingin light of the following earlier developments (all of whiae-
late to thefirst “~»>"; the second and third (i.e., (A2), (A3)) of which relate toet
second” ~>"

(A1) Outer actions on center-free groupf 1 - H - E - J — 1 is an exact se-
qguence of groups, an#il is center-free then E may be recovered from the induced

outer action ofJ on H as “H O>L<H‘J”—i.e., as the pull-back via the resulting homo-
morphismJ — Out(H) of the natural exact sequenceslH — Aut(H) — Out(H) — 1
(cf. 80). That is to say, the center-freenessHbf—which may be thought of as the
most primitive exampld.e., as a sort of degenerate versidnof the property of being
“anabeliari—gives rise to a sort of &nabelian semi-simplicityin the form of the iso-

morphismE = H % J. This “anabelian semi-simplicity” contrasts sharply witie
situation that occurs wheHl fails to be center-freein which case there ammany pos-
sible isomorphism classdesr the extensionE. Perhaps the simplest example of this
phenomenon—namely, the extensions

1>pZ—>Z—>Z/pZ —1
and
1> p-Z—>(p-Z)x(Z/pZ) > Z/pZ — 1

(where p is a prime number)—suggests strongly that this phenomerfidarabelian
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semi-simplicity” hassubstantial arithmetic conteritf., e.g., the discussion of [19], Re-
mark 1.5.1)—i.e., it is as if, by working withenter-free groupgsuch as free or pr&
free groups), one is afforded witltdnonical splittings of the analogue of the extension
1->pZ—>Z—>Z/pZ— 1"

(A2) Elliptic and Belyi cuspidalizationgcf. [22], 8§3): In this theory one constructs cus-
pidalizations of a hyperbolic curv& by interpreting either arfultiplication by i endo-
morphism of an elliptic curve or Belyi mapto a projective line minus three points as,
roughly speaking, ampen immersion ¥— X of a finite étale coveringy — X of X.
This diagramX <= Y — X may be thought of as a sort o€dnonical sectiof] more-
over, this canonical section is constructgdup-theoreticallyin loc. cit. precisely byap-
plying the main(anabelian result of[16].

(A3) Cuspidalization over finite fieldsAnabelian results such as the main result of [16]
have often been referred to agefsions of the Tate conjectufeoncerning abelian va-
rieties) for hyperbolic curves Over finite fields, the “Tate conjecture” is closely re-
lated to the Riemann hypothesidor abelian varieties over finite fields, which is, in
turn, closely related to variousemi-simplicityproperties of the Tate module (cf. the
theory of [25]). Moreover, such semi-simplicity propertiegsing from the “Riemann
hypothesis” for abelian varieties playley role—i.e., in the form ofcanonical split-
tings via weights—in the construction otuspidalizations over finite fielda [21], [7].
(A4) The mono-anabelian theory §#3]: If one thinks of “canonical splittings” asca-
nonical liftings’, then the idea of &pplying anabelian geometry to construct canonical
liftings” permeates the theory of [23] (cf., especially, the dismrsf Introduction
to [23]).

0. Notations and conventions

Topological groups. If G is a center-freetopological group, then we haveret-
ural exact sequence

1—- G — Aut(G) —» Out(G) —» 1

—where AutG) denotes the group of automorphisms of the topological g@uy the
injective (sinceG is center-free!) homomorphisi® — Aut(G) is obtained by letting

G act onG by inner automorphisms; O@( is defined so as to render the sequence
exact. If J — Out(G) is a homomorphism of groups, then we shall write

def

G O;ln\] = AUt(G) XoutG) J

for the “outer semi-direct product of J with 'G Thus, we have a natural exact se-

quence: 1-» G — G°>§1"J —-J—1.

If H < G is a closed subgroup of a topological gro@® then we shall use the
notationZg(H), Ng(H), Cs(H) to denote, respectively, theentralizer the normalizer
and commensuratoof H in G (cf., e.g., [20], 80). IfH = Ng(H) (respectivelyH =
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Cs(H)), then we shall say thaid is normally terminal(respectively,commensurably
terminal) in G.

Log schemes. When aschemeappears in a diagram of log schemes, the scheme
is to be understood as a log scheme equipped withiritaial log structure If X'°9 is
a log scheme, then we shall denoteinterior—i.e., the largest open subscheme over
which the log structure is trivial—byJx. Fiber products of (pro-)fs log schemes are
to be understood as fiber products taken in the category of){prlog schemes.

The étale fundamental group of a log scheme. Throughout the present paper,
we shall often consider thétale fundamental groupf a connected fs noetherian log
scheme (cf. [11]; [6], Appendix B), which we shall denote;(-)"; we shall denote
the maximal proX quotientof “m1(=)" by “x¥(-)" The theory of the #;(-)" of a
connected fs noetherian log scheme extends immediatelgrinected pro-fs noetherian
log schemesthus, we shall apply this routine extension in the presexep without
further mention.

Recall that if X'°9 is a log regular, connectedlog schemeof characteristic zero
(i.e., there exists a morphisdd — SpecqQ)), then thelog purity theoremof Fujiwara—
Kato asserts that there is a natural isomorphism

71(X'°9) = 71(Ux)

(cf., e.q., [11]; [17], Theorem B).

Let S° be alog regular log scheme such tha&& = SpecR.), whereR, is acom-
plete noetherian local ring of characteristic zewdth algebraically closed residue field
k,. Write K, for the quotient field ofR,. Let K be amaximalalgebraic extension of

K, among those algebraic extensions that ameamified over R,. Write R € K for

the integral closure oR, in K; Sd=EfSpecR). Then by considering the integral clos-

ure of R, in the various finite extensions df, in K, one obtains a log structure on
S such that the resulting log schen®9 may be thought of as aro-fs log scheme
corresponding to a projective system lofy regular log schemes in which the transi-
tion morphisms are (by the log purity theorefimite Kummer log étale Write k for

the residue fieldof R (so k = k.); $°9 2 Speck.) x5 5°9; s°9 2 Speck) xs 5.
Next, let

X/ _, goa
be aproper, log smoothmorphism; write
XIOg d:ef XLOQ Xgog SIOg —> SIOg;

def def
XLOSg = XLOQ Xé}og SCI}OQ — S|00g; )(ISOg = X|009 Xéog SIOg — SlOQ
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for the result of base-changing via the morphis#f§ — §°9, §°9 — g9, glog _, gog,
Then by [33], Théoréme 2.2, (a) (in the case wh&rés atrait); [6], Corollary 1 (for the
general case), we have a naturgpécialization isomorphisirr; (X/%9) = 7;(X99). We
shall also refer to the composite isomorphisr(X!%9) 5 1(X!°9) 5 m1(Ux,) (where
the second isomorphism arises from tbg purity theorem as the $pecialization iso-
morphismi. By applying these specialization isomorphisms to theiltesf base-changing
X199 _, 599 to the various log regular log schemes that appear in thegtiog system
(discussed above) associated to the pro-fs log sct@thewe thus obtain $pecialization
isomorphism’

71(X29) = 71(X'°%) = 71 (Ux)

for X'°9 — S Here, we note that iK is any algebraic closure ok, and the re-
striction of X!°9 — §° to Ug is alog configuration spacassociated to some family
of hyperbolic curves ovetlg (cf. [24], Definition 2.1, (i)), then we have matural
isomorphism

m1(Ux) = m1(Ux xk K)

(cf. [24], Proposition 2.2, (iii)). We shall also refer toethcomposite isomorphism
71(X109) 5 m(Ux xk K) as the $pecialization isomorphisin

Curves. We shall use the termbyperbolic curve cusp stable log curve and
smooth log curveas they are defined in [20], 80. Thus, the interior of a smooth |
curve over a scheme determines a family of hyperbolic cuowes the scheme. A
smooth log curve or family of hyperbolic curves of type (0,\8)l be referred to as
a tripod. We shall use the terms-th configuration spacend n-th log configuration
spaceas they are defined in [24], Definition 2.1, (i). ¢f r are positive integers such
that 2y — 2 +r > 0, then we shall Writeﬂlgoﬁa for the moduli stack Mg, of pointed
stable curves of typég, r) over (the ring of rational integers} equipped with the log
structure determined by thdivisor at infinity Here, we assume the marking sections

of the pointed stable curves to loedered Theinterior of ﬂ';? will be denotedMg;.

1. Generalities and injectivity for tripods

In the present 81, we begin by discussing various gen@sldoncerning the vari-
ous log configuration spacesassociated to a hyperbolic curve. This discussion leads
naturally to a proof of a certain special case (cf. Corollary2, (ii)) of our main re-

sult (cf. Theorem 4.1 below) fatripods (cf. 80).

Let Sd=efSpec(<), wherek is analgebraically closed field of characteristic ze@and

X9 . g
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a smooth log curve of typég, r) (cf. 80). Fix aset of prime number& which is
either of cardinality one or equal to the set of all prime nensb

DEFINITION 1.1. Letn> 1 be an integer.

(i) Write X!99 for the n-th log configuration spacassociated to (the family of hyper-

bolic curves determined byX'°9 (cf. §0); X'OOg %S, We shall think of the factors of

X0 as labeled by the indiceq, ..., n. Write
Xlnog—> x'r,°91—>---—> x:gg_)“,_> X|209—> XllogJ

for the projections obtained by forgetting, successivblg,factors labeled by indices m
(asm ranges over the positive integersn). Write

def
M, = 72 (X1°9)

for the maximal proX quotient of the fundamental groupf the log schemeX°9
(cf. 80; the discussion preceding [24], Definition 2.1,.(iThus, we obtain a sequence
of surjections

[y >y > - —=> Iy —> - > I > [
—which we shall refer to astandard If we write K, def Ker(Il, — M), Mg d:‘Ef{l},
then we obtain a filtration of subgroups

{1}=KngKn—lg"‘gng"'nggKngoznn

—which we shall refer to as thstandard fiber filtration onll,. Also, for nonnegative
integersa < b < n, we shall write

def
Mp/a = Ka/Kp

—so0 we obtain a natural injectiofly/a < IT,/Kp = Ip. Thus, if m is a positive
integer < n, then we shall refer tdInm-1 as astandard-adjacent subquotieof ITj.
The standard-adjacent subquotidiif,m-1 may be naturally identified with the max-
imal pro-X quotient of the étale fundamental group of the geometricegerfiber of
the morphism on interiorflx, — Uy, ,. Since this geometric generic fiber ishgiper-
bolic curve of type(g,r + m — 1), it makes sense to speak of thaspidal inertia
groups—each of which is (noncanonically!) isomorphic to the maaimro-x quotient
7% of Z—of a standard-adjacent subquotient.

(i) Let

o Iy, — I,
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be anautomorphismof the topological groupl,. Let us say thatx is C-admissible
(i.e., “cusp-admissible”) ifu(K;) = Ky for every subgroup appearing in the standard
fiber filtration, and, moreovery induces abijection of the collection ofcuspidal iner-
tia groups contained in each standard-adjacent subquotient of threlatd fiber filtra-
tion. Let us say thatx is F-admissible(i.e., “fiber-admissible”) ifa(H) = H for every
fiber subgroup HC IT, (cf. [24], Definition 2.3, (iii), as well as Remark 1.1.2 befp
Let us say thatr is FC-admissible(i.e., “fiber-cusp-admissible”) itx is F-admissible
and C-admissible. Ifx: I, — TI, is an FC-admissible automorphism, then let us
say thata is a DFC-admissible(i.e., “diagonal-fiber-cusp-admissible”) & induces
the same automorphism ofI1; relative to the various quotientEl, — I1; by fiber
subgroups of co-lengthl (cf. [24], Definition 2.3, (iii)). If «: I, — I, is a DFC-
admissible automorphism, then let us say thats an IFC-admissible automorphism
(i.e., “identity-fiber-cusp-admissible”) itx induces theidentity automorphism ofI1;
relative to the various quotientd,, — I1; by fiber subgroups of co-length. Write
Aut(I1,) for the group of automorphisms of the topological grolp;

Aut’FC(11,) € AutPFe(11,) € Aut™(11,,) € Aut™(I1,)) € Aut(IT,) 2 Inn(IT,)

for the subgroups of F-admissible, FC-admissible, DFCiasiilnle, IFC-admissible, and
inner automorphisms;

ouf(r1,) £ Aut™e(11,)/ Inn(M1,) € Ouf(I1,) &' AutF(11,)/ Inn(I1,) < Out(I,)

for the corresponding outer automorphisms. Thus, we oldaiatural exact sequence
1 — AutFC(11,) — AutPTe(11,) — Aut(IT,)

induced by the standard surjectidfy, — I1; of (i).
(i) Write

in € My

for the intersectionof the variousfiber subgroups of co-length. Thus, we obtain a
natural inclusion

in — Aut'™Cc(11,)

induced by the inclusiom, < 1, — Inn(I1,) € Aut(I1,) (cf. Remark 1.1.1 below).
(iv) By permuting the various factors oX/°9, one obtains a natural inclusion

Sn <> OUL(I)

of the symmetric group on n letteiigto Out(1,). We shall refer to the elements of the
image of this inclusion as thpermutation outer automorphisna$ IT,, and to elements
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of Aut(I,) that lift permutation outer automorphisms permutation automorphismsf
I1,. Write

out“f(11,) < out(11,)

for the subgroup of outer automorphisms thammutewith the permutation outer auto-
morphisms.

(v) We shall append theuperscript“cusp” to the various groups of FC-admissible
(outer) automorphisms discussed in (ii), (iv) to denote shbgroup of FC-admissible
(outer) automorphisms that determine (via the standargcion IT, — I1; of (i)) an
(outer) automorphism of1; that induces thedentity permutationof the set of conju-
gacy classes of cuspidal inertia groupsIef.

(vi) When @, 1) = (0, 3), we shall writer1"Pod & 1, pytirod &' Suppose that
(g,1r) = (0, 3), and that the cusps of'® are labeled g b, c. Here, we regard the
symbols{a, b,c, 1, 2,...,n} as equipped with the orderimg<b<c<1l<2<---<n.
Then, as is well-known, there is rmatural isomorphisnover k

~
xl?g - (M(ig+3)k

—where we write(ﬂ'&ﬁw)k for the moduli scheme ovek of pointed stable curves
of type (0, n + 3), equipped with its natural log structure (cf. 80). (Henee assume
the marking sections of the pointed stable curves toiokered) In particular, there is
a natural action of theymmetric group on A 3 letterson (ﬂgﬂJrs)k, hence also on
X1°9. We shall denote this symmetric group—regarded as a grotipgaen X°9—by
6ﬁ3. In particular, we obtain aatural homomorphism

Sty — Oout(IIyPo%

the elements of whose image we shall refer tooater modular symmetries(Thus,
the permutation outer automorphisms are the outer modylametries that occur as
elements of the image of the inclusiag, — Gﬁ‘j‘rs obtained by considering permu-
tations of the subsel,...,n} € {a, b, c, 1,...,n}.) We shall refer to elements of
Aut(IT"Pod) that lift outer modular symmetries asodular symmetriesf TTUPOd. Write

ipod ipod
Out “YI1*%) < Ouf (11>

for the subgroup of elements theabmmute with the outer modular symmetries
C(rtripocyS C(tripod
Ooutf S(miPed)S c oufC(rafired)

for the inverse image of the subgroup GHITIP*%) < OufS(r™ via the homo-



666 S. MOCHIZUKI

morphism OUtS(ITPody — OufF(ri™*%) induced by the standard surjectidPod —
% of (i). Thus, we have inclusions

OUIFCS(HgipOd) C OulFC(Hgipod)S C OUIFC(HgiPOd)CUSp

and an equality OGESITIP*Y = Ouf (%S, Here, the second displayed inclusion
follows by considering the induced permutations of the agagy classes of the cus-

pidal inertia groups oﬂ'[tl"p"d, in light of the fact thatS; is center-free

REMARK 1.1.1. We recall in passing that, in the notation of Defimitib.1, IT,
is slim (cf. [24], Proposition 2.2, (ii)). In particular, we have atoral isomorphism
M, — Inn(TT,).

REMARK 1.1.2. We recall in passing that, in the notation of Defimitlh1, when
(g,r) ¢ {(0, 3) (1, 1)}, it holds that for anyx € Aut(I1,) and any fiber subgroupl C
I, a(H) is a fiber subgroup ofl, (though it is not necessarily the case thdH) =
H!). Indeed, this follows from [24], Corollary 6.3.

REMARK 1.1.3. If o € Aut(Il,) satisfies the condition that(K,) = K, for a =
1,...,n, then often—e.g., in situations where there is a “suffi¢ienpntrivial” Galois
action involved—it is possible to verify theC-admissibility of « by applying [20],
Corollary 2.7, (i), which allows one to concludeyroup-theoretic cuspidality from
“I-cyclotomic full-nes%

REMARK 1.1.4. In the context of Definition 1.1, (vi), we observe tifatfor in-
stance,n = 2, then one verifies immediately that the outer modular symmeeter-

mined by the permutation gef (a b)(c 1) yields an example of €-admissibleelement
of Out(l‘[tz”p"d) (since conjugation by preserves the set of transpositiofia 2), (b 2),
(c 2), (1 2}) which is not F-admissible(since conjugation by switchesthe trans-
positions € 2), (1 2)—cf. the argument of the final portion of Remark 1.beélow).

On the other hand, whereavery element of OuIIItlripOd) is F-admissible it is easy

to construct (sincel'[tlripOd is a free prox group) examples of elements of Omﬁ”p"d)
which arenot C-admissible Thus, in general, neither of the two properties of C- and

F-admissibility implies the other.

REMARK 1.1.5. Leta € Ouf®(I1,)®“sP. Then observe that necessarily induces
the identity permutationon the set ofconjugacy classes of cuspidal inertia groups
every standard-adjacent subquotient Gf, (i.e., not justIl;). Indeed, by applying the
interpretationof the variousIy/, as “Tly_a's” for appropriate X'°9” (cf. [24], Propos-
ition 2.4, (i)), we reduce immediately to the case= 2. But then the cuspidal inertia
group € I,/ associated to thenique new cusphat appears may be characterized by
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the property that it is contained iB, (which, in light of the F-admissibility of «, is
clearly preserved bw).

