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Abstract
In a recent paper ([2]), Nicolas Bouleau provides a new tdised on the
language of Dirichlet forms, to study the propagation ofoesrand reinforce the
historical approach of Gauss. In the same way that the pedatise of the normal
distribution in statistics may be explained by the centiaiitl theorem, the aim of
this paper is to underline the importance of a family of estuctures by asymptotic
arguments.

1. Introduction

The choice of a relevant mathematical language for speaiiugit errors and their
propagations is an old topic. A new approach based on theyhaoDirichlet forms
([1], 9], [14]) has been recently suggested in [2], [3]. §hhethod is a natural and
powerful extension of the seminal works of Gauss ([2]) anseiéms to be an appropri-
ate framework to study the sensitivity to small changes ohpeters in physical and
financial models ([3], Chapter 7).

From now on, we shall call a terf(, W, m,D,T") an error structure, if\y, W, m)
is a probability space] is a dense sub-vector space lof(W, VW, m) (also denoted by
L?(m)) and T is a positive symmetric bilinear map frofd x D into L*(m) fulfilling:

1) the functional calculus of clagd' NLip meaning that ifu € D", V e DP, for F ¢
CYR",R)NLip = {C! and Lipschitz and G € C*(RP, R)NLip one has E(U), G(V)) e
D? and

oF
0X%;

@ T[FU), GV)] =)

G
. (U)a—xj(V)F[Ui, Vi] m-ae,

2) 1eD (this impliesT[1, 1] = 0),
3) the bilinear form&[F, G] = (1/2)En[T'[F, G]] defined onD x D is closed i.eD
is complete under the norm of the graph

Iolip = (I 2oy + EL- DY
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We always writel'[F] for T'[F, F] and E[F] for £[F, F].

From the hypotheses mentioned abogeis a local Dirichlet form and™ its asso-
ciated squared field operator. The property 1) is none otter the so-called Gauss's
law of small errors propagation ([2]), thus, whene D, the intuitive meaning of'[U]
is the conditional variance of the error &h given U. Moreover this first order calcu-
lus dealing with variances can naturally be reinforced bylawdus on biases involving
the infinitesimal generator associated&q[3], Chapter 3).

Thanks to property 3), the domaib is preserved by Lipschitz functions ([3],
p.40): if F: R" — R is a contraction in the following sense

n
IFO)—F)I <> 1% — wil
i=1
then forU = (Ug, ..., U,) € D" one hasF(U) e D and

(2 F[F(Uy, ..., U2 < ) TIUTY2
i=1

As mentioned in [4], one of the lacks of this new theory in piat cases is the
need ofa priori choices. In fact, for a rational treatment, error hypotkeskould
be obtained by statistical methods. In finite dimensionprestructures are connected
(through a robust identification) to statistical parantetriethods thanks to Fisher in-
formation [4]. Moreover, this study can be reinforced by tleéinement of the main
limit theorems of the probability theory in our setting ([3B]).

In this way, Bouleau and Hirsch have introduced notions dépendence and con-
vergence for error structures that extend the independendethe convergence in dis-
tribution for random variables ([1], Chapter 5). By usingdk definitions, they prove
a central limit theorem in finite dimension for erroneousdam variables, the errors
being modelised by error structures ([1], p.220). The mantgbution of our paper is
to propose an infinite dimensional extension of this restitthe very least, in the case
of a separable Hilbert space. This finding, associated \kghrécent improvements of
the Donsker theorem ([5], [6]), can explain the importanéahe error structures of
the Ornstein-Uhlenbeck type (structures where the measufgaussian and wherg
operates on cylinder functions as a first order differentipérator with constant co-
efficients) in the applications.

From a technical point of view, the key stone of our study Wwél the notion of the
vectorial domain of a Dirichlet form which was defined by Hegad de La Pradelle
([8], p-900).
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2. Preliminaries on error structures

2.1. Finite dimensional images and infinite products. Let us present the two
fundamental algebraic operations on error structures dhmatcompatible with the con-
struction of probability spaces. We refer to [4] for theiatstical interpretations.

DEFINITION 1. LetS=(W, W, m, D, I') be an error structure and a random
variable inDY. For f e CY{RY, R) N Lip, we put

Tul[f100) =Em[T[f(U)] |U =x], xeR

Thus, RY, B(RY), U.m, CY(RY, R) N Lip, Ty) is a closable error pre-structure in the
sense of [3], p.44. LeU,S be its smallest closed extension called the image structure
of Sby U.