Proposition 1.2 (First properties of admissibility)In the notation ofDefinition 1.1,
(i), let«a € Aut(I1,). Then
(i) Suppose thatx(E,) = E,. Then there exists @ermutation automorphisma €
Aut(TT,) such thata o o is F-admissible In particular, if « is C-admissible then it
follows thata is FC-admissible
(i) Suppose thatr € Aut™(I1,). Let p: I1, — I, be the quotient ofl, by a fiber
subgroupof co-length m< n (cf. [24], Definition 2.3, (iii)). Then« induces relative
to p, an elementr, € Aut™(ITy). If, moreover @ € Aut® (I1,) (respectively « €
AutFE(11,)), thena, € AutPFC(I,,) (respectivelya, € Aut™C(ITy)).
(iii) Suppose thatr € Aut™(I1,). Then there exisp € AutP (I1,), « € Inn(T1,) such
thata = B o

Proof. First, we consider assertion (i). Sineé,) = in, it follows that« induces
an automorphism of the quotielt, — IT; x - - - x I1; (i.e., onto the direct product of
n copies ofI1;) determined by the various fiber subgroups of co-length 1.edeer,
by [24], Corollary 3.4, this automorphism df; x - -- x I1; is necessarilycompatible
with the direct product decomposition of this group, up tansopermutation of the
factors. Thus, by replacing by « o o for some permutation automorphism, we
may assume that the induced automorphismilgfx --- x I1; stabilizeseach of the
direct factors. Now let us observe that this stabilizatidnthe direct factors is suffi-
cient to imply thate(H) = H for any fiber subgrougH C I1,. Indeed, without loss
of generality, we may assume (by possibly re-ordering tltkcas) thatH = K, for
someK, as in Definition 1.1, (i). By applying the same argumentatd, it suffices
to verify thata(K;) € K,. Thus, let us suppose tha(K,) € Ky, for someb < a, but
a(Ka) € Kypt1. On the other hand, the image o{Ka) in Ily11s = Kp/Kpy1 is nor-
mal, closed topologically finitely generatedand of infinite index(since, in light of the
stabilization of direct factors observed above, this imaggps to{1} via the natural
projectionKy/Kp 1 — I13). Thus, by [24], Theorem 1.5—i.e., essentially the theorem
of Lubotzky—Melnikov—van den Drieswe conclude that this image tsvial, a contra-
diction. This contradiction completes the proof of assertfi).

Assertion (ii) is immediate from the definitions. Next, wens@er assertion (iii).
For positive integersn < n, write ¢m: I, — I1; for the quotient ofl1, by the fiber
subgroupwhose co-profile is equal to{m} (cf. [24], Definition 2.3, (iii)). Thus, by

assertion (ii), we obtain variousn, oo a4, € Aut(T11), with images §m] € Out(IT4).
Then let us observe that to complete the proof of assertidn ii suffices to verify
the following claim:

[am] € Out(l1;) is independent of m.



668 S. MOCHIZUKI

To verify this claim, we reason as follows: By applying assertion (ii) to the ettipn
p: I, — I, for which Ker(p) has co-profile{1, m} for m # 1, we reduce imme-
diately to the case where = 2. Then observe that it follows immediately from the
“uniqueness of a cusp associated to a given cuspidal inerbapy (cf. [20], Prop-
osition 1.2, (i)) that thedecomposition groups IT, (all of which are IT,-conjugate
to one another) associated to tdmgonal divisor in X, may be reconstructed as the
normalizersof the various cuspidal inertia groups Bif,/; that lie in ;. In particular,

it follows immediately thate induces abijection of the collection of decomposition
groups ofT1, associated to the diagonal divisor Xy (all of which areTl,-conjugate
to one another). Thus, the automorphismIbf x I1; induced bya relative to the quo-
tient (1, ¢2): I, — I1; x I1; maps the diagonall; C I1; x 13 (which is the image
of a decomposition group associated to the diagonal divisof,) to some [1; x I1;)-
conjugate of the diagondll; € T1; x IT;. But then it follows formally thatd;] = [«2].
This completes the proof of thelaim, and hence of assertion (jii). ]

Proposition 1.3 (Decomposition and inertia groups)Let n> 1. Write D, for the
set of irreducible divisorscontained in the complement of the interiop XUy, of X'nog;

Is CDs C Iy

for the inertia and decompositiorgroups well-defined(as a pair) up to I1,-conjugacy

associated to5 € Dy; ¥'°9: X9 — X'r?_gl for the projection obtained byforgetting the

factor labeled ri; ¢'°9: X!°9 — X'fg for the projection obtained byforgetting the fac-
tors with labels# n”; py: Iy = In_1, py: Iy — 11 for the surjections determined
by ¥'°9, ¢'°9. Alsg we recall the notatiort Z ()", “No ()", “Co()” reviewed in
80. Then

(i) Dn may bedecomposeds a union of two disjoint subsets

Dy = Dgor U Dxer

—whereD" is the set of divisors which arorizontal with respect toy'®9 (i.e., the
cuspsof the geometric generic fiber af'°%); D" is the set of divisorDY®" which are
vertical with respect toy'°9 (so n> 2, and ¥(8) € D1 for § € DI.

(i) Let n>2; € € Dyh_4. Then the log structure on'% determines on the fibeiX,),
of ¥'°9 over the generic point of a structure of pointed stable curve;X,). consists
of precisely two irreducible componentali{ich may be thought of as elements¥f")
joined by a singlenode v. One of these two irreducible componentghich we shall
denotedr € Dy, mapsisomorphicallyto X; = X via ¢; the other which we shall
denotesg € DY*, maps to acuspof X; = X via ¢.

(i) In the situation of(ii), let ¢ € {§g, 8g}; suppose that the various conjugacy classes
have been chosen so thay(D,) = D.. Write

def _ def def
Mne = py (1) € Mp: Df ED; N e S Mne; M S D N Mynoy
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and I, C I, N ITs. € Ipn1 for the decomposition grouf v in Inn_1. Then

(a) p, induces anisomorphismIl;, — Iy;

(b) py mapsIls. onto acuspidal inertia groumf ITy;

(c) Mg, I, are commensurably terminah ITn/n_1;

(d) py induces anisomorphisml, 5L

(e) the inclusionsl,, I1, < I, . induce anisomorphismI, x IT, — D;;

(f) D; = Cn, (TT);

@) I = Zn, ().
(iv) In the situation of (i), let o € AutF (I1,); @ € (8¢, 8g, v}; €, € € Dp_1. (Thus
we obtain“primed version’ &r, 8¢ € D", v/, 6’ corresponding tce’ of the data con-
structed in(ii), (iii) for €.) Suppose that the automorphismI@_; induced viapy by
«a stabilizesI, C I1,_; (respectivelymapsI, < I1,_; to I, € I1n—;). Thena maps the
ITn/n—1-conjugacy fespectivelyI1,-conjugacy)class ofIl, to itself (respectivelyto the
I[T,-conjugacy class ofly). If 6 € {8g, 8} (S0 6’ € {8, 8%}), then a similar statement
holds with“TT,", “TIs” replaced by“D}”, “D},” or “I,”, “I".
(v) The assignment — Iy determines annjection of D, into the set ofl1,-conjugacy
classes of subgroups ®f, that are isomorphic to the maximal piB-quotientZ= of Z.
(vi) Everya e Ouf®(I1,)°usP stabilizes thell,-conjugacy clas®f the inertia groupls,
for 6 € Dp.
(vii) Write R, for the product Xx --- xx X of n copies of X over;kD} € D, for
the subset consisting of the strict transforms ip of the various irreducible divisors
in the complement of the image of the natural open immersign<t Py;

OuRS(I1,,) € Out(IT,)

—where"QS’ stands for‘quasi-special™for the subgroup of outer automorphisms that
stabilize the conjugacy class of each inertia grdiyp for § € D. ThenOuR¥(I1,) =
Out™C(I1,,)cusP,

Proof. We applyinduction on n. Thus, in the following, we may assume that
Proposition 1.3 has been verified for “smallet than the ‘n under consideration”.
Assertion (i) is immediate from the definitions. Assertian {ollows from the well-
known geometry ofX'%9, X!°9 by thinking of X°% as a certain rhoduli space of
pointed stable curvésand y'°9 as the tautological pointed stable curve over this mod-
uli spacé. Next, we consider assertion (iii). First, we observe thgt applying the
specialization isomorphism@f. §0) associated to the restriction ¢°9: X9 — X%
to the completion ofX,_; along the generic point of, we conclude that the pointed
stable curve structure orXf). (cf. assertion (ii)) determines aémi-graph of anabel-
ioids of prox PSC-typé as discussed in [20], Definition 1.1, (i) (cf. also the diseu
sion of [18], Appendix) whose associateBSC-fundamental grotipmay be identified
with ITn/n—1. From this point of view,IT, forms a ‘verticial subgroup (cf. [20], Def-
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inition 1.1, (ii)); I1, forms a(n) (nodal) édge-like subgroup(cf. [20], Definition 1.1,
(i1)). In particular, I, is center-free(cf., e.g., [20], Remark 1.1.3). Now (a), (b) follow
from the description oBg, §g given in assertion (ii); (c) follows from [20], Propos-
ition 1.2, (ii). To verify (d), observe that by general cafesiations, the inertia groufy

is isomorphic to some quotient &*; on the other hand, by thiaduction hypothesis
I. is isomorphic toZ= (cf. assertion (v) for i — 1"); thus, since ). is reducedat
its two generic points (which correspond dg, Jg), it follows that the homomorphism
(Z* —) I, — I. (= Z%) is surjective hence arisomorphism Now (e) follows im-
mediately from (d); (f) follows from (c), (d), and (e); sincas observed abové, is
abelian (g) follows from (d), (e), (f), and the fact thdl, is center-free This com-
pletes the proof of assertion (iii). Next, we observe thacsic induces abijection
of the collection ofcuspidal inertia groups= T1,/,_1 (a fact which renders it possible
to apply the theory of [20] in th@oncuspidalcase), assertion (iv) fofly, Ty follows
immediately from [20], Corollary 2.7, (iii); assertion fifor “D}", “D%" or “I,", “I"
follows from assertion (iv) forll,, Iy by applying (f), (g) of assertion (iii).

Next, we consider assertions (v), (vi). When= 1, assertions (v), (vi) follow,
respectively, from the uniqueness of a cusp associated to a given cuspidal inertia
group’ (cf. [20], Proposition 1.2, (i)), and the fact that € Out™(I1,)°Us’. Thus, we
may assume thah > 2. The fact thate stabilizes the conjugacy classes of the
for § € D" follows immediately from the fact thak is C-admissible(cf. also Re-
mark 1.1.5). Now let; € D}¥, ¢ € Dy_1 be as in assertion (iii). By thénduction
hypothesisl, is isomorphic toZ* and determines &,_;-conjugacy class that idis-
tinct from the IT,_;-conjugacy classes of thd,” of elements ofD,_; that are# e;
moreover, the outer automorphisen Out™(IT,,_1)°“sP induced bya via py Stabilizes
the conjugacy class df.. In particular, by (d) of assertion (iii), it follows thdi, is
isomorphic toZ>, hence that thel{—)” of elements of D" may bedistinguishedfrom
those of D}*" by the property that they lie ifil,/n—1 = Ker(o,) and from one another
by [20], Proposition 1.2, (i). Thus, to complete the proofaskertions (v), (vi), it suf-
fices to verify assertions (v), (vi) withD,"” replaced by “the subselsg, g} € D"
But then assertion (vi) follows from theespd case of assertion (iv); moreover, by the
non-respd case of assertion (iv), ifs., I, are IT,-conjugate then they arell,n_1-
conjugate

Thus, to complete the proof of assertion (v), it suffices tovéea contradiction
under theassumptiorthat Is. = y - I5. - y =1, wherey € In;n-1. Note that by (e) of
assertion (iii), this assumption implies thet commuteswith TTs., y - TT;_ -y 1. Next,
observe that by projecting to the various maximal prdotients for somé € =, we
may assume without loss of generality that= {I}. Then one verifies immediately
that the images ofls,, T, in the abelianizationT1a), ; of Iy 1 generatel3), 4,
hence (sincell,n-1 is a pro-l group—cf., e.g., [31], Proposition 7.7.2) thdl,n-1
is generated byls, and any singleIl,n_1-conjugateof ITs.. Thus, in summary, we
conclude thatl;, commuteswith IT,/n_1, i.€., that the outer action df. on ITnn-1
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is trivial. On the other hand, since the nodal curv&,)¢ is not smooth we obtain
a contradiction for instance, from [20], Proposition 2.6. This compleths proof of
assertion (v).

Finally, we consider assertion (vii). The fact that BfT,,)°sP € OuR(I1,) follows
immediately from assertion (vi). Next, let us observe thatabplying ‘Zariski-Nagata
purity” (i.e., the classical non-logarithmic version of the “logrijty theorem” discussed
in 80) to the product ofh copies ofUy overk, it follows that the subgrouE, C I1, is
topologically normally generatelly theIs, for thes € D} that arise as strict transforms
of the variousdiagonalsin P,. Thus, the fact that O88(I1,) < Out™(I1,,)sP follows
immediately from the definition of “O8t(-)” and Proposition 1.2, (i). This completes
the proof of assertion (vii). O

REMARK 1.3.1. The theory ofnertia and decomposition groupsuch as those
discussed in Proposition 1.3 is developed in greater detdi22], 81.

Fori =1, 2, write
pres: X9 X9

for the projection to the factor labeled pr,: X, — X for the underlying morphism
of schemes, ang, : I1, — I1; for the surjection induced by Y.

DEFINITION 1.4. Letx € X(k) be acuspof X'°9.
(i) Observe that the log structure O(fg determines on the fibeXg)x of the morphism
pr;: Xz — X3 over x a structure ofpointed stable curyewhich consists ofwo irredu-
cible components, one of which—which we shall denBfe—maps isomorphicallyo
X via pr,: X2 = X1 = X, the other of which—which we shall denots,—maps to
the point xe X(k) via pr,; Fx, Ex are joined at a singlaode vy (cf. Proposition 1.3,
(ii)). Let us refer toF, as themajor cuspidal component at, xo E, as theminor cus-
pidal component at xand tovy as thenexus at x Thus, the complement iR, (respect-
ively, Ex) of the nodes and cusps (relative to the pointed stable airueture on Xz)x)
of Fx (respectively,Ex)—which we shall refer to as theterior Ug, of F, (respectively,
Ug, of Ex)—determines anyperbolic curve |, (respectivelytripod Ug,). Moreover,
pr, induces (compatiblelsomorphisms i, — Uy, Fx — X.
(i) As discussed in Proposition 1.3, (iii), and its prodietmajor and minor cuspidal
components ak, together with the nexus at, determine (conjugacy classes ofgrti-
cial and edge-like subgroupécf. [20], Definition 1.1, (ii))

IIg,, g, I1,, € I

—which we shall refer to, respectively, asajor verticial minor verticial and nexus
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subgroups Thus, (cf. Proposition 1.3, (iii), (a), (b)) the morphism: I1, — I1; de-
termines anisomorphism

Mg, — MM

—i.e., the major verticial subgroups may be thought of asndgfisections of the pro-
jection p: I, — I13; p, mapsIlg, onto acuspidal inertia groupof IT; associated to
X. For suitable choiceswithin the various conjugacy classes involved, we hamtural
inclusions

g, 2 I, C I,
(inside Hz/]_).

Proposition 1.5 (First properties of major and minor verticial subgroupdh the
notation of Definition 1.4:
(i) 1Mm,, I, and ITg, are commensurably terminah ITy;.
(i) Suppose that onéixes IT,, C IT,;; among its variouslI,/1-conjugates. Then the
condition that there exist inclusions

IM,, € Ig,; TII,, € TIIF,

completely determine$lg, and I1r, among their varioudI,/;-conjugates.
(iii) In the notation of(ii), the compatible inclusion®l,, C Ig, C Iy, I, C TIg, €
I/, determine ansomorphism

“_m)(HEx < II,, < IIg,) — Iz
—where theinductive limit is taken in the category opro-X groups

Proof. Assertion (i) follows from [20], Proposition 1.2,)(i(cf. Proposition 1.3,
(i), (c)). Assertion (ii) follows from the fact that “evgrnodal edge-like subgroup is
contained inprecisely two verticial subgroupgcf. [20], Proposition 1.5, (i)). Asser-
tion (iii) may be thought of as a consequence of thart' Kampen theoretrin elemen-
tary algebraic topology. At a moreombinatoriallevel, one may reason as follows: It
follows immediately from thesimple structure of the dual graph of the pointed stable
curves considered in Definition 1.4 that there is a natuegjuivalence of categories
(arising from the parenthesized inductive system in theestant of assertion (iii)) be-
tween
(a) the category of finite setE with continuousITyi-action (andIly/;-equivariant
morphisms) and
(b) the category of finite sets equipped with continuousoastiof ITg,, ITg, which
restrict to thesameaction onIl, C Ilg, I1, < Ig, (and g -, [Tg -equivariant mor-
phisms).
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The isomorphism betweell,;; and the inductive limit of the parenthesized inductive
system of assertion (iii) now followformally from this equivalence of categories(]

REMARK 1.5.1. The technique ofvan Kampen-style gluirfigof fundamental
groups that appears in Proposition 1.5, (iii), will play anpiortant role in the present
paper. Similar methods involving isomorphs of the fundataleigroup of a tripod
(cf. Corollary 1.10, (iii), below; Theorem A, (iii), of thentroduction) may be seen
in the arguments of [27], [28].

Proposition 1.6 (Inertia groups and symmetry)In the notation of the discussion
precedingDefinition 14, write

def
Hl\2 = Ker(pg: M, —> H]_)

(cf. TIy;1 = Ker(psy: I — I13)). Thus each cusp of the family of hyperbolic curves
pr2|Ux2: Ux, = Ux, gives rise to a well-defingdip to ITy\o-conjugacy cuspidal inertia
group C 1. Then
(i) Write § for diagonaldivisor in X;. Let I; € Ds be a pair of inertia and decom-
position groupsassociated ta5. Then
(a) the cuspidal inertia groups I\, corresponding to the cusp determined by
are contained ing, = IT1,»NII,/; and coincide with the cuspidal inertia grougs
IT,/1 corresponding to the cusp determined dyas well as with thel,-conjugates
of I;;
(b) either p or p, determines(the final nontrivial arrow i) an exact sequence
1->1I; > Ds — I1; — 1;
(c) we haveD; = Cp,(I).
(i) Let xe Xy(k) = X(k) be acuspof X9, Let us think of x F, as elements ob;,
Dy, respectively(cf. Proposition 1.3, (i)) Then
(&) the major cuspidal component, Fat x is equal to the closure in Xof the
divisor of Uy, determined bypry1(x);
(b) I = Dy;
(c) If, is acuspidal inertia grouge Iy, associated to the cuspgJ of the family
of hyperbolic curvepr,|u,, : Ux, = Ux,;
(d) D, =D} ;
() D, N1z = IF,;
(f) Df, = Cp,(Dg,).
(iii) Let o be a non-inner permutatiorautomorphism offl,, « € Aut™(I1,). Then

def
oy =0 oaoo e Autt(I1,).

Proof. The content of (a), (b) of assertion (i) follows imrisdly from the def-
initions involved; (c) follows immediately from (b), todedr with the fact thafls is
commensurably termingh either Ty, or 1> (cf. [20], Proposition 1.2, (i)). Next,
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we consider assertion (ii). First, let us observe that (@),ate immediate from the def-
initions; (c) follows immediately from the definitions and){ (d) follows immediately
from (b) (cf. Proposition 1.3, (iii)). To verify (e), let usrét observe that it follows
immediately from the geometry of the morphismtfr X9 — X that pa(Ig,) = {1};
thus, (e) follows (in light of (d)) from Proposition 1.3, ifii (a), (e). Finally, sincdy is
commensurably terminah I1; (cf. [20], Proposition 1.2, (ii)), (f) follows immediately
from (d) and Proposition 1.3, (iii), (d), (e), (f). This cofepes the proof of asser-
tion (ii). Finally, we consider assertion (iii). It is immiede from the definitions that
o, € Aut(I1,) is F-admissible Moreover, it follows immediately from Proposition 1.2,
(iii), together with theC-admissibilityof «, thata, induces a bijection of the collection
of cuspidal inertial groups of the quotiept: I1, — I1;. Thus, it suffices to verify that
o, induces a bijection of the collection of cuspidal inertiabgps of I,/1, i.e., thata
induces a bijection of the collection of cuspidal inertiabgps of I11\». But in light
of assertions (i) and (ii), (c), this follows immediatelyofn the FC-admissibility ofx
and Proposition 1.3, (vi). This completes the proof of asseriii). ]

Proposition 1.7 (Inertia and decomposition groups of minor cuspidal congbs).
In the notation of Proposition 1.6suppose further that ¥ X;(k) = X(Kk) is a cuspof
X109, Let us think of X E, as elements aP;, Dy, respectively(cf. Proposition 1.3, (i)
Then
(@) Dg, =Dg;
(b) Tg, N2 = {1);
(¢) Dg, = Cn,(Dg,);
(d) for any open subgroup & Ig , Zpn,(J) = Ig,;
(e) Dg, = Cn,(ITg,).

Proof. First, we observe that the equality of (a) (respettjv(c)) follows by a
similar argument to the argument applied to prove Propwosifi.6, (i), (d) (respect-
ively, 1.6, (ii), (f)); (b) follows immediately from the geaetric fact that the inverse
image via ps: X — X; of the closed pointx contains the divisorEx with multi-
plicity one Next, let us consider (d). First, let us observe that, in tio¢ation of
Proposition 1.6, (i), the diagonal divisérintersects k transverselyin particular, (for
appropriate choices of conjugates) we hdlyec Tlg,. Thus, Zp,(J) € Zp,(J N1I;) €
Cn,(Is) = Ds (cf. Proposition 1.6, (i), (c)). On the other hand, note tipafTTg,) is
a cuspidal inertia group—i.e., “Iy"—of I1; associated to (cf. Proposition 1.3, (iii),
(b)), hencecommensurably terminah I1; (cf. [20], Proposition 1.2, (ii)). Thus, the in-
clusion Zp,(J) € D implies (for appropriate choices of conjugates) thatZn,(J)) =
P2(Zm,(J3)) € Iy, so the desired equalit¥n,(J) = Ig, follows immediately from Prop-
osition 1.3, (iii), (e), (f), together with the fact thdlg, is slim (cf. Remark 1.1.1).
This completes the proof of (d). Now it follows immediatelpin (d) thatCr,(ITg,) €
Nm,(Ig,). Thus, in light of (a), we conclude from Proposition 1.3ii)(i(e), that
Cn,(g,) € Cn,(Dg,), so (e) follows immediately from (c). 0
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Fori, j € {1, 2, 3 such thati < j, write
prov: X3® — Xz°
for the projection to the factors labeledand j of X'3°g—which we think of as cor-
responding, respectively, to the factors labeled 1 and 2('2?)?; pr; X3 — X, for the

underlying morphism of schemes; arEij: [13 — II, for the surjection induced by
Q‘Ij’g Also, fori € {1, 2, 3, write

priog: X539 — Xy*

for the projection to the factor labeled of X'ef’g; pr.: Xs — X, for the underlying
morphism of schemesp, : I3 — I1; for the surjection induced byﬁ!ﬂ?.

DEFINITION 1.8. Write U d=Efo; V € U x¢ U for the diagonal (so we have

a natural isomorphismV — U); V' for the log scheme obtained by equippiivg
with the log structure pulled back frori’('zOg (where we recall that we have a natural
immersionU x, U < X,). Let P'°9 be atripod over k.

() The morphism of log schemes ! X9 _, X9 determines a structure d&mily

of pointed stable curvesn the restrictionXzly — V of pr,, to V. Moreover, Xz|y
consists of preciselywo irreducible components\f Ey—which we refer to, respect-
ively, asmajor cuspidaland minor cuspidal Here, the intersectiofry N Ey is a node
w:V = X3lv; eitherﬂ'13 or pr,, induces an isomorphisriy 5V x¢ X over V; the
natural projectionEy — V is a P'-bundle the three sections oEy — V given by

vy and the two cusps 0Ks|ly — V that intersectEy determine aunique isomorphism

Ey — V xx P over V (i.e., such that the three sections Bff — V correspond to
the cusps of the tripod, which we think of as beifgbeled’ by these three sections).
Write (V xxUp =) W C Ey for the open subscheme given by the complement of these
three sectionsW'®9 for the log scheme obtained by equippilg with the log struc-
ture pulled back fromXL?g via the natural inclusioWW € Ey C Xs|y € X3. Thus, we
obtain a natural morphism of log schem@gd — V'°9,

(i) For x € U(k), denote the fibers relative to pover x by means of a subscriptx”;

write Y'°9 — Speck) for the smooth log curve determined by the hyperbolic curve
U\ {x}, y € Y(k) for the cusp determined by. Thus, we have a natural isomorphism
(X¥9), 5 Yy (cf. [24], Remark 2.1.2); this isomorphism allows one toritiy TTs/;

with the “TT,” associated toY'®9 (cf. [24], Proposition 2.4, (i)). Relative to this iso-
morphism K29, = Y%, Fy|., Ev|x may be identified with the irreducible compo-
nents ‘Fy”, “E,” of Definition 1.4, (i), applied toY'®?, y (in place of X', x). In
particular, we obtairmajor and minor verticial subgroupdlg, € I35, Mg, C I3
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(i.e., corresponding to thellr,", “I1g,” of Definition 1.4, (ii)).

Proposition 1.9 (Minor cuspidal components in three-dimensional configarespaces
In the notation of Definition 1.8, let us think of \/ W as elements aP}®, DY, re-
spectively and suppose thaLlQ(DW) = Dy (cf. Proposition 1.3, (i), (iii)) Then

(i) Write Jw « Zp,(Tg,). Then
(@) p,, induces an isomorphistiy 5 Dy;

(b) the inclusionsly < Dy, I[Tg, < Dy induce anisomorphismly x ITg, ) VYR
(c) p, determines natural exact sequendes> Iy — Jw — I1; — 1, 1> Iy —

Dy — IT1; — 1, which are compatible with the isomorphistg — Iy, Jw — Dy
induced by p..

(i) For any open subgroup & Ilg,, we have Zp,(J) = Jw.

(i) We have Cp,(I1g,) = Dw.

Proof. Sincellg, = IMT"P° js center-free(cf. Remark 1.1.1), assertion (i) follows
immediately from thesomorphism of log schemes'W— V'°9 x, Up induced by the
isomorphism of scheme® — V x, Up and the morphism of natural log schemes
W8 — Vo8 (cf. Definition 1.8, (i)). Next, we consider assertion (iiince p, induces
a surjection Jyy — Iy, and it is immediate thafiy € Zp,(J), it suffices to verify
that Jw N Iz1 = Zn,(Jd) N 31 = Zp,,(J). But this follows from Proposition 1.7,
(d) (cf. the discussion of Definition 1.8, (ii)). In a similaein, sincegl induces a
surjection Dy, — I1;, and it is immediate thaby < Cp,(ITg,), in order to verify
assertion (iii), it suffices to verify thdDy N I3/; = Cp,, (Mg, ). But this follows from
Proposition 1.7, (e). This completes the proof of Propositl.9. O

Corollary 1.10 (Outer actions on minor verticial subgroupspuppose that & 2.
Then the subquotientl_1n—> Of 1, may be regardedcf. [24], Proposition 2.4, (i)
as the proT fundamental group—i.e“I1,"—of the geometric generic fiber'’Z of
the morphism £%, — X", (which we think of as the projection obtained bfor-
getting the factor labeled r- 1”); the subquotientll,;n_» may then be thought of
(cf. [24], Proposition 2.4, (i)as the prox fundamental group 02-nd log configuration
space—i.e.“TI,”—associated to 9. In particular, any cuspx of Z'°9 determinesup
to Inn_p-cONjugacy a minor verticial subgroup-i.e, an isomorph of [T"P°4—Tg <
Mp/n-1. Then
(i) Anya e Aut™c(I1,)°usP (cf. Definition 1.1, (v))stabilizes thell,n_o-conjugacy class
of HEX-

(i) The commensuratoand centralizerof I1g, in I1, satisfy the relation G (I1g,) =
Zp,(Ilg,) x ITg,. In particular, for any open subgroup & I1g,, we have £, (J) =
Zn,(g,).
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(iii) By applying(i), (ii), one obtains anatural homomorphism
Out (I1,)*sP — Ouf (I, )

and hence anatural outer homomorphism OG(I1,,)°sP — Ouf(I1"P°d)  associated
to the cuspx of Z'°9,

Proof. In light of the superscript “cusp” and th&C-admissibility of «
(cf. Remark 1.1.5), assertion (i) follows immediately frahe resp'd portion of Prop-
osition 1.3, (iv). Next, we consider assertion (ii). Firlt us recall thatllg, is com-
mensurably terminaln IT,n-1 (cf. Proposition 1.5, (i)). On the other hand, it is im-
mediate from the definitions than, (Tg,) € Nn,(Cn,,,,(TTg,)). Thus, we conclude
that Cpy, (ITg,) = Np,(TTg,). In particular, to complete the proof of assertion (i), it
suffices (sincellg, is slim—cf. Remark 1.1.1) to verify that

(%) the natural outer actionof Np, (ITg,) on IIg is trivial.

Now let j € {1,...,n—1} be thesmallestelementm € {1,...,n—1} such thatx corres-
ponds to a cusp of the geometric generic fiber of the morph¥dis — X:ﬁﬂl (which
we think of as the projection obtained by “forgetting thetéadabeledm”). (Here, we
write X[ £'Speck).) Now if j = 1, then by applying the projectiofi, — IT, deter-
mined by the factors labeled h, we conclude that«) follows from Propositions 1.3,
(iii), (e); 1.7, (@), (e). In a similar vein, iff > 2, then by applying the projection
1, — I13 determined by the factors labelgd- 1, j, n, we conclude that«) follows
from Proposition 1.9, (i), (b); 1.9, (iii). This completelset proof of assertion (ii).
Finally, we observe that assertion (iii) follows immedigtéom assertions (i), (ii),
by choosing some isomorphisifig, — [1"P°d (which is determined only up to com-
position with an element of AGE(IT'P°%)) that is compatible with the cuspidal inertia
groups. That is to say, i& € Aut™(I1,)®*P, then by assertion (i)o(a(Ig,)) = IE,
for some I1,-inner automorphismyy of I1,. Sincewg is uniquely determined up to
composition with an element dfi, (I1g,), it follows from assertion (ii) that theuter
automorphisma; € OulFC(I'IEX) determined byog o « is uniquely determinedy «.
Moreover, one verifies immediately that the assignment- «; determines ehomo-
morphismOutS(I1,)°U? — Out (I1g, ), hence amuter homomorphis@ut C(IT,,)°UsP —
outC(11tirod)  as desired. O

DerINITION 1.11. (i) In the situation of Definition 1.1, (vi), let us wait
OUIFC(HmPOd)A def OquS(l—[tripod) _ OUIFC(HtripOd)S

and

Oqu(Htripod)AJr C Oqu(Htripod)A
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for the subgroupgiven by theimage of OufS(IT5"°%S via the natural homomorphism
oufS(ry™% — ouf (1% induced by the standard surjectiaty ™ — T157°%,

(i) Now let us return to the case drbitrary (g, r); suppose thah > 2. Then let
us write

out®(11,)%* < out(I1,)* < Out(I1,)°usP

for the subsets(which are not necessarily subgroups!) given by the unidnthe re-
spectiveinverse imagef Out“(ITg, )2+ < Ouf(Ig,)* € Outf(Ig,) via the nat-
ural homomorphisnOut ¢(I1,,)°U? — Ouf “(ITg,) associated in Corollary 1.10, (jii), to
a cuspx (as in loc. cit.), asx ranges over all cusps as in loc. cit.

REMARK 1.11.1. It is shown in [5] (cf. Corollary 4.2, (i), (i), belg
Remark 4.2.1 below; [5], §0.1, Main Theorem, (b)) that G@I"P°%2+ may be
identified with the Grothendieck—Teichmuller groupThus, one may think of the set
ouf“(11,)2* of Definition 1.11, (i), as the set of outer automorphismef “
Grothendieck—Teichmuiller type

Corollary 1.12 (Injectivity for tripods). Suppose that %9 is a tripod. Then
() The natural inclusionZ, — Aut'¥C(I1,) is an isomorphism
(iiy The natural homomorphism

ouf®(I1,) — out(I1,)

induced by p: T, — I is injective
(i) We have Out™®™(IT,) = Out™“(ITy).

Proof. First, we observe that assertion (ii) follows forpdfom assertion (i) and
Proposition 1.2, (iii). Next, we observe that assertioi) fllows formally from as-
sertion (i) and Propositions 1.2, (iii); 1.6, (iii). Thuty complete the proof of Corol-
lary 1.12, it suffices to verify assertion (i). To this end{ ée e Aut'™ (I1,). Let us
assign the cusps oX'°9 the labels g b, c. Note that the labels of the cusps ¥f°9
induce labels 4", “b”, “c” for three of the cusps of the geometric generic fiber of
the morphismUx, — Ux, determined by pr, assign the fourth cusp of this geometric
generic fiber thdabel x. Sincex € Aut™C(I1,), it follows that« induces (relative tq,
or pp) the identity permutationof the conjugacy classes of cuspidal inertia groups of
I1;. Since cuspidal inertia groups associated<tmay be characterized by the property
that they are contained iB,, we thus conclude that induces thadentity permutation
of the conjugacy classes of cuspidal inertia groupdTgf;.

Now let usfix a cuspidal inertia group, < T1,,; associated to the cusp labelad

Thus,a(la) = ¢ - 1a-¢ 7%, for some¢ € Ty, Sincea € AutFS(IT,), and J, £ py(l,) is
normally terminalin T1; (cf. [20], Proposition 1.2, (ii)), it thus follows thab,(¢) € J,,
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Fig. 1. The geometry of a tripod equipped with a fourth cusp “

so (by replacing; by an appropriate elemert¢ - I,) we may assume without loss of
generality that; € I;1 NI112 = i2. Thus, by replacinge by the composite o with

a Zp-inner automorphism, we may assume without loss of gemgrdlat a(ly) = 5.
By [20], Proposition 1.5, (i), it follows that there existsuaique(i.e., among itsI1y-
conjugates)major verticial subgroupllg, at b (respectively,ITg, at c) such thatl, C
[Tg, (respectively,l; € I1g,). By the non-respd portion of Proposition 1.3, (iv) (which
is applicable sincex € Aut'"(I1,)!—cf. Remark 1.13.2 below), we thus conclude that
a(Mg,) = Mg, o(Tlg) = ME,. Sincea € Aut'™c(I1,), and p, inducesisomorphisms
Mg, — Iy, g, — Iy (cf. Definition 1.4, (i), we thus conclude that is the identity
on g, ITg,. On the other hand, it follows immediately—for instance, dpnsider-
ing the well-known geometry of “loops around cusps” of dwmplex plane with three
points removedcf. Lemma 1.13; Fig. 1 above)—thai,/, is topologically generated
by ITr,, ITr,. Thus, we conclude that induces the thedentity on IT»/1. But since the
extension 1- Ily;; — I, — I1; — 1 induced byp; may be constructed naturally from

the resulting outer action ofl; on Ily/; (i.e., asIly/; °>§n1'11—cf. 80; Remark 1.1.1),
we thus conclude that is the identity. This completes the proof of assertion (i)[]
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The following result is well-known.

Lemma 1.13 (Topological generation by loops around cuspdh the notation of
the proof of Corollary 1.12,the compatible inclusions,IC g, C Ily/1, 1a € Ilg, C
15/, determine ansomorphism

lim(MTg, < M, = TIg,) = Ty

—where theinductive limit is taken in the category opro-X groups In particular,
I, is topologically generated bylg,, If,.

Proof. In the following, we shall denote thesual topological fundamental group
by “nf’p(—)". We may assume without loss of generality tkas the fieldC of complex
numbers. Then, as is well-known, the topology of a stableeunay be understood—
from the point of view of pants decompositiofgcf., e.g., [1], Chapter 2)—as the re-
sult of collapsingvarious “partition curves” on a hyperbolic Riemann surféaeoints
(which form thenodesof the stable curve). In particular, in the case of interesg ob-
tains thatlTg, € /1, Mg, € M1 Mmay be described in the following fashion: Write
for the Riemann surface obtained by removing the poffits3, —3} from the complex
planeC. Write D, (respectively,D_) for the intersection withv of the open disc of
radius 3 centered at 1 (respectivelyl). Note thatV is equipped with a holomorphic
automorphism: V — V given by “multiplication by—1"; «(D;) = D_, «(D-) = D,.
Let us think of —3, 0, 3 as corresponding, respectively, to the cuspa, c. Then we

may think of T/, as the proX completion ofn{Op(V) and ofITg, C Iy/; as correspond-

ing, at least up td1,;-conjugacy, to the pr& completion ofz,*?(D_) € m;°°(V). By
transport of structurevia ¢, we then obtain that we may think &fr, C I/, as corres-
ponding, at least up tdl,/;-conjugacy, to the pr& completion ofnf’p(DQ - nf’p(V).
As in the proof of Corollary 1.12, we maygidify the various conjugacy indeterminacies
by taking the basepoints of,’’(V), 7;°°(D, ), andz;’*(D_) to be the poini € C and
taking I, € ITy/1 to correspond to the subgroup topologically generated éyetament of
n{OP(V) determined by the circle, of radius 1 centered &t (i.e., 0), oriented counter-
clockwise (soy, € D, N D_). Thus, if one takes, (respectively,.) to be aloop in V,
oriented counterclockwise, given bystight deformatiorof the path obtained by travel-
ing fromi to b (respectively,c) and then back td along the line segment frointo b
(respectively,c), theny, € D_, y. € D.. Moreover, as is well-known from thevan
Kampen theoreinin elementary algebraic topology (cf. also the mam@mbinatorial
point of view discussed in the proof of Proposition 1.5)Yjiir;**(V) = 7,°’(D, U D_)

is naturally isomorphicto the inductive limit in the category of groups, of the diagram

TP(D.) <« m®(D; N D) — 7,°°(Dy)

—where we observe that,"°(D_) is generated by, and y,, 7, °(D4 N D_) is gen-
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erated byy,, andm,>’(D.) is generated by, andy.. Thus, Lemma 1.13 follows by
passing to pra&s completions. L]

REMARK 1.13.1. In the notation of Corollary 1.12 and its proof, wesetve that
the isomorphism of Lemma 1.13 suggests that it may be pessiblverify that the
natural injection

OufS(1,) < Ouf(I,)

of Corollary 1.12, (ii), issurjective(hence arisomorphism via the following argument:
Let g1 € Aut™(I1,). Then it suffices to verify thag, arises (viap;) from an element
of Aut™(I1,). Fix a “rigidified triple”

Mg, 2 la © IF,

as in the proof of Corollary 1.12. Let us assume, for simplicthat 81(Jy) = Ja
(where we recall thatl, = p2(l12)). Next, let us observe that, inducesisomorphisms
Mg, — I3, Mg, — I3 which coincideon 1y € Mg, 1a € Mg,. Thus, it follows for-
mally from the isomorphism of Lemma 1.13 thitere exists a unique automorphism
Bo/1 of Iy that is compatible relative to p,, with the automorphismg, of I1;. In
particular, 8,1 constitutes anatural candidatefor (the restriction toIl,/; of) a lifting

of B1 to Aut™S(IT,). On the other hand, unfortunately, it i®t clear whether or not
B2/1, constructed in this waystabilizes thell,/1-conjugacy class of the cuspidal inertia
groups associated to the cusp In particular, this argument alone i®t sufficientto
construct a lifting ofg; to Aut™“(I1,) from Bz/1.

REMARK 1.13.2. Another (perhaps more fundamental!) problem wite &ap-
proach proposed in Remark 1.13.1 is the following. If oneeadly knows thats; €
Aut™S(I1,) arises (viapi) from somep, € Aut™(Il,), then one wishes for thex-
plicit constructionof B,/ that is applied to give rise to the outer automorphism of
IT,/, obtained by restrictingd, to ITy1. For instance, ifg; is inner, then it arises
from a B, € Aut™(I1,) which is inner. Moreover, in order to pass from thg»/1 con-
structed from ararbitrary g; € Aut™(I1,;) by applying the natural isomorphisifi, 5

My O>Z"1'[1 (cf. 80; Remark 1.1.1), it iof crucial importancefor the explicit con-
struction g1 ~> fB2/1 to be ahomomorphisnwhich yields the restriction tdT, of an
inner liting to Auf(I1,) when applied to an inneB;. On the other hand, i, is

a non-trivial inner automorphism off1;, then (as is easily verified) there dwt exist
cuspidal inertia groupsp, J; € Htl”p"d corresponding to the cusps labeledc such that
B1(J) = Ja, Bi(d) = I, B1(J) = . In particular, in the case of such an arbitrary
inner 81, one may not apply th@on-respd portion of Proposition 1.3, (iv), to con-
clude that thell,/;-conjugacyclasses of major and minor verticial subgroups or nexus
subgroups ofl1,,; are preserved by an inner lifting,. Instead, one may only apply
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the respd portion of Proposition 1.3, (iv), to conclude that tli-conjugacyclasses
of such subgroups are preserved gy—which is insufficientfor the execution of the
construction of Remark 1.13.1 (i.e., of the proof of Conglld.12).

Corollary 1.14 (Modular symmetries of tripods).Suppose that ' is a tripod.
Let n> 2. Then
() The outer modular symmetries Out(T1,) normalize OUt(I1,)°UsP. If, moreover
the natural homomorphism®ut™(I1,) — Out(I1,, 1) induced by the standard sur-
jection Iy, — T, is injective for all integers m such tha2 < m < n, then we have
Out™(11,) N Outf (11,)S = Ouf(11,).
(i) Let x be as inCorollary 1.10 Write 7: T1,, — I1; for the standard surjection.
Then there exists anuter modular symmetry € Out(l1,) such that the restriction of
woo: I, > I to g, C I, determines arouter isomorphismIg, 5 M, that is
independent of the choice ®fg, among itsIT,-conjugates.
(i) Suppose that we are in the situation ¢f). Let @ € OutS(IT,)UP «lg, €
Out™(Tg,) the result of applying the displayed homomorphisnCairollary 1.10, (iii),
t0o; o° Lo a0l e oufS(I,) s (cf. (); af € OufS(ITy)sP the outer auto-
morphism ofI1; induced bya® via 7. (Thus « = «° whenevera € Outf“¥(I1,).)
Thena|g, and o are compatiblewith the outer isomorphisnilg, 5 My of (i)). In
particular, if «|g, € Ouf (ITg,)S, thena® € Out ™ (I1,,)S.
(iv) We have Out™“¥(I1,) € Ouf(I1,)2 .

Proof. First, we consider assertion (i). We appiguctionon n. First, let us ob-
serve that relative to theatural isomorphism 9 = (M{§§+3)k (cf. Definition 1.1,

(vi)), the divisors of X, that belong toD; (cf. Proposition 1.3, (vii)) are precisely

the divisors at infinityof (ﬂ§ﬁ+3)k whose generic points parametrize stable curves of
genus zero with precisely two components, one of which ¢asifarecisely two cusps

(Indeed, this follows immediately from the well-known geetny of (ﬂgﬂJrg)k.) In

particular, the automorphisms c(W'(;ﬂ+3)k arising from the permutations of the or-
dering of the cusppermutethe divisors that belong t®;. Thus, we conclude that the
outer modular symmetries Out(T,) normalize Out*S(IT,,) = Out™(I1,)°UsP (cf. Prop-
osition 1.3, (vii)). Now letr € Out(I1,) be an outer modular symmetry that arises from
a permutation of the subsgg, b,c,1,2,...,n—1} C{a,b,c, 1,2,...,n—1,n} (cf. the
notation of Definition 1.1, (vi)) € Out “"(I1,,) N Out “(I1,)S < OulRS(I1,) (cf. Prop-
osition 1.3, (vii)); & &t~ o & o T € OURY(II,). Then sincer is compatiblewith the
standard surjectiodl,, — IT,_1, it follows from the induction hypothesishat o, o,
map to thesameelemente OuRS(I1,_,) via the natural homomorphism GHI1,) —
Out®(I1,_4) induced by this surjection. Thus, we conclude from ihjectivity condi-
tion in the statement of assertion (i) (cf. also Proposition {v8)) that « = ;. Since
the group ofall permutations of the s€f, b, ¢, 1, 2,...,n—1,n} is generated by the
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subgroups of permutations of the subsgt®,c, 1,2,...,n—1} C{a,b,c,1,2,..,n—1,n}
and{1,2,...,n—1,n} C {a,b,c, 1,2,...,n—1,n}, we thus conclude that € Out “S(I1,,).
This completes the proof that GGE(IT,) N Out(I1,)° < Out“(I1,); the opposite
inclusion follows immediately from the definitions. Thisropletes the proof of asser-
tion (i).

In light of Corollary 1.10, (ii), assertions (ii) and (iiioflow immediately from the

definitions and the well-known geometry ¥ (i.e., (ﬂ{§3+3)k). Finally, we consider

assertion (iv). By assertion (iii), it follows that the imagf the restriction OGtS(I1,,) —
Ouf(Ig,) to Ouf®S(I1,,) of the natural homomorphism of Corollary 1.10, (iii), ligs
Ouf(Ig,)”. Write 7’: Tl — Ty, ”: Ty — 1y (Sox = 7" ox’) for the standard sur-
jections. Then the existence of the factorizatioswo = 7" o(7'o0): T — [ —» 11—
which is compatiblewith elements of OGS(IT1,)—implies that the image of the homo-
morphism OUt“Y(I,) — Ouf“(ITg,) in fact lies in OuE(TTg,)2*. This implies the
desired inclusion OGF(I1,) € Outf®(I1,)2* and hence completes the proof of asser-
tion (iv). 0

2. Injectivity for degenerating affine curves

In the present §2, we generalize (cf. Corollary 2.3, (ii)¢ thjectivity asserted in
Corollary 1.12, (i), to the case adrbitrary X'°9 such thatUy is affing by considering
what happens when we alloX'°9 to degenerate

Let

° kod:efk be as in 81;

e RE K.[[t]]—i.e., thering of power serieswith coefficients ink.;

e K, the quotient fieldof R.;

e K analgebraic closureof K,; n o SpecK);
e R the integral closure oR, in K;
def

e 9 S° the log schemes obtained by equippifg X' SpecR.), S %' SpecR),
respectively, with the log structures determined by thezeom regular functions;
o 599 E'speck,) xg 9;
o 599 £ 5peck) xs S99
Here, we wish to think ok as theresidue field of R
Next, let

X129 — g9
be astable log curve of typég, r) (whose restriction tdJg is a smooth log curvg
X|Og dzef XLOg Xéog SIOg — SIOg,

def def
X199 = X109 o0 S8 s glog;  xlog = xlo X dog s°9 > g9
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for the result of base-changing via the morphis8l®¥ — S, g°9 — g9, glog
S°9. Thus, we are in a situation as discussed in §0. By orderiegctisps ofX'°9,

we obtain aclassifying(1-)morphism 89 — ﬂg’? If nis a positive integer, then by

pulling back the natural (1—)morphianlgct?+n — ﬂ';? obtained by “forgetting the last
n points” via this classifying morphism, we thus obtain lag‘ configuration space

lo [o]
X — g%

—i.e., whose restriction ttJg is a “log configuration space” as in [24], Definition 2.1,
(). We shall write

log og. log log. log log
Xq — g§o9; Xnos =~ S Xps—>S

for the result of base-changing/%9 — S° to S°9, %9, or s°9. Thus, we may apply
the discussion of 80 tX!°9 — S°9 for arbitrary n. Also, we may apply the theory of
81 by taking

log def I
Xpd = Xp9xsn —> 1

to be the ‘X'r$9 — S of 81; this results in a IT,” of the form
def
My = 7 (X29)

—to which we may apply thepecialization isomorphismdiscussed in 80.
Fori =1, 2, write

prod: X539 — Xy

for the projection to the factor labeldd pr,: X, — X3 for the underlying morphism
of schemes, ang; : I, — I, for the surjection induced by .

DEeFINITION 2.1. Letix € {1, 2}. Suppose thaXs is singular and has x irredu-
cible componentsone of which we shall denot€; if ix = 2, then we shall writeQ
for the other irreducible component ofs. Write Ur € T (respectively, (wheny = 2)
Ug € Q) for the complement inT (respectively, (wherix = 2) Q) of the nodes and
cusps ofXs relative to the log structure oK!9. Suppose further thatr is a tripod.
Let x € X(S) be acuspof X'°9 whose restrictionxs € Xs(s) € X(k) to s lies in T
(€ Xs) (cf. Remark 2.1.1 below).

(i) Observe that the log structure 0 determines on the fiberXg)y, of the mor-
phism pg: X, — X3 (= X) over xs € X(Kk) a structure ofpointed stable curyewhich
consists ofix + 1 irreducible componentsy of which—which we shall denotd and
(Whenix = 2) Q—map isomorphicallyto T € Xs and (whenix = 2) Q C X, re-
spectively, via py: X — X1 = X, the {x + 1)-th of which—which we shall denote
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Ex—maps to the point xe Xs(s) via pr,. Let us refer toT and (whenix = 2) Q
as thesub-major cuspidal components af and to E, as thesub-minor cuspidal com-
ponent at x. Thus, the complement it (respectively, (wherix = 2) Q; E,) of the
nodes and cusps (relative to the pointed stable curve steuan (X)) of T (re-
spectively, (whenix = 2) Q; E,)—which we shall refer to as thiterior U+ of T
(respectively, (whernx = 2) Uy of 0; Ug, of E.)—determines aripod U;s (respect-
ively, (whenix = 2) hyperbolic curve §; tripod Ug ). Moreover, ps inducesiso-
morphisms Y — Ur, (whenix = 2) Us — Ug; we have a diagram (cf. also Fig. 2
below)

ExoiyeTo/ikeO

—where the final & Q is to be omittedif ix = 1; we refer to the unique nodg
of (X2)y, that lies overxs € Xs(s) (via pr,) as thesub-nexusat xs and to each of the
remaining (one or two) nodes, of (X,)x, as theinternal nodesat x.

(i) On the other hand, by applying Definition 1.4 mLOg — 1, we obtainmajor and
minor cuspidal componentat x, (i.e., the restrictionx, € X(i) of x to n), as well
as anexusat x,—which we shall denote,, Ex C (X2)x,, vx. Write Fy, Ex, vy for

the closures ofFy, Ey, vk in (X2)x def X2 xx, S (where the fiber product is taken with
respect to the morphisms prX; — Xji, x: S— X; = X). Thus, we havel C Fy,
(whenix =2) @ € F,, Ex € Ey, iy C vy. Write

Ug, CFx Ug C Ex

for the open subschemes given by the complements of therelsif the nodes and
cusps of Fx, Ex. Thus,Ug is a family of tripods over S; pr, determines aropen
immersion

UEX(_)X

whose image is the complement of the cuspdfrelative to the log structure oX'°9).
(i) Write T — T for the normalizationof T; T'%9 for the log scheme obtained by
equippingT with the log structure determined by the closed pointsTofhat map to
points of T \ Ur. Thus,U; is atripod over s; we have a natural isomorphisrit ©)
Uz S Ut (ST C Xs). Write 'I:',ﬁ’g — s for the n-th log configuration spacassociated
to U; (cf. 80). Thus, we have aatural commutative diagram

T-z — Xz

| lpn

T—X%s
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—where, by abuse of notation, we write; pii, — T1 =T for the projection to the
factor labeled (for i =1, 2); we write pr: Xo5 — X1,s = X for the restriction to the
fibers overs of pr;: X; — X1 (for i =1, 2); the horizontal arrows restrict tmmersions
on Usz,, Us; the lower horizontal arrow is compatible with the natursbrorphism

(T 2) Us = Uy (ST C Xs). Write (T>)y, for the fiber of ps: T, — T over the point
xs, where, by abuse of notation, we writg for the pointe T(s) determined byxs €
Xs(s). Then (fz)xs hasprecisely twairreducible components which map isomorphically
to Ex € (Xo)x,, T S (X2)x.—s0 (T2)x, may be thought of as consisting of a diagram

Exaiixe'f

—via the natural morphisn‘fz — X2s. By abuse of notation, we shall also use the

notation Ey, T for the corresponding irreducible components ). Write [1tipod &
P (TR9).

(iv) By applying thespecialization isomorphism&f. 80) associated to the restriction
of pry9: X9 - X\ to the result of base-changing V&9 — S the completion of
X1, = X, along the cusp oiX, determined byx, we conclude that the pointed stable
curve structure onXy)x, (cf. (i)) determines a semi-graph of anabelioids of pri-
PSC-typé as discussed in [20], Definition 1.1, (i) (cf. also the dission of [18], Ap-
pendix) whose associated®SC-fundamental grotipmay be identified withITy/. In
particular, we obtain (conjugacy classes of) subgroups[2€], Definition 1.1, (ii))

Iy, Mg, Mg, i, i, © o

(where Il is to be omitted ifix = 1) corresponding to the sub-major and sub-minor
cuspidal components, as well as to the sub-nexus and theahteode(s)—which we
shall refer to asub-major verticial sub-minor verticial sub-nexusandinternal nodal
respectively. In a similar (but simpler) vein, by applyirge specialization isomorphisms
(cf. 80) associated tX'°9 — S°9, we obtain (conjugacy classes of) subgroups

My, Mg €11y

(whereTlq is to be omitted ifix = 1)—such that the morphisrp,: I1, — II; deter-
minesisomorphisms

My — My; Mg — Mg

(where the second isomorphism is to be omittedit= 1)—i.e., the sub-major verticial
subgroups may be thought of as defingertions of the projection,p 1, — I1; over

[r, (Whenix = 2) Iq. On the other handp, mapsIlg onto acuspidal inertia
group of I1; associated to; in particular, px(Ilg ) is abelian Finally, we observe
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that for suitable choicesvithin the various conjugacy classes involved, we haatural
inclusions

Mg 2 M € Iy 2 1 € g
(where My is to be omitted ifix = 1) inside [Ty/1.

(v) On the other hand, by applying Definition 1.4 )d?% — 1, we obtain (conjugacy
classes of) subgroups

I, g, I1,, S I

associated td~, Ex, vx (cf. (ii)) such thatp, determines arisomorphismITg, 5 ;.
For suitable choiceswithin the various conjugacy classes involved, we haatural
inclusions

g, 2 IT,, € IIf;
(inside 1), as well asnatural inclusions

[, [T € IF,

induced by the natural immersiong; < Ug , Us — Ug (where Tlg
Ug " are to be omitted ifix = 1) by applying the isomorphisms

L “Ug =

73 (U, xx X'%9) xg8) = 77 (X9 = (X9 = 77 (Ug, xx X'°9)

(arising from thelog purity theoremand thespecialization isomorphisrfor X'°9 —
§°9), together with the isomorphisms?(Ug, xx X'°9) — 7 (Ug,) — I, (the first
of which arises from the log purity theorem). In a similar t(lsimpler) vein, we have
equalities(of IT,/;-conjugacy classes of subgroups Ia§,1)

HEX = HEX; H,}X = Hux

induced by the natural immersidy: < Ug by applying the isomorphismf(ugx Xs
s) — nf(ng) (arising from thelog purity theoremand thespecialization isomorphism
for the smooth log curve determined, up to unique isomorphtsy the family of tripods
Ug, — S), together with the isomorphisms(Ug,) — 7 (Ug,) — g, (the first of
which arises from the log purity theorem).

(vi) One verifies immediately that the natural commutativegdam of (iii) determines
a natural morphism of exact sequences of profinite groups

tripod tripod tripod
21— 10, I, 1

|

1 I/, I, Iy 1

1— 11
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—where the vertical arrows aii@jective outer homomorphismthe image of the ver-
tical morphism on the right is equal tbly. By abuse of notation, we shall write
My (respectively, T, "% ™) for the subgroup, well-defined up Bz~ (re-
spectively,IT,-; T1;-) conjugacy, determined by the image of the left-hand @etyely,
middle; right-hand) vertical arrow. Thus, fauitable choiceswithin the various conju-
gacy classes involved, we havatural inclusions

tripod
HEX' I3, IT;, © HZ/’i
(inSide HZ/l)-

REMARK 2.1.1. One verifies immediately that data as in Definition éists for
arbitrary (g, r) such that(g, r) # (0, 3) and r > 1. Moreover, the casg = 1 corres-
ponds precisely to the case whegg () = (1, 1).

Proposition 2.2 (First properties of sub-major and sub-minor verticial gnaloips).
In the notation ofDefinition 2.1:
() My, (when ik =2) g, Mg, My, O, O, Og,, I, Hg}ﬂ(’d are commensurably
terminalin TTy/1; Iy, (When ik = 2) T1g are commensurably terminal ifi;.
(if) Suppose that onéixes I, < ITI,;; among its variouslTy/1-conjugates. Then the
condition that there exist inclusions/equalities

HUX EHEX; Hl)x ZHVX EHT EHFX:

_ . tripod
Mg =Mg; Mg,y ST,

completely determine8lg,, My, M, Mg, Mg, and 55" among their varioudT,s-

conjugates.
(iii) In the notation of(i), the compatible inclusiongl;, < Mg, < I‘Igﬁ(’d, M, C M C
Hg}ﬂ‘)d, M, C Mg, C My, M, CIf, C Iy, determineisomorphisms

. ~ tripod
Iy @ - (ﬁ Iy .
“_m)(HEX Iy, = ) = Iy

|i_I’T'I)(1_[E>< <~ Hux — HFX) :> Hg/l
—where theinductive limits are taken in the category gbro-X groups

Proof. Assertion (i) follows from [20], Proposition 1.2j)(i Assertion (ii) follows
from the fact that “every nodal edge-like subgroup is cargdiin precisely two ver-
ticial subgroup$ (cf. [20], Proposition 1.5, (i), together with the factethtzrﬁOd is
topologically generatecby Ig , T3 (cf. assertion (iii)). Assertion (i) follows by a

similar argument to the argument applied in the proof of Bsitpn 1.5, (iii). O
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Htripod
2/1

E T 0

Fig. 2. A degenerating affine curve equipped with an extrg cus.

Corollary 2.3 (Injectivity for non-tripod degenerating affine curves)n the nota-
tion of Definition 2.1 €f. alsoDefinition 1.1; Remark 2.1.1):
() The natural inclusionZ, < Aut'™(I1,) is an isomorphism
(i) The natural homomorphism

out™(11,) — Ouf(I1,)

induced by p: [T, — I1; is injective
(i) We have Ouf“(I1,) = Out™“(I1,).

Proof. First, we observe that assertion (ii) follows formdtom assertion (i) and
Proposition 1.2, (iii). Next, we observe that assertiof) fdllows formally from as-
sertion (ii) and Propositions 1.2, (iii); 1.6, (iii). Thugy complete the proof of Corol-
lary 2.3, it suffices to verify assertion (i). To this end, tete Aut'™ (I1,). Let us fix
somell,, < Iz among its varioud1y/1-conjugates; leflg,, Iy, ¢, If,, Mg, and
Hg}ﬂo‘j be as in Proposition 2.2, (ii).

Since o € Aut'C(I1,), it follows that o induces (relative top, or p,) an auto-
morphism ofIT; that stabilizesevery cuspidal inertia group dfl;. Thus, by the non-
resp'd portion of Proposition 1.3, (iv), we conclude thastabilizes thelT,/;-conjugacy
classes offl,, = IT;,, Mg, g, = [g . In particular,«(I1,,) = ¢ - T1,, -¢71, for some
¢ € My. Sincea € Aut™S(TT,), and py(I1,,) is a cuspidal inertia group ofl; as-
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sociated tox, hencenormally terminalin IT1; (cf. [20], Proposition 1.2, (ii)), it thus
follows that p.(¢) € p2(I1,,), so (by replacing; by an appropriate element ¢ - I1,,)
we may assume without loss of generality that 1,1 N I112 = E,. Thus, by replac-
ing o by the composite ofr with a E,-inner automorphism, we may assume without
loss of generality thatt(I1,,) = IT, . By Proposition 2.2, (ii), we thus conclude that
a(Tlg,) = Tg,, a(Tg,) = Ig,. Sincea € Aut'FS(IT,), and p, induces arisomorphism
g, 5 I, (cf. Definition 2.1, (v)), we thus conclude that restricts to theidentity
on IIg,. In particular, it follows thatr stabilizesand restricts to thedentity on IT+.
Since ng}f;"d is topologically generatedby Iz = Ig,, I3 (cf. Proposition 2.2, (iii)),

we thus conclude that(IT5;™) = M55,

Now sincea € Aut™C(I1,), and ng}f;"d is normally terminalin I, (cf. Prop-
osition 2.2, (i)), we thus conclude from the commutativegdien of Definition 2.1,

(vi) (i.e., by applying the natural isomorphisfia ™ = Hg}ﬁ"d % niP°_cf. §0; Re-

mark 1.1.1), that the automorphism & r}‘i‘)d induced by arises from an automorphism

otPod & AUt(ITSP°%, which is easily verified to bé-admissible(cf. Proposition 1.2,
(1)). Next, observe that sincélg is normally terminalin Iz, (cf. Proposition 2.2,
(1)), it follows immediately from [20], Proposition 1.5,)(ithat every cuspidal inertia
group of Iy that is containedin ITg and IMz/1-conjugateto a cuspidal inertia group
associated to a cusp &fg is, in fact, equalto a cuspidal inertia group associated to
a cusp ofUg . Sincea is C-admissible, and € Aut™(I1,) restricts to the identity on

T, we thus conclude that"P°d is IFC-admissible i.e., a0 ¢ Aut'™C(ITyPo%),
On the other hand, by Corollary 1.12, (i), it follows thefP° lies in the image of

the natural inclusiorE ™ < AutFS(rTy"°% (where we writeZ5°°" for the analogue

of “Z,” for TI5™°9). In particular, we conclude that induces arinner automorphisnof

Hg}ﬁ"d. Sincex restricts to the identity o1+, which is center-free(cf. Remark 1.1.1)

andnormally terminalin Hg}”fd (cf. Proposition 2.2, (i)), it thus follows thai restricts

to the identity on ng}ﬁ"d, hence also ol = Ilg,. Sincelly; is topologically gen-

eratedby Ig , Mg, (cf. Proposition 2.2, (iii)), we thus conclude thatrestricts to the
identity on ITy/1, hence (by applying the natural isomorphi$ia 5 Hg/loijtl‘[l—cf. 80;
Remark 1.1.1) tha& is theidentity. This completes the proof of assertion (i). O

Before proceeding, we recall the following well-known ritsu

Lemma 2.4 (FC-admissible permutations of cusps)There exist elements
Out™ (11, that induce relative to the standard surjectioll,, — I1;, arbitrary per-
mutationsof the set of conjugacy classes of cuspidal inertia groupdlef(i.e., the
set of cusps of %9).
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Proof. One way to verify Lemma 2.4 is by thinking of, as the prox comple-
tion of the topological fundamental group of theth configuration space associated to
(i.e., the complement of the various diagonals in the proddion copies of) atopo-
logical surfaceX of type (@, r) (cf. the theory of [24], §7). Then it is easy to con-
struct ahomeomorphisnof X’ that induces ararbitrary permutationof the cusps; one
then verifies immediately that such a homeomorphism indécémmeomorphism of
the n-th configuration space associatedXothat gives rise to an elemermtOut (I1,)
satisfying the conditions in the statement of Lemma 2.4.

Alternatively, one may give a mortbg scheme-theoretiproof by means of the
objects introduced in the discussion preceding Definitidh & follows. Ifr < 1, then
there is nothing to show. Thus, we suppose tha 2. Then (by applying thespe-
cialization isomorphism®f 80) it suffices to verify the existence of automorphisms
of X!°9 over s°9 that inducearbitrary transpositions(i.e., permutations that switch
two elements and leave the remaining elements fixed) of thefseusps of X!%9. If
(g,r) = (0, 3) (i.e., X9 is atripod), then the existence of such automorphismsx{e
(over s°9) follows immediately from the well-known structure of togs. Thus, we
may assume thatg(r) # (0, 3). This assumption implies (cf. Remark 2.1.1) that we
may suppose that we are in the situation of Definition 2.1, #rad precisely twoof
the cusps of theripod Ur arise from cusps, b of X!°9. Then (by the case where
(g, r) = (0, 3), which has already been verifiedy admits an automorphism (ove)
that switches the two cusps bk corresponding t@, b and leaves the remaining cusp
of Ut fixed. Moreover, one verifies immediately that such an autpitiem of Ut ex-
tends to an automorphism o€!°9 (over s'°9) that switchesa and b and restricts to the
identity on Q (hence leaves the remaining cusps XIf9 fixed). This completes the
proof of Lemma 2.4. ]

3. Conditional surjectivity for affine curves

In the present 83, we prove a certain special case (cf. @Goyo8.3) of thesurjec-
tivity portion of our main result (cf. Theorem 4.1 below) for affingplrbolic curves.
The key observation is that the technical obstacles obderedative to verifying sur-
jectivity, in Remarks 1.13.1, 1.13.2 may be circumventedrié replaces"IT, — I1;"
by “Il3 — I1,” and works with the subseétA+" of Definition 1.11, (ii).

We return to the notation of 81 (cf. especially the notatidrDefinition 1.4 and
of the discussion preceding Definition 1.8).

DEFINITION 3.1. Letx € X(k) be acuspof X'°9. Write x € X,(k) for the nexus
vk (cf. Definition 1.4, (i)).
(i) Observe that the log structure Odfg determines on the fibeXg)x of the morphism
pr,,: Xs — Xz over the pointx € X,(k) a structure opointed stable curyewhich con-
sists ofthreeirreducible components. Of these three irreducible corepts) there is a
unique irreducible componerit, —which we shall refer to as thguasi-major cuspidal
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componenbdf (X3)x—that maps isomorphicallyo X viaﬂg: X3 — X; = X; there is a
unique irreducible componeitt, —which we shall refer to as thénk cuspidal compo-
nentof (Xsz)x—that intersectslj; at a single point; there is a unique irreducible compo-
nent E,—which we shall refer to as thguasi-minor cuspidal componeat (X3)x—that
inters:eictsL5 at a single point. (Thusl.,, E, map to the poinx € X(k) via Brg.) The
complement inkE, (respectivelyL,; E,) of the nodes and cusps (relative to the pointed
stable curve structure orXg)y) of F, (respectivelyL,; E,)—which we shall refer to as
the interior Ug_ of F, (respectivelyU__ of L,; Ug_of E,)—determines dyperbolic

curve Us (respectivelytripod UL, tripod Ugé). Moreover, By inducesisomorphisms
Ug, — Ux, F, — X.

(i) By applying the specialization isomorphism&f. §0) associated to the restriction
of E*fzg X'3°g — X'2°g to the completion ofX, along x, we conclude that the pointed
stable curve structure orXg)y (cf. (i)) determines asemi-graph of anabelioids of pro-
¥ PSC-typé as discussed in [20], Definition 1.1, (i) (cf. also the dission of [18],
Appendix) whose associate®SC-fundamental grotpmay be identified withITz/. In
particular, the quasi-major, link, and quasi-minor cuapicomponents determine (con-
jugacy classes ofYyerticial subgroupg(cf. [20], Definition 1.1, (ii))

He,, O, g, S M2

—which we shall refer to agjuasi-major link, and quasi-minor respectively. Thus,
the morphismp,: 13 — I1; determines arisomorphism

Mg, — Iy
—i.e., the quasi-major verticial subgroups may be thoudtatsodefiningsections of the
projection p: I3 — I11. On the other handp, mapsIl_ , Ig, onto cuspidal inertia
groups of I, associated to; in particular, p,(I. ), p,(Tlg) are abelian Finally,

let us refer to the node, € E, N Ly (respectively,ﬁx € Lgﬂ E,) of (X2)x as the
X-minor-nexus(respectively,x-major-nexu} (of (X3)5)—7$O (cf. Fig. 3 below)

Exsvelyopn €Fy
—and to the (nodaledge-like subgroufcf. [20], Definition 1.1, (ii))
M, < Msp (respectively,l'lﬁx C I3/2)

determined up to conjugacy hy (respectively,u ) as anx-minor-nexus(respectively,
X-major-nexu¥ subgroup. Thus, fosuitable choicesvithin the various conjugacy classes
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involved, we havenatural inclusions

g,

U
-
I
-
=
U
=

(inside IT3/7).
(iif) We shall refer to
B, &

—v

E, UL, (respectively,B, def LyUE)

as thev-bridge (respectively,u-bridge) of (X3)x. If the various choices within conju-
gacy classes are made so that taural inclusionsof (ii) hold, then we shall refer to
the subgroup (well-defined up t3/,-conjugacy)

Mg, € My (respectively,Mg, S M)

topologically generated biig andTl_ (respectively, by, andTlg ) as thev-bridge
subgroup(respectively,u-bridge subgroup : :

(iv) Recall the subgroﬁpEFX C D, C I, (respectivelylg, € Dg, C I1y) of Propos-
ition 1.6 (respectively, 1.7). By applying tlepecialization isomorphisnaf 80 first over
the completion of~ (respectivelyEy) alongx, and then over the completion & along
the generic point olUg, (respectively,Ug, ), we conclude that the outer action Bk,
(respectivelyDg, ) on I3/, stabilizesthe IT3/>-conjugacy classes dilg , IT, , andIl B,
(respectively, offlg , 1, , andIlg, ). Since, moreoverflg,, I, , andTlg, (respect-
ively, of T , My . and FfEx) are commensurably terminah Iz, (cf. PropE)sition 3.2,
(i), below), it follows that this outer action determinest@uactions ofDg, (respectively,
Dg,) onIlg,, I, , andIlg, (respectively, offlg , I, , andIlg, ), whose restriction to
Ir, (respectivelylg,) is trivial (cf. the theory of specialization isomorphisms reviewed in
80). Thus, we obtainuter actionsof D¢, /Ir, — ITf, (respectivelyDg, /Ig, — Ilg,) on
Mg,, I,,, andIlg, (respectively, ofllg , I, , andIlg,). Since the irreducible compo-
nent of X3|u,, (regpectively,X3|UEx) (where f is taken with respect to | Ry: X3 — X3)
determined byE, (respectively,F,) descendsrom Ug, (respectivelyUg ) to k —i.e.,

is naturally isomorphic tdJg, xi E, (respectivelyUg, xx F,)—we thus conclude that
the outer action of1g, (respectiveIS/,HEx) onIlg, (respectively, OrIEg ) is trivial.

(v) On the other hand, the outer action df, on g, may be made more explicit, as

follows. Write x1°9 2 X109, x . Recall that the geometric fibers ofr X209 s X0 =
X'°9 over points ofUyx may be regarded asml log configuration spaceassociated to
the smooth log curves determined by the corresponding fileps®: X9 — X1 =
X199 (cf. [24], Remark 2.1.2). In a similar way, even though thefiliX9),. of pro?
over x'9 is a non-smoottstable log curve, we may think of the fibeXJ%),ws of prog
over X% as the “2nd log configuration spaceassociated to Xy%)es—i.€., in the
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sense that it may be obtained as the pull-back of the (1- )hmlrp/\/tg’gr’+3 — M'QO?H

(determined by forgetting the last two sections) via thesifging (1-)morphisnx'°9 —
Wg’? +1- If we forget the various log structures involved, then ildas from this point
of view that the natural inclusiorX — F, < (Xy)y fits into a natural commutative
diagram

X — (X3)x

lprl J/prlz

X — (X2)x

—where (by abuse of notation) we use the notatlon1 ‘bto denote the appropriate
restriction of _pr,. Now one verifies immediately (cf. Definition 2.1, (vi)) thiis com-
mutative diagram determinesratural morphism of exact sequences of profinite groups

1 I/, I, Iy 1
1 I13/2 IT3/1 IT/1 1

—where the vertical arrows aii@jective outer homomorphismthe image of the ver-
tical morphism on the left is equal g ; the image of the vertical morphism on the

right is equal toIlg, . In particular, this commutative diagram of profinite greugllows
one toidentify the outer action oflg, on Mg, with the outer action offT; on ITy;.
(vi) In a similar vein, the outer action oflg, on alg may be made more explicit,
as follows. WriteT'°9 for the smooth log curve ovek determined by theripod Ey;
T\°9 for the correspondingi-th log configuration spac¢éwheren > 1 is an integer);

ritrieod def 7 (T9). Then just as in (v), we obtain matural commutative diagram

Tz —> (X3)X

J/prl lprlz

Toe—— (Xz)x

—where we use the notation 1 °pt as in (v). Moreover, just as in (v) (cf. also Def-
inition 2.1, (vi)), this commutative diagram determinesnatural morphism of exact
sequences of profinite groups

tripod tripod tripod
2n 10 I, 1

1]

1 I3/, IT3/1 ITy/1 1

1—1I
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—where the vertical arrows aii@jective outer homomorphismthe image of the ver-
tical morphism on the left is equal tdlg ; the image of the vertical morphism on
the right is equal tollg, . In particular, this commutative diagram of profinite greup

allows one toidentify the outer action oflg, on I1g with the outer action oﬂtl”'md

on M3

Proposition 3.2 (First properties of quasi-major, link, and quasi-minortieéal subgroupk
In the notation of Definition 3.1:
@ m,, M, Ng, M, Mg, Mg, and Ig , are commensurably terminah Ig,.
(i) Suppose that onéixes IT, < Il3/ (respectivelyl’l,lx C I3,2) among its various
[13/,-conjugates. Then theondition that there exist inclusions

HEL g HEL; HEﬁ g HLL; HE& g HEM

(respectivelyl‘[ﬁi C Mg,; HEL CH; M, < g )

completely determineslg , I1, , Ilg,, and I1g, (respectively [1g , g , I, , and
[T ) among their varioudTs/>-conjugates.

(iii) In the notation of(ii), the compatible inclusionsl, CTlg C Ig C I3y, 1, <

My, C Mg, C Mgy, M, ST CTg, C My, M, C T, C Mg,  Ta), determine
isomorphisms

lim (Mg, < My, <> M) = T,
lim (Mg, <> M, = Mp,) — Ma2,
lim (M, <> M, <> Mg,) — Mg,
lim (Mg, <> M, <> Tg,) = M2

—where theinductive limits are taken in the category gbro-X groups
(iv) The operation of restriction to the various subgroups imeol determines &ijec-
tion between
the set of outer automorphismsf I13,, that stabilize the IT3/,-conjugacy
classes oﬂ‘[EL, H&X, 1'151, HLE HEE’ g, and Mg,
and ) -
the set ofpairsa, € Out(Tlg ), , € Out(Ip )
such that -
(@) a, (respectivelya,) stabilizesthe I B~ (respectivelyrlgﬂ -) conjugacy classes
of Mg, M,,, M., and I, (respectivelyof IT, , I, Hﬂx,fand Mg );
(b) «, anda, induce (cf. (a); (i) the sameelemente Out(IT. ).
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Proof. Assertions (i), (i), (iii) follow from precisely #tnsame arguments applied to
prove assertions (i), (ii), and (iii) of Proposition 1.5. light of assertions (i), (ii), (iii),
assertion (iv) follows, in a straightforward manner, frone fact thatll_ is center-free
(cf. Remark 1.1.1), together with the fact “every nodal etige subgroup is contained in
precisely two verticial subgroupgcf. [20], Proposition 1.5, (i); [20], Proposition 1.2))j
which one applies, when verifying (a) for, (respectivelyg,,), first to I, (respectively,

1, ), and then td1,, (respectively[l, ). ]

Corollary 3.3 (Conditional surjectivity for affine curves).Suppose that %9 is of
type @, r), where r> 1. ThenOut“(I1,)2+ € Ouf“(I1,) is contained in the image of
the natural homomorphism

out®(113) — Out™(I1,)

induced byﬁ@zz I3 — I1,.

Proof. LetB, € Ouf“(IT,)2"; o, € AutFS(I1,) an automorphism that liftg,. To
complete the proof of Corollary 3.3, it suffices to constractas € Aut™®(I13) that
lifts ao. Write x € X(k) for the cuspthat exhibitsg, as an element of OUt(I1,)2+
(cf. Definition 1.11, (ii)).

Next, let usfix II,,, Ig,, IIg, € IIy1 as in Proposition 1.5, (ii). By the non-
resp’d portion of Proposition 1.3, (iv), we may assume withtmss of generality that
ay stabilizesIT, , Mg, and [g,. Write ay)1 d:‘gfathz/1 € Aut™(Iz), af, d:efa2|nEx €
AUt “(Ig,), af, def azlm,, € Aut™S(Tlg,) for the respective restrictions of, to Iy,
Mg,, M; Bzj1 € OUC(Mz)), 5, € Ouf (g, )2+, S, € Ouf (I ) for the result-
ing outer automorphisms.

Next, let us recall theuter isomorphismsl,, — Ig , niP? S e, th”/ri"d =
Mg, implicit (cf. Propositions 1.5, (i); 3.2, (i)) in thenatural morphisms of exact
sequence®f Definition 3.1, (v), (vi). Here, we note that it follows fm the defin-
itions that in fact, we have amquality TT}"°! = T (i.e., without any indeterminacy
with respect to composition with an inner automorphism). @yjugating 2,1, ,BzE/l,
respectively, by the first two of these outer isomorphisms, thus obtain elements
B € Oqu(HB ), AP ¢ oufF(TTPh A+ together with a particular lifting; ™

AUtTC(ITIP% of g By the definition of OUIC(ITI™*%)A+ (cf. Definition 1.11,
(i), it follows that g% Jifts to a unique (cf. Corollary 1.12, (ii)) elemeniy*® e
oufS(riy™%s.  write 5;’/'2"“ e ouf C(I‘Ig}’fd) for the restriction ByP* |Hmpod deter-

tripod, tripod

mined by thelifting «; ﬁ3/2 € OulFC(l'IB ) for the result of conjugatings, ;" by
the outer |somorph|snf1t2r}’i°d — Mg,
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o

Jo
I
1%

I&=
e

I

1<
l&=

=
I&=

By

Fig. 3. An affine curve equipped with two extra cuspg™ “ 2"
(X is the cusp that corresponds x9

Next, let us observe that sinae,; stabilizesII, C Ilg, (where we note that,
from the point of view ofl1g,, the subgroudl, is the cuspidal inertia groupassoci-
ated to one of the cusps of the tripatk, ), it follows from the non-resp'd portion of

Proposition 1.3, (iv), applied to the outer automorphigif®® of 5" (cf. also the

lifting o7, that B3, stabilizesthe Tg -conjugacy classes dflg,, My, M, M,

hence (cf. Proposition 3.2, (i)) induces eIeme,‘i§$2 € Ouf (TTg), ,63%2 € Ouf (I, ).
Moreover, it follows from Proposition 1.2, (iii), in the casé ﬂ?,g/z, and from Corollar-

ies 1.12, (ii), (iii); 1.14, (i), (iii), in the case 0183',‘72 (where we note that from the point
of view of the situation of Corollary 1.14, (iii)L, that corresponds to theainor cus-

pidal component, whilee, corresponds to thenajor cuspidal component), that, for any
outer isomorphismg1} ™! = Mg , Mf*** 5 1, that arisescheme-theoreticalli.e.,
from isomorphisms ok-schemesU; — Ug,, Ur > UL, ), the result of conjugating

,635/2, ,83%/2, respectively, by these outer isomorphisms yields elesner®ut(I15"°%

both of which areequal to gi""". (Here, we note that it is ofrucial importance

that we know thatg!™® € ouf(i™%2—i.e., not juste Ouf (I "™°%)—since this

symmetryof g% allows one to ignore the issue optecisely which cusp is sent to
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which’ by the various scheme-theoretic isomorphisms of tripdus &appear.) In par-

ticular, it follows from the definition off3, and ;"™ that the restriction off;, to

I (cf. Proposition 3.2, (i))is equal toﬂy%/z. Thus, it makes sense glue ,83%2 €
Out“(Ig, ), B3, € Out“(Ig, ) along Il so as to obtain an element

a2 € Out(I5)2)

as in Proposition 3.2, (iv), thaestrictsto ﬁ%z onIlg, and to/.‘s?%/2 onIlg .

Next, we consider the extent to whigby, is cofmpatible relative to oo/, with
the natural outer actionof IT;; on ITz/,. In particular, let us consider the following
assertion
(%) B3z € OulFC(l'Ig,/z) is compatible relative towy/1, with the natural outer actions
of HEX (g Hz/]_) and HFX (g Hz/]_) on H3/2.

Now | claim that to complete the proof of Corollary 3.8, suffices to verify(x). In-
deed, sincdly,; is topologically generatedy ITg, , ITr, (cf. Proposition 1.5, (iii)), it

follows from (x) that B3, € OulFC(Hs/z) is compatible relative towy/1, with the nat-

. . . . ~ out
ural outer actionof ITy/;. Thus, by applying thenatural isomorphismilz;; — Iz %

ITy/1 (cf. 80; Remark 1.1.1), we conclude théd,», ap/1 determine an elemerfiz;; €
Out(IT3/1). It is immediate from the construction ¢f3,1 that B3/ is C-admissible
Since B3/1 preserves the conjugacy class of inertia groups assoctatéhle diagonal
divisor in the geometric generic fiber cjlprx3 — Xj (cf. the argument applied in
the proof of Proposition 1.3, (vii)), it follows from Proptien 1.2, (i), that s Is
FC-admissible i.e., Bs1 € Ouf(Il31). Next, let us writea; € Ouf“(I1,) for the
automorphism induced bws via b, s — I Since the natural homomorphism
Out™(I13/1) — Out “(Iy/1) is injective by Corollary 2.3, (i), we thus conclude (from
the fact thatg,;; is manifestly compatible, relative t@;, with the natural outer action
of IT; on IIy1) that B3/1 is compatible relative towy, with the natural outer action

of TI; on TT3/1. In particular, by applying theatural isomorphismiTs 5 31 O>Z't1'[l
(cf. 80; Remark 1.1.1), we conclude thg1, o1 determine an elemerfiz € Out(I13)
(cf. Proposition 1.2, (i)) that lift$3,, as desired. This completes the proof of thaim.

Finally, we proceed toverify the assertionx). To this end, let us observe that
P Mg —> Tl (respectively,Ezs: I3 — I1,) induces asurjection

¢1: H3/2 —> H2/1 (respectively,¢2: H3/2 —> Hg/l)

whose kernel is topologically normally generated by thepaa inertia groups iz,
that correspond to the cusp parametrized by the factorddb®” (respectively, “1")
of X'3°g. That is to sayg; (respectivelyg,) corresponds to the operation dbfgetting

the cusp parametrized by the factor label@d(respectively‘l’) of X'3°9”. Note that¢,

(respectively,) inducesisomorphismdlg, — Ig,, [T — g, (respectively,l1, —
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Mg,, Mg, S Mg, Mg, = Myy). In the following, if “(=)” is an element ofi13/1, then
let us write y—) € Auf(Hg/z) for the automorphism induced by conjugation by “(-)".

Next, let usfix IT, , Mg, Ig,, 1., andIlg, as in the resp'd portion of Prop-
osition 3.2, (ii). Here, we may assume without loss of gelitgréhat ¢2(T, ) = T,
Now let 02/1 € HEX - 1'12/1; 03/1 € H3/1 a |Ift|ng of 02/1. Note that)/g3/1 staBiIizesthe
I13/2-conjugacy classes oflg , My, and I1g, (cf. the discussion of Definition 3.1,
(iv)). In particular, by replacing;3/17by the product ofos/; with an appropriate elem-
ent of I3, we may assume without loss of generality thgt, stabilizesthe sub-
groupsIlg , I, , and Mg, (cf. Proposition 3.2, (ii)). Next, let us observe that (gnc
Py, induces the natural surjectiofl,; — Iy; the kernel of this surjection contains
021 € Tg,) voy, induces, relative tap,, aninner automorphisnof Tly;. Since#, is
surjective it thus follows that there exists a € Iz such thaty,,,. induces, relative
to ¢», the identity automorphisnof I1,/;. On the other hand, sinoﬁz(nﬂx) =1II, is
normally terminalin ITp,; (cf. Proposition 1.5, (i)), it follows thai(¢) € f[vx. In par-
ticular, by replacingos;1 by the product ofos,;; with an appropriate element dﬂux,
we may assume without loss of generality that: :
(@) Yo, stabilizesthe subgroupdig , M, and g ;
(0) vo,, induces, relative tap,, the identity automorphisnof [To1. We shall refer to
a lifting 03,1 of 01 that satisfies these conditions (a), (b)¢gsadmissible

Now let T2/1 dZEf Ol2/1(0’2/1) S Hg/l; 03/1, T3/1 € H3/1 ¢2-admissibleliftings of 02/1,
To1; 32 € Aut(Tlz;2) an automorphism that gives rise f3,,. Since (by construc-
tion) Bs/» stabilizes thellzx-conjugacy classes of the subgroufs , My, and ITg,
(cf. Proposition 3.2, (iv)), we may assume without loss aiegality (cf. Proposition 3.2,
(ii)) that ae/» stabilizesthe subgroupdipg , m, andTITg . Now to verify that ‘B3, is
compatible relative toa,/1, with the natural outer actionof Mg, ” (cf. (%)), it suffices
to verify that:

(xE) We have: y.,, = @3/20 Vo, © otg/lz.

Next, let us recall from Definition 3.1, (iv), that,,, y,,, induce thetrivial outer
automorphismon TIg ; in particular, the equality of{g) holds overIlg , up to com-
position with anl’IE;-inner automorphism. Moreover, by the constrﬁctionﬂgfz, it
follows from Definition 3.1, (vi), that the equality of£) holds overIlg , up to com-
position with anIlg -inner automorphism. Sinces 2, y,,, and y,,, all stabilize HMX
(which is normally terminalin IT3,,—cf. Proposition 3.2, (i)), we thus conclude that
the equality of ¢g) holds up to composition with som& e Aut(I1s/,) that stabilizes
the subgroupdlg , M, andIlg , and, moreover, restricts to (possibly distincﬂLx-
inner automorphismsver Mg, (hence overl_ ) and g . (That is to sayg is a sort
of abstract profinite analogue of Behn twist) On the other hand, SiNCg:,, Vo,
induce, relative tog,, the identity automorphism ofl,/, it follows that § induces,
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relative to ¢,, the identity automorphismof ITy/1. Since ¢, inducesisomorphismsof

center-free(cf. Remark 1.1.1) profinite groupd, — Ig,, [, — [1f,, we thus con-
clude thats is the identity automorphism. This completes the proof ef:}.

In a similar vein let usfix I, , g , Mg, [1g,, and 1, as in the non-respd
portion of Proposition 3.2, (ii). Here, we may assume withmss of generality that
¢1(H£x) = Hux- Now let 02/1 € HFX - HZ/l; 03/1 € H3/1 a |Ift|ng of 02/1- Note that
Yosn stabilizesthe IT3/,-conjugacy classes olflgl, M, and Ig, (cf. the discussion
of Definition 3.1, (iv)). In particular, by replacings;; by the praduct ofo3/1 with an
appropriate element dfl3 >, we may assume without loss of generality that, stabil-
izesthe subgroupsl’lgﬁ, M, and Mg, (cf. Proposition 3.2, (ii)). Next, let us observe
that (since¢; arises fromgls) Yosn induces, relative tap;, an inner automorphism
of IMy1. Sinceg¢; is surjective it thus follows that there exists & € I3/, such that
Yosnc INduces, relative tap;, the identity automorphisnof I1y/;. On the other hand,
since ¢1(11, ) = I1,, is normally terminalin I5/; (cf. Proposition 1.5, (i)), it follows
that ¢1(¢) efl‘lvx. In particular, by replacings/, by the product ofrs;; with an appro-
priate element ofll, , we may assume without loss of generality that:

(@) Yosn stabilizesthe subgroupdlg,, I, , andTlg ;

(b) yos, induces, relative t@;, the identity automorphisnof y)1.

We shall refer to a liftingos/; of oy1 that satisfies these conditions (a), (b) as
¢1-admissible

Now let T2/1 d=ef 0{2/1(02/1) € HZ/l; 03/1, T3/1 € H3/1 ¢1-admissibleliftings of 02/1,
To1; g2 € Aut(Ilzz) an automorphism that gives rise f,,. Since (by construc-
tion) B3> stabilizes thellz ;-conjugacy classes of the subgrouﬂgﬁ, M, andIlg,
(cf. Proposition 3.2, (iv)), we may assume without loss afieyality (cf. Proposition 3.2,
(i) that 3> stabilizesthe subgroupsngi, M, and Mg,. Now to verify that ‘Bz, is
compatible relative toa,,1, with the natural outer actionof TTg,” (cf. (¥)), it suffices
to verify that:

(*g) We have: Yy = 03/2 © Yoy, © a3T/12.

Next, let us recall from Definition 3.1, (iv), that,,, y.,, induce thetrivial outer
automorphismon T ; in particular, the equality of{r) holds overTIg , up to com-
position with an ngiinner automorphism. Moreover, by the constrﬁctionﬂ@fz, it
follows from Definition 3.1, (v), that the equality of£) holds overllg , up to com-
position with anl'IEH—inner automorphism. Sinces 2, yr,,, and y,,, all stabilize I,
(which is normally terminalin Tl3,—cf. Proposition 3.2, (i)), we thus conclude that
the equality of ¢¢) holds up to composition with somé € Aut(ITz,) that stabil-
izes the subgroup$lg , I, , andI[1g , and, moreover, restricts to (possibly distinct!)
I, -inner automorphismsver Ig, and ITg,. (That is to says is a sort of abstract
profinite analogue of @ehn twist) On the other hand, SiNC@:,,, Vs, induce, rel-
ative to ¢4, the identity automorphism ofI,4, it follows thaté induces, relative to
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¢1, the identity automorphismof I1y1. Since¢: inducesisomorphismsof center-free

(cf. Remark 1.1.1) profinite groupHg, — Ig,, g, — IIg,, We thus conclude that
8 is theidentity automorphism. This completes the proof &%}, and hence of Corol-
lary 3.3. ]

Corollary 3.4 (Tautological validity of “A”, “ A+"). Suppose that %9 is of type
(g, r), where r> 0. Then
(i) We have Out “F(I13)cUsP € Out(I13)2.
(i) We have Outf"(I1,)°UsP € Out C(I1,)2+.
(iii) Suppose that & 1. ThenOut™“(I13)2* contains the inverse image Gt “(I1,)%
via the natural homomorphist®ut™*(ITs) — Ouf"“(IT,) induced by p,.

Proof. Assertion (i) follows immediately from the definiti®, by observing that in
the situation of Definition 1.8 and Proposition 1.9, the @ctof the group ofpermuta-
tions (i.e., automorphisms of the sgt, 2, 3) on X3 preserveghe subschem&/ C X3
of Definition 1.8, (i), and induces the automorphismsVéf=~ V x, Up given by per-
muting (over V) the three cuspof Up. Assertion (ii) follows from assertions (i) and
(iii) by taking the surjection b, Mz —> IL” that appears in assertion (iii) to be the
standard surjectiorils; — I13/1. Thus, it remains to verify assertion (jii). To this
end, let us assume that we have been given an elegeatOut “(IT5) that maps to
an elementg, € Out(I1,)2, and that we are in the situation of Definition 3.1, with
x € X(k) taken to be thecusp that exhibits, as an element of OUt(IT,)2. Let
ar € Aut™(I1,), a3 € Aut™(I13) be elements that induce, respectivel, B3; also,
we suppose thats lifts ap. By Propositions 1.3, (iv) (the respd portion); 1.7, (a),
we may assume without loss of generality thatstabilizesthe subgroupsr(tlripod )
Mg,, Ig,, andDg, of I, and thato, induces an element ™ ¢ OufC(riP°%A ~
Ouf(Ig,)”. Thus, it follows from the non-resp’d portion of Propositid.3, (iv),
that a3 stabilizesthe IT3/,-conjugacy classes dflg , ITg, (cf. the discussion of Defin-
ition 3.1, (iv), (vi)). In particular,as induces an elemengy™® ¢ QufS(ITy™°%S that
lifts BI"P°? (cf. Definition 3.1, (vi)).

Now write £ € X,(X) for the cuspof X, (relative to pf9: X¥¢ — X9 that corres-
ponds to the cusg € X(k). Thus,& determines—nby restricting to the geometric generic
fiber of pl‘l"g: X'?f’g — X'fg = X!°9—a minor verticial subgroule, < I5/2. Moreover,
since the restriction of the sectign X — Xz to x € X(k) determines @&uspé of Ug,, it

follows that (for suitable choices within the varioliis>-conjugacy classed)g, C Il ,

tripod

and that this subgroufle, of Ilg = I, forms aminor verticial subgrouple at

Elripod

& of Hg}‘fd. In particular, we conclude from the resp'd portion of Prsition 1.3, (iv),
that g% e OufS(113"°%s stabilizesthe TT5**"-conjugacy class OfTE, 0, AN, More-

over, induces an elemeatOut (g, ) =~ OulFC(Ht,;Lp"d) which, by Corollaries 1.12, (ii),
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(iii); 1.14, (i), (iii), coincides—relative to any isomorphismI£"* = 117" that arises

from a k-isomorphismUg, — Ur—with pIPod ¢ ouf (TP A+ =~ OufC(ITg, )2+

Thus, by Definition 1.11, (ii), we conclude thas € Out™®(I13)2*, as desired. This com-
pletes the proof of assertion (iii), and hence of Corolla. 3 ]

4. The general profinite case

In the present 84, we derive tmeain result(cf. Theorem 4.1) of the present paper
from the various partial results obtained in 81, 8§82, 83.

Theorem 4.1 (Partial profinite combinatorial cuspidalization)Let
X9 5 5

be a smooth log curve of typeg(r) (cf. 80) over S= Speck), where k is an al-
gebraically closed field of characteristic zero. Fixsat of prime number& which is
either of cardinality one or equal to the set of all prime nwerd For n a nonnegative

integer write X!°9 for the nth log configuration spacassociated to %9 (cf. [24], Def-

def

inition 2.1, (i)), where we take & = Speck);

def
Mo = 73 ()

for the maximal proX quotient of the fundamental groug the log scheme % (cf. 80;
the discussion precedin@4], Definition 2.1, (i));

out(11,) < Out(Il,)

for the subgroup of outer automorphismsthat satisfy the following conditiongl),
(2) (cf. Definition 1.1, (ii)):

(1) «(H) = H for every fiber subgroupH < I1, (cf. Remark 1.1.2; [24], Defin-
ition 2.3, (iii)).

(2) For m a nonnegative integet n, write Ky, € I, for the fiber subgroup that arises
as the kernel of the projection obtained bforgetting the factors of X with labels
> m". Thena induces abijection of the collection of conjugacy classes ofispidal
inertia groupscontained in each kK_1/Km (Wwhere m= 1,..., n) associated to the
various cusps of the geometric generic fiber of the projecticf — X:ﬁgl obtained
by “forgetting the factor labeled m (Here we regard the maply, =~ I1,/Ky —
IM,/Km_1 = M1 of quotients off1,, as the homomorphism that arises Hprgetting

successivelythe factors with labels>= m and the factors with labels m—1".)

If the interior Uy of X'°9 is affine (.e., r > 1), then set 6d=ef2; if the interior Uy of

X9 is properover k (i.e., r = 0), then set ad§f3. Then
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(i) The natural homomorphism
out™(11,) — Outf(I1,_1)

induced by the projection obtained Wjorgetting the factor labeled mis injective if
n > ng and bijective if n > 5.
(i) Theimageof the natural homomorphis®ut <(I1,) — Out “(IT,_1) of (i) contains
the following two subsetécf. Definition 1.11):
(@) Oouf®(I1,_1)2*, when n> 2 (a set which iswell-definedand nonemptyonly
if (g,r)=(0,3)or n—1=> ng);
(b) the inverse image i®ut™“(I1,_,) via the natural homomorphis@ut (I1,_1) —
Out(I,,_,) of Out (I, _,)*, when n> 3 (a set which isvell-definedand nonempty
only if either(g, r) = (0, 3)or n —2 > ny).
(i) Let Oufc(11,) — Ouf(I1,_;) be as in(i), where n> ny. Let o € Out(TI,) be an
outer automorphism that satisfies the following properties
(a) for every fiber subgroup HE I1,, o(H) is a fiber subgroup
(b) o(Kn-1) = Kn-1;
(c) o induces abijection of the collection of conjugacy classes afispidal inertia
groupscontained in kK_j;
(d) the outer automorphism’ € Out(l1,_;) determined by (cf. (b)) normalizes
(respectively commuteswith) Out™“(I1,_1). Theno normalizes fespectively com-
muteswith) Out(IT,,).
(iv) By permuting the various factors of!%, one obtains a natural inclusion

S — Out(Iy)

of the symmetric group on n letters in@ut([1,) whose imageommuteswith Out (I1,,)
if n > ny and normalizes OUt(M,,) ifr = 0 and n= 2.

Proof. First, we consider thimjectivity portion of assertion (i). Consider theat-
ural isomorphisms

~ out ~ out
My — Ky2 ¥ Inp; TInog = (Kn—2/Kno1) % Ihoo

(cf. 80; Remark 1.1.1), together with tirgerpretationof ITy/n_2 = Kn_2 = Kn_2/Kn_1=
IMh_1/n—2 as the TI; — 11" (i.e., the projection that arises by forgetting the fadimr
beled 2) associated to arX'°9” of type (g, r + n — 2) (cf. [24], Proposition 2.4, (i)).
(Here, we note that one verifies easily that this “intergietel is compatible with the
definition of the various “Olif(-)’s” involved.) Now the abovenatural isomorphisms
allow one to reduce the injectivity portion of assertion t) the casen = 2, r > 1,
which follows immediately from Corollaries 1.12, (ii); 2.8i) (cf. also Remark 2.1.1).
This completes the proof of thimjectivity portion of assertion (i).
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Next, we consider assertion (iii). Let € Out"(IT,). Write «’ for the image ofx

in OufS(My_1); oo Lo a-0% o), oo (6/)L. Then it follows immediately

from property (a) thatr, is F-admissibleand from properties (b), (c), (d) that, is
C-admissible Thus, «, € Out (I1,). If, moreover, it holds that’ = «,, then it fol-
lows from the injectivity portion of assertion (i) that= «,. This completes the proof
of assertion (iii).

Next, we consider assertion (iv). When= 2, assertion (iv) follows immediately
from Proposition 1.6, (iii); Corollaries 1.12, (iii); 2.3jii) (cf. also Remark 2.1.1).

Note that whem > 3, by applying thenatural isomorphism
Mh = Knoz % Mo_z

(cf. 80; Remark 1.1.1), together with theterpretationof In/h—» = K,_» as the TI,”
associated to anX'°9” of type (g, r + n —2) (cf. [24], Proposition 2.4, (i)), we thus
conclude from “assertion (iv) fon = 2” (whose proof has already been completed) that
Out™(I1,) commuteswith the permutation outer automorphisme Out(I1,) that arises
from the permutation ((— 1) n) of {1, 2,..., n} (i.e., the permutation that switches
andn—1 and fixes all other elements ¢f, 2,..., n}). Now we applyinductionon n.
When Uy is affing let us observe that (by the induction hypothesis) everynpéation
outer automorphisno € Out(l1,) that arises from a permutation ¢1, 2,..., n} that
fixes nsatisfies the properties (a), (b), (c), (d) of assertion ifiithe respd case Thus,
whenUy is affine, theinduction step(i.e., the derivation of “assertion (iv) far” from
“assertion (iv) forn — 1”) follows from assertion (iii), together with the fact ththe
permutation group ofl, 2,..., n} is generated by “@(— 1) n)” and the subgroup of
permutations that fixn. If Uy is proper and n > 4, then theinduction step(i.e., the
derivation of “assertion (iv) fon” from “assertion (iv) forn—1") follows by a similar
argument. Thus, it remains to verify theduction stepwhenUx is proper andn = 3.
To this end, let us first observe that, as discussed abovES@is) commuteswith (the
permutation outer automorphism that arises from the peatiout of {1, 2, 3 given by)
(23). Moreover, by applying assertion (iii) in then-respd caseto (the permutation
outer automorphism that arises from the permutation19f2, 3 given by) (12), we
conclude that (12normalizesOut™“(I13). Thus, by conjugating by (12), we conclude
that Ouf®(IT3) commuteswith (13). Now since the group of permutations {df 2, 3
is generated by (12), (13), we conclude that ‘©(fl3) commuteswith all permutation
outer automorphisms. This completes the proof of asse(tign

Next, we consider assertion (ii). First, let us observe thhen @, r) = (0, 3)
andn = 2, assertion (ii) for the subset of (a) istautology (cf. Definition 1.11, (i));
when @, r) = (0, 3) andn = 3, assertion (ii) for the subset of (b) may be reduced,
in light of the inclusion OUt“(IT,)® € Ouf“(I1,)2+ (cf. Corollaries 1.12, (ii), (iii);
1.14, (i), (iv)), to assertion (i) for the subset of (a) whan= 3. Next, let us ob-
serve that whem > 4, by the definition of A” (cf. Definition 1.11, (ii)), every element
€ Out“(Iy_1/n_4) (Where we recall thafl,_1n_4 is the “T13" associated to anX'°9”
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of type @, r + n —4)) that is induced, relative to the inclusidi,_1/n—s — ITh_1, DY
an elemente Out™“(I1,_,) of the subset of(b) maps, via the natural homomorphism
Out™(IMn_1/n—4) — OUt “(IT,_2n_4) (Obtained by “forgetting the factor labeleo— 1),
to an element of Oﬁ?(l’ln_z/n_4)A, hence, by Corollary 3.4, (iii), is contained in
Out “(In_1/n-4)**; but, by the definition of A+" (cf. Definition 1.11, (ii)), this im-
plies that every element of the subset of (b) is contained utf QIT,,_1)2*. Thus, to
complete the proof of assertion (ii), it suffices to verifysagion (ii) for the subset of
(a) in the case oh > 3. On the other hand, when > 3, by applying thenatural
isomorphismsll, — [n/n_3 N a Mg = Mh 1/n 3 %' T3 (cf. the proof of the
injectivity portion of assertion (i)), together with thejectivity portion of assertion (i)
(which is necessary in order to conclude tbempatibility of liftings relative to the
natural homomorphism OUW(ITyn 3) — Ouf (1, 1/n_3), With the respective outer ac-
tions of IT,,_3), to complete the proof of assertion (ii), we conclude thasuiffices to
verify assertion (ii) for the subset of (a) in the casenct 3. But this is precisely the
content of Corollary 3.3. This completes the proof of asser{ii).

Finally, we consider theurjectivity(i.e., bijectivity) portion of assertion (i) fon >
5. First, let us observe that by Lemma 2.4, to complete thefgzbassertion (i), it suf-
fices to verify that the image of the natural homomorphism™&(iit,) — Out™(IT,,_1)
of assertion (i) contains the subset 8fT,,_1)csPC Out™(I1,_1). Next, let us observe
that by assertion (iv) and Remark 1.1éyery element OulFC(l'In_l/n_5) (where we
recall thatTTn_1/n_s is the ‘T1,” associated to anX'°9” of type (g,r +n—5)) that is in-
duced, relative to the inclusiofl,_yn_5 < TT,_1, by anelemente Out (IT,_;)*'sP is
contained in OJt™(Iy_1/n_s)®“P, hence, by Corollary 3.4, (ii), in OW(IT,_1/n_s5)"".
But this implies that OGE(IT,,_1)°UsP = Out(I1,_,)** (cf. Definition 1.11, (ii)). Thus,
in summary, to complete the proof of assertion (i), it suffite verify that the image
of the natural homomorphism G%(I1,) — Out™(IT, ;) of assertion (i) contains the
subset OUt(IT, 1)+ < Out™(I1,,_4). But this follows from assertion (i) (cf. the sub-
set of (a)). This completes the proof of assertion (i). ]

REMARK 4.1.1. The argument applied to verify Theorem 4.1, (iv),ha proper
case suggests that even if one cannot verify the injectieitythe homomorphism
Out®(I1,) — Out™(I1,) in the proper case, it may be possible to verify the inject-
ivity of the homomorphism Ofit(IT3) — Out™(I1,) (i.e., induced by the projection
obtained by “forgetting the factors labeled 2, 3”) in the geo case.

REMARK 4.1.2. In thepro-l case(i.e., the case wher& is of cardinality one),
a number of results related to Theorem 4.1, (i), have beeairadat by various authors.
(i) In [10], Theorem 1 (cf. also [8], which is discussed fathin Remark 4.2.1, (ii),
below), a similar injectivity result to that of Theorem 4(1), is obtained in the pro-
case for outer automorphisms satisfying certain conditiene., the conditions &1),
(02)" of [10], Theorem 1. It is immediate (cf. Proposition 1{&ji)) that outer auto-
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morphisms lying in the kernel of the homomorphism in questichich satisfy these
conditions “p'1), (c2)” are FC-admissible Thus, (at least when the condition loyper-
bolicity 2g—2-+r > 0 is satisfied) [10], Theorem 1, may be obtained as a consequen
of Theorem 4.1, (i).

(ii) In [29], a filtered pro-l injectivity result (cf. [29], Theorem 4.3) is obtained for a
certain filtration on a subgroup{) < Out(I,) (wherel'{) is as in [29], (2.11)—except
with “r” and “n” reversed!). It follows immediately from the conditionseasto define
ngz (cf. [29], (2.10), (2.11)) that

r{ = oulS(,) = Out (IT,)*sP

(cf. Proposition 1.3, (vii)). In particular, the injectiyi of Theorem 4.1, (i), in the pro-
case may also be thought of as yielding a new proof of the timjgcthat holds as a
consequence of the “filtered injectivity” of [29], TheorenB4

(iii) In the context of (ii), graded pro-lI surjectivityresults are obtained in [32]. Related
results may be found in [9].

REMARK 4.1.3. Theinjectivity of the restriction of the homomorphism of The-
orem 4.1, (i), to an itnage of Galois < Out™®(IT,) that arises fromscheme theory
is precisely the content of [14], Theorem 2.2. Indeed, it wascisely the goal of
attaining a moreabstract combinatorial understandingf the theory of [14] that mo-
tivated the author to develop the theory of the present pallepo, we observe that the
remaining portion of [14], Theorem 2.2—involving relatedter actions on1"P°d—
follows immediately from the existence of thmeatural outer homomorphisrof Corol-
lary 1.10, (iii).

REMARK 4.1.4. (i) Observe that the varioudly” that arise from different
“Xlo9's” of the same typeg, r) are alwaysisomorphic in a fashion that isompatible
with the variousfiber subgroupsand cuspidal inertia groupsof subquotients. Indeed,
this follows immediately (cf. the variousspecialization isomorphisisdiscussed in
§0) from the well-known fact (cf., [3]) that the moduli stackly, (cf. §0) is smooth
proper, and geometrically connectedver Z.

(ii) Although we have formulated Theorem 4.1, (i), in termisoniter automorphisms
it is a routine exercise—in light of the observation of (i)e~teformulate Theorem 4.1,
(i), in terms of outerisomorphismsas is often of interest in applications &mabelian
geometry

REMARK 4.1.5. In [7], a group-theoretic construction is given foe tgeometric-
ally prod arithmetic fundamental groups of configuration spaces bitrary dimension
from the geometrically préb-arithmetic fundamental group of a proper hyperbolic curve
over a finite field. This construction is performed by consit variousLie versions
of these arithmetic fundamental groups of configurationcepaofarbitrary dimension
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On the other hand, by applying thejectivity portion of Theorem 4.1, (i) (cf. the ar-

gument involving B given in the proof of Theorem 4.1, (ii)), one mamplify the
argument of [7]: That is to say, instead of working with Liersiens of geometrically
prod arithmetic fundamental groups of configuration spacearbftrary dimension(as-
sociated to a proper hyperbolic curve over a finite field), oray instead restrict one-
self to working with Lie versions of geometrically proarithmetic fundamental groups
of two-dimensionatonfiguration spaces (associated to a (not necessarileprogper-
bolic curve over a finite field). (We leave the routine detadsthe interested reader.)
This reduction to the case of Lie algebras associated todimensional configuration
spaces results in substantial reductiorof the book-keeping involved.

The following result allows one to relate the theory of thegemt paper to the
work of Nakamuraand Harbater—Schnepécf. [26], [5]).

Corollary 4.2 (Partial profinite combinatorial cuspidalization for wigs). In the
notation of Theorem 4.1:Suppose further that '% is a tripod. Then for n > 1:
(i) We have

out®(11,)® = oufY(11,) = Ouf(I1,)2 < Out (I1,,)°usP
if n =1;
out®(11,)® = out Y11, € Outf™(I1,)** < Out™(I1,,)°usP

if n > 2 (cf. Definitions 1.1, (vi); 111, (i), (ii)).
(i) The natural homomorphism

OufC(I1,) — Ouf (I,_)

induced by the projection obtained Wyorgetting the factor labeled nis injective if
n > 2 and bijective if n > 3.

Proof. First, we consider assertion (i). Whenr= 1, assertion (i) follows immedi-
ately from Definitions 1.1, (vi); 1.11, (i). Thus, we may asgithatn > 2. Then the fact
that Ouf(I1,)S = Out (11, follows formally from Corollary 1.14, (i); Theorem 4.1,
(i), (iv). The fact that OUt°SI1,) € Out™(I1,)2* follows from Corollary 1.14, (iv).
This completes the proof of assertion (i).

Now the injectivity portion of assertion (ii) follows from the injectivity paon of
Theorem 4.1, (i); in light of this injectivity, théijectivity portion of assertion (ii) fol-
lows from assertion (i) and Theorem 4.1, (ii) (cf. the subsk{a)). This completes
the proof of assertion (ii) and hence of Corollary 4.2. ]
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REMARK 4.2.1. (i) Suppose that we are in the situation of Corollarg, 4nd
that X is the set of all prime numbersThen various injectivity and bijectivity results
are obtained by Nakamura and Harbater—Schneps in [26],d8¢arning the subgroup

Oulﬁ]+3 C Out(I1y,)

(wheren > 1). This subgroup is defined in [5], 80.1, Definition, by meanistwo
conditions “(i)” (i.e., “quasi-speciality), “(ii))” (i.e., “ symmetry). From the point of
view of the theory of the present paper, these two conditamsunt to the condition
on « € Out(l1,) that “a € OuRS(I1,), and, moreovery commutes with all of the outer
symmetry permutations”—i.e.,

out,, ; = Ouf°Y(11,)

(cf. Proposition 1.3, (vii)).
(i) In [5], it is shown that the natural homomorphism

Ouﬁws - Oufwz

is injective if n > 2 and bijective if n > 3 (cf. [5], §0.1, Corollary). The injectivity
portion of this result of [5] is derived (cf. [5], Propositio8) from the injectivity ob-
tained in [26], Lemma 3.2.2, and may be regarded as a profieitsion of an earlier
prod result due tolhara (cf. [8])—cf. the discussion of [5], §0.2. On the other hand,
unlike the case with [5], the approach of [8] allows one tcatrén essence, the full
group Oub¥(I1,) (i.e., not just OU“Y(I1,) = Out,, ;) in the prot case. In light of
the discussion of (i), the proofs given in the present pagefteorem 4.1, (i), and
Corollary 4.2, (i), may be regarded adternate proofsof these results of [8] and [5].
(iii) The strong symmetry assumptigmposed on elements of GU(I1,) suggests that
there is asubstantial gapbetween injectivity or bijectivity results for OtftS(I1,) and
injectivity or bijectivity results for OUt(I1,). This gap accounts for the lack of the
need to invoke such results as theofmbinatorial version of the Grothendieck conjec-
ture” (i.e., [20], Corollary 2.7, (iii)) in the proofs of [26], [b

5. The discrete case

In the present 85, we discusglscrete analoguécf. Corollary 5.1) of Theorem 4.1.
One important aspect of this discrete analogue is that itredaively easy consequence
of the well-knowntheorem of Dehn—Nielsen—-Baéf., e.g., [13], Theorem 2.9.B), to-
gether with thenjectivity asserted in Theorem 4.1, (i), that the discrete analogubeof t
homomorphism of Theorem 4.1, (i), &rjective

In the following, we use the notatiorw‘{o”(—)“ to denote the sua) topological

fundamental groupf the connected topological space in parentheses.
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Corollary 5.1 (Partial discrete combinatorial cuspidalizationl.et X be a topo-
logical surface of typed,r) (i.e., the complement of r distinct points in a compact
oriented topological surface of genug. gor integers n> 1, write X, for the comple-
ment of the diagonals in the direct product of n copiestgf

IT, & ”{Op(Xn)

for the (usual topologica) fundamental groupf X;,; T1, for the profinite completiorof IT,;
out®(11,) € Out(fl,) (respectively Ouf (I1,) € Out(I1,))

for the subgroup of outer automorphisrasthat satisfy the following conditigs) (1),
(2) (respectively (1)):

(1) a(H) = H for everyfiber subgroupH C I1, (cf. [24], Definition 7.2, (ii); [24],
Corollary 7.4)

(2) For m a nonnegative integef n, write Ky, C I, for the fiber subgroup that arises
as the kernel of the projection obtained biprgetting the factors of Xwith labels by

> m”; Mpa def Ka/Kyp for a, b € {0, 1,..., n} such that a< b. Thena induces abi-
jection of the collection of conjugacy classes ofispidal inertia groupgontained in
eachTlym-1 (Where m=1,..., n) associated to the various cusps of the topological
surfaces that arise as fibers of the projectiaf), — X1 obtained by“forgetting the
factor labeled mi. (Here, we regard the magdly = In/Inm — On/TMnym-1 = n_g
of quotients of[1,, as the homomorphism that arises bfprgetting successivelythe
factors with labels> m and the factors with labels- m — 1".) We refer toDefin-
ition 5.2 below for more details on the notion of &mertia groug’.

If r > 1—i.e, X is non-compaet-then set @dzmz; if r = 0—i.e, X is compact-then
set ny %3 Then

(i) The natural homomorphisms

M, — II,; Ouf(Il,) — Ouf (Il,)

are injective for n > 1. Herg the injectivity of the first homomorphism is equivalent to
the assertion thafl, is residually finite
(i) The natural homomorphism

ouf(11,) — Outf“(I1,_4)

induced by the projection obtained Wjorgetting the factor labeled mis bijective if
n > ng and surjectiveif n = 2.
(i) Let Ouf(11,) — Ouf(I1,_;) be as in(ii), n > no. Leto € Out(ll,) be an outer
automorphism that satisfies the following properties

(a) for every fiber subgroup HE 1, o(H) is a fiber subgroup



710 S. MOCHIZUKI

(b) o(Kn-1) = Kn_g;
(c) o induces abijection of the collection of conjugacy classes aifispidal inertia
groupscontained in K_1;
(d) the outer automorphisma’ € Out(l1,,_;) determined by (cf. (b)) normalizes
(respectively commuteswith) Out™(I1,,_1). Theno normalizes fespectively com-
muteswith) Out™(IT1,).

(iv) By permuting the various factors of/% one obtains a natural inclusion

Sn — Out(ITy,)

of the symmetric group on n letters inBut(TT,,) whose imageommuteswith Out™c(I1,,)
if n > ny and normalizes OUt(I1,) if r =0 and n= 2.

Proof. In the following, we shall write

AutFC(I1,) E' Aut(IT,) xougr,) Ouf (ITy),
Aut”(IT,) £ Aut(TT,) xoui,) Ouf (ITy)

for n > 1. Now let us consider assertion (i). The fact th&t is residually finiteis
well-known (cf., e.g., [24], Proposition 7.1, (ii)). Thus,remains to verify the inject-
ivity of the natural homomorphism OUf1,) — Out™(IT,). Whenn = 1, the injectivity
of the natural homomorphism Ouit{) — Out((L,) is the content of [2], Lemma 3.2.1,
when X' is non-compactwhen X is compact the injectivity of this homomorphism is
implicit in the proofs of [4], Theorems 1, 3. This completes the prdo&gsertion (i)
whenn = 1. Now “assertion (i) for arbitraryn” follows by applying induction on n
together with thenatural isomorphism

~ out

Hn—)Kj_XlHl

(cf. 80; Remark 1.1.1) and the evident discrete analogubeinterpretationof IT,;1 =
K1 given in [24], Proposition 2.4, (i), which allows one to apphe induction hypoth-
esisto K1 (as well as toll;). Indeed, ifa € Aut™(I1,) induces an inner automorphism
of I, then the automorphism; € Aut™(I1;) determined by induces an inner auto-
morphism of Il;. Thus, by the induction hypothesig; is inner, so by replacing
with the composite ofr with an appropriate inner automorphism, we may assume that
o is the identity. Thenr induces an automorphismk € Aut™(K,) which is compat-
ible with the outer action of1; on K;. Moreover,ax arises (relative to the inclusion
Ky C M, < I1,) from conjugation by an element € I, whose image inl; induces
(by conjugation) thedentity automorphism of1; (<> IT;), hence also the identity auto-
morphism of ;. Sincell; is center-free(cf. Remark 1.1.1), we thus conclude that
lies in the closure of the image d¢f; in T, (which is naturally isomorphic to the pro-
finite completion ofK;—cf. [24], Proposition 7.1, (i); [24], Proposition 2.2, Xi)Thus,
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by applying the induction hypothesis #§;, we conclude thatrk is inner, hence (by

applying the natural isomorphisii, — K3 °>L4n1'11) that« is inner. This completes the
proof of assertion (i).

Next, we consider assertion (ii). First, let us recall thgtthe well-knownthe-
orem of Dehn-Nielsen-Baécf., e.g., [13], Theorem 2.9.B) every automorphisne
AutF¢(I1;) arises from ahomeomorphisnfor even adiffeomorphis) ay: X — X.
Sinceay then induces a homeomorphisaj, S X, for everyn > 1, we thus obtain
elementsy, € Aut(I,) that (as is easily verified) belong to AG(I1,) and lift o (rela-
tive, say, to the projectiofil, — I1; determined by the factor labeled 1). In particular,
the corresponding natural homomorphisms &(I,) — Out™“(I1,) are surjective for
n=>1.

Next, let us observe that thejectivity of Out™c(I1,) — Out™(I1,_1) for n > ng fol-
lows formally from the injectivity of OuES(I1,) — Out™®(I1,) (cf. assertion (i)) and the
injectivity of Theorem 4.1, (i). In light of thesurjectivity of Out™(IT,) — Out™“(I1y),
we thus conclude that it’ is non-compac{sony = 2), then OUt(I1,,) — Out *(IT,,_1)
is bijectivefor n > 2. This completes the proof of assertion (ii) feon-compactX’.

Next, let us consider the case wheté is compact Then one may verify the
surjectivity of Out™(I1,) — Out™“(I1,_;) for n > 3 by arguing as follows. LeB e
Aut™(I,_1), where we think of[ly 1 as ‘TIn/Mnn-1 = n/Kn 1" Then g deter-
mines automorphismgx € Aut™(K;/K,_1), B1 € Aut™(I1;) (where we think ofIl;
as ‘TIy/In;1 = y/K1") which are compatible with the natural outer actionIdf on
K1/Kn-1. Then by applying assertion (ii) in theon-compactase (whose proof has al-
ready been completed) t6;, we conclude that Oft(K;) — Out™“(K1/Kn_1) is bijec-
tive. Let ax € AutF(K;) be a lifting of . Note that theinjectivity of Ouf (K1) —
Ouf(K1/K,_1) (together with the compatibility 0B, Bk with the natural outer action
of IT; on K;/K,_1) implies thatB;, ax are compatible with the natural outer action

of I1; on K;. Thus, by applying theatural isomorphismil, — K °>§“Hl (cf. 80; Re-
mark 1.1.1), we conclude thatx, B, determine an automorphism e Aut(I1,) which
(as is easily verified, in light of theesidual finitenessf assertion (i), by applying Prop-
osition 1.2, (i), (iii), to I1,) belongs to AUt°(IT,). This completes the proof of the
surjectivity of Out™(I1,) — Out™“(IT,_;) for n > 3, and hence of assertion (ii).

The proof of assertion (iii) as a consequence of assertiQris(ientirely similar
to the proof of Theorem 4.1, (iii) (as a consequence of Thaodel, (i)). Finally,
we consider assertion (iv). When= 0 andn = 2, assertion (iv) follows immedi-
ately from the evident discrete analogue of Proposition ()6 (a). Thus, it remains
to verify that Ouf(I1,) € Out(ll,) commuteswith the image of&, whenn > ng.
To this end, leto € Out(ll,) be an element of the image @,; o« € Ouf*“(Il,);

Uy e = Out(I1,). Then one verifies immediately that € Out™(I1,). More-

over, by Theorem 4.1, (iv), the images efand «, in Ouf’(I1,) coincide Thus, the
fact thate = a, follows from the injectivity of Out™(I1,) — Ouf™(I1,) (cf. assertion
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(). This completes the proof of assertion (iv). ]

REMARK 5.1.1. There is a partial overlap between the content of Kamyo5.1
above and Theorems 1, 2 of [12].

DEFINITION 5.2. Letn > 2 be an integer.
(i) Write R for the underlying topological space of the topologicaldielf real num-
bers y» € R? = R x R for the unit circle; y, CR" =R x--- xR (i.e., the product of
n copies ofR) for the image of the embedding € R? — R" obtained by taking the
first n— 2 coordinatesto be zero.

(ii) Let M be aconnected topological manifold of dimension £iC M a connected

submanifold of dimension-n2; P dzef/\/l\ﬁ. Thus, for each poink € £, there exists an

open neighborhood € M of x in U, together with an open immersidf — R" that
mapsx to the origin of R", containsy, in its image, and induces an open immersion
UNL < R"2 (S R") (where we think ofR"? as the subspace &" whose last two
coordinates are zero). In particular, we obtain an immarsjp— P C M; write

Lu € m(P)
for the image of the homomorphisnZ (=) 7,°°() — 7, °°(P) induced by this im-
mersiony, < P (S M). One verifies easily thak, is well-defined up tar;(P)-
conjugacyand independenbf the choice ofx, i/, and the open immersiolf — R".
We shall refer tol\, as theinertia group associated tov in ;°°(P).

Corollary 5.3 (Quasi-speciality). In the situation of Corollary 5.1: Suppose that
X is obtained as the complement of r points—iEusps~—of a compact oriented
topological surfaceZ. Write P, for the productZ x --- x Z of n copies ofZ; D;,
for the set of connected submanifolds of codimengiai P, given by the (h—1)/2
diagonals and the mr fibers of cusps via the n projection mafs — Z. For each
§ € Oy, write

X Epy <Ue> <P,

€#£8

—where the union ranges over elemeatg § of D;
Is € II,

for the inertia group Yvell-defined up td1,-conjugacy determined by the submanifold
§N X2 < X2 (where we note thak;, = X\ (§ N X?)). Write

OuR¥(I1,) < Out(ll,)
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—where“QS’ stands for“quasi-special” ¢f. Proposition 1.3, (viig—for the subgroup
of outer automorphisms that stabilize the conjugacy cldseagh inertia groupls, for
8 €Dy,

Out™(11,,)“P € Out™(1T1,,)

for the subgroup of outer automorphisms that indug& the surjectionIl, —» Tl
obtained by*“forgetting the factors with labels- 1”, outer automorphisms ofl; that
stabilize each of the conjugacy classes of the inertia groups of th@suhen

(i) We have Out®S(IT,) = Out ™ (IT,,)cusP.

(i) The natural homomorphism dforollary 5.1, (i), restricts to a homomorphism

outR¥(11,,) — Ou¥(I,_1)
which is bijective if n > ng (where ry is as in Corollary5.1) and surjectiveif n = 2.

Proof. First, we consider assertion (i). We begin by obsgrthat it follows imme-
diately from the definitions (together with well-known faatoncerning the relationship
between topological and étale fundamental groups) phafinite completioninduces a
homomorphism O&3(I1,) — OuRS(I1,) € Out™(I1,) (cf. Proposition 1.3, (vii)). Thus, it
follows immediately from thaesidual finitenessf Corollary 5.1, (i), that O(I1,)
Ouf(I1,). In particular, the fact that O%®(I1,) € Out™c(I1,)UsP follows immediately
from the definition of “Ou®S(-)” (cf. the proof of Proposition 1.3, (vii)). Now it re-
mains to verify that OG(I1,)UsP € OuRS(I1,). To this end, let us first observe that if
X is compact then everyls (wheres € D) lies in the kernel of the surjectiofl, —
I[1; obtained by “forgetting the factors with labels 1”; in particular, (by thinking of
Ker(IT, — II;) as a 11, ;" that arises for some topological surface of tyme 1))
we conclude that it suffices to verify the inclusion &¢f1,)°UsP € Out®S(I1,,) for non-
compactX. Thus, let us suppose that is non-compact Then by Corollary 5.1, (ii),
we have abijection

OUFS(TT,)*%P % OUFS(IT; )

—i.e., (cf. the proof of Corollary 5.1, (ii)) every elememte Out(I1,,)°UP arises from
a homeomorphisney: X — X. Moreover, it follows immediately from the superscript
“cusp” that this homeomorphism extends to a homeomorphism Z = Z that fixes
each of the cuspdn particular,az inducescompatible self-homeomorphisrog X, C
X2 C Py for eachs € D}, Thus, it follows immediately from the definitions thate
Out®S(I1,). This completes the proof of assertion (i). Finally, ateer (ii) follows
immediately from assertion (i) and Corollary 5.1, (ii). ]

REMARK 5.3.1. Suppose thag(r) = (0, 3). Then thénjectivity portion of Corol-
lary 5.3, (i), is (essentially) the content of [8], §1.2h& injectivity theorem (i)". By ap-
plying this injectivity, together with a classical resulf dlielsento the effect that
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Out®S(I1,) = {+1} (cf. [8], §6.1; here, the element of (XF(IT,) corresponding to-1"
is the automorphism induced lyomplex conjugation one obtains that OB¥(I1,) =
{£1} for all n > 2 (cf. [8], §1.2, “the vanishing theorem”).

ACKNOWLEDGEMENTS The material presented in this paper was stimulated by
the work of Makoto Matsumoto (i.e., [14]), as well as the workMé&rco Boggi on
the congruence subgroup problem for hyperbolic curveso,Alswould like to thank
Akio Tamagawa for helpful discussions concerning the nigt@resented in this paper
and for informing me of the references discussed in Remark®,44.2.1.

References

[1] W. Abikoff: The Real Analytic Theory of Teichmiller Spac Lecture Notes in Math820,
Springer, Berlin, 1980.

[2] Y. André: On a geometric description c@al@p/Qp) and a p-adic avatar of5T, Duke Math.
J. 119 (2003), 1-39.
[3] P. Deligne and D. Mumford:The irreducibility of the space of curves of given genumst.

Hautes Etudes Sci. Publ. MatB6 (1969), 75-109.

[4] E.K. Grossman:On the residual finiteness of certain mapping class groupd.ondon Math.
Soc. (2)9 (1974/75), 160-164.

[5] D. Harbater and L. Schnep&undamental groups of moduli and the Grothendieck—Teidlemu
group, Trans. Amer. Math. So352 (2000), 3117-3148.

[6] Y. Hoshi: The exactness of the log homotopy sequepieprint, to appear in Hiroshima Math. J.

[7] Y. Hoshi: Absolute anabelian cuspidalizations of configuration gzaaver finite fieldspreprint,
to appear in Publ. of RIMS.

[8] Y. Ihara: Automorphisms of pure sphere braid groups and Galois repregions in The
Grothendieck Festschrift, vol. I, Progr. Mat87, Birkhduser, Boston, Boston, MA, 353—-373,
1990.

[9] Y. Ihara: On the stable derivation algebra associated with some bga@lps Israel J. Math.
80 (1992), 135-153.

[10] Y. Ihara and M. KanekoPro-l pure braid groups of Riemann surfaces and Galois reprea-
tions Osaka J. Math29 (1992), 1-19.

[11] L. lllusie: An overview of the work of K. Fujiwar&. Kato, and C. Nakayama on logarithmic
étale cohomologyCohomologiesp-adiques et applications arithmétiques, Il, Astéris@r®
(2002), 271-322.

[12] E. Irmak, N. Ivanov, J.D. McCarthy: Automorphisms of surface braid groypgreprint,
arXiv:nat h. GT/ 0306069v1, 3 Jun 2003.

[13] N.V. Ivanov: Mapping class groupsn Handbook of Geometric Topology, North-Holland, Am-
sterdam, 523-633, 2002.

[14] M. Matsumoto: Galois representations on profinite braid groups on curvésReine Angew.
Math. 474 (1996), 169-219.

[15] S. Mochizuki: A version of the Grothendieck conjecture for p-adic localdBge Internat. J.
Math. 8 (1997), 499-506.

[16] S. Mochizuki: The local pro-p anabelian geometry of curyésvent. Math.138 (1999), 319—
423.

[17] S. Mochizuki: Extending families of curves over log regular schemksReine Angew. Math.
511 (1999), 43-71.

[18] S. Mochizuki: The absolute anabelian geometry of hyperbolic cunirsGalois Theory and
Modular Forms, Kluwer Acad. Publ., Boston, MA, 77-122, 2004.



[19]
(20]

[21]
[22]
(23]
[24]

[25]
(26]

[27]
(28]
[29]
(30]
(31]
(32]

[33]

COMBINATORIAL CUSPIDALIZATION 715

S. Mochizuki: Semi-graphs of anabelioid®ubl. Res. Inst. Math. Sci2 (2006), 221-322.

S. Mochizuki: A combinatorial version of the Grothendieck conjectufehoku Math. J. (259
(2007), 455-479.

S. Mochizuki: Absolute anabelian cuspidalizations of proper hyperbolicves J. Math. Kyoto
Univ. 47 (2007), 451-539.

S. Mochizuki: Topics in absolute anabelian geometty decomposition groupsRIMS Preprint
1625 2008.

S. Mochizuki: Topics in absolute anabelian geometily. global reconstruction algorithms
RIMS Preprint1626 2008.

S. Mochizuki and A. Tamagawa:he algebraic and anabelian geometry of configuration space
Hokkaido Math. J.37 (2008), 75-131.

D. Mumford: Abelian Varieties, Oxford Univ. Press, Lamd 1970.

H. Nakamura:Galois rigidity of pure sphere braid groups and profinite @alls J. Math. Sci.
Univ. Tokyo 1 (1994), 71-136.

H. Nakamura:Coupling of universal monodromy representations of Galtégschmdller modu-
lar groups Math. Ann.304 (1996), 99-119.

H. Nakamura:Limits of Galois representations in fundamental groupsnglanaximal degener-
ation of marked curved, Amer. J. Math.121 (1999), 315-358.

H. Nakamura, N. Takao and R. UenBome stability properties of Teichmuller modular function
fields with pro-I weight structuresMath. Ann.302 (1995), 197-213.

J. Neukirch, A. Schmidt and K. Wingberg: Cohomology ofimber Fields, Grundlehren der
Mathematischen Wissenschaft8@3 Springer, Berlin, 2000.

L. Ribes and P. Zalesskii: Profinite Groups, ErgebnseMathematik und ihrer Grenzgebiete
3, Springer, Berlin, 2000.

H. Tsunogai: The stable derivation algebras for higher genetarael J. Math.136 (2003),
221-250.

I. Vidal: Contributions a la cohomologie étale des schémas et desdb§masThése, U. Paris-
Sud, (2001).

Research Institute for Mathematical Sciences
Kyoto University

Kyoto 606—8502

Japan

e-mail: motizuki@kurims.kyoto-u.ac.jp