DEFINITION 2. Let S = (W, Wh, My, Dy, Ty), n> 0, be a family of error struc-
tures. The product structurd\; W, m, D, I') = [[2, S is defined by W, W, m) =
(TTrzo Wa, TTzo Why @nzo M) With an explicit domainD ([1], p.203) andVF € D,
I'[F]= Y12, 'n[F] where the operatoF, acts on then-th variable.

Thanks to the preceding definitions, it is easy to equip tmelfimental spaces en-
countered in stochastic models (Wiener space, Monte CadoesPoisson space) with
error structures, starting from elementary structuresRo(i3], Chapter 6).

Now, in order to deal with Hilbert valued random variables first have to give
sense to a coherent extension of the domain of an error steuct

2.2. \Vectorial domain of an error structure.

DEFINITION 3. We say that an error structuowns a gradient if both a separa-
ble Hilbert space’{, || ) and an operato¥ from I into L?(m; ) (where L2(m;H)
is the space of square integrable random variables withegalu?{) called the gradient
exist such that

YU eD, |VU|3, =T[U].

Thus, according to (1), a gradient fulfills the classicalichaile.

From now on, we suppose that the error struc@isatisfies the property mentioned in
Definition 3. In practice, this assumption is not restrietvecause Mokobodzki showed
a gradient exists whenevé is separable ([1], p.242).

We introduce a slight variant of the gradient which is vergfuswhen computing
errors on Wiener space thanks to the Itd formula ([1], p.148 EB], p.167). This
notion has been introduced by Feyel and de La Pradelle in thes€an case and used
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by Bouleau and Hirsch to prove important results concertiiregregularity of solutions
of stochastic differential equations with Lipschitz coa#nts ([1], Chapter 4).

DEFINITION 4. Let (\f\/ W, M) be a probability space which is a copy of
(W, W, m) and J an isometry fromH into L?(f). For U € D, let U¥ be the de-
rivative of U defined by

U# = J(VU) € L%(m x ).

Of course we can suppose (what we shall do) tate H, Eg[J(h)] = 0. Thus,
Ex[U#] = 0.

Let (B, | |8) be a separable Banach space @&idts topological dual space. Let
( , ) be the duality betweeB and B’. One of the main interests of the derivative is
to allow a natural definition of a tensor product Dfwith B.

DEFINITION 5. LetDg denote the vector space of random variakleis L2(m; B)
such that there existg in L?(m x rm; B) such that

Vie B, (U)eD and (1 U*=( g.

Then we putg = U# and equipDg with the norm

1 1/2
U llp, = (nu [E—— Enu#nfqum;m) :

From the preceding definition we have obvioudlg = DA,

REMARK 1. Let B be a separable Hilbert space. Uf e L?(m; B) the following
statements are equivalent:
I) U € Dg.
ii) There is an orthonormal basi® iy Of B such thatvi e N, (g, U) € D and
Y% Ele, U)] < oo
iii) For all orthonormal basis €)icy Of B, Vi € N, one has(g,U) € D and
Y% Ele, U)] < oo,

Henceforth, we suppose thBt satisfies the approximation hypothesis: There exists
a sequenceRy)neny Of continuous linear operators of finite rank froBinto B such
thatVx € B, lim,_ o Pn(X) = x (this assumption holds wheB owns a Schauder basis,
particularly, whenB is a separable Hilbert space or the Wiener space).

The following proposition extends the property (2) of slifiof the domainD by
contractions and the functional calculus (1)g.
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Proposition 1. Let F be a contraction from B int®. If U € Dg then HU) e D
and I'[F(U)] < Ex[|JU#|3]. Moreover if we suppose that F is of class!CF(U)* =
(F'(U), U*).

Proof. Let us first suppose th&ét € C1(B, R)NLip. For all n € N, we define the
cylinder approximations off by F, = F o P,. According to the Banach Steinhaus
theorem we have sypyllPnl| < oo thus, by dominated convergencé&,(U) —

n—o0o
F(U) in L%(m). Moreover, sinceF, is a cylinder function,F,(U) € D and from the
chain rule it follows thatF,(U)* = (F/(P,(U)), P.(U*)). Hence, we easily obtain that
Fn(U)¥ — (F'(U), U#) in L2(m® m). Using the fact that the derivative is a closed

n—o00

operator, the conclusion holds.
When F is only a contraction, the result follows from an adaptatairthe proof
of Theorem 2.2.3 of [1], p.140. O

A direct consequence of the preceding proposition is towalloe construction of
the image ofS by an element of its vectorial domain by using the same idea &f-
inition 1.

DEFINITION 6. ForU € Dg, the term 8, B(B), U,m, C}(B, R)NLip, I'y) where
VF € CY(B, R) N Lip, I'y[F] = EL[T[F(U)] | U], is a closable error pre-structure in
the sense of [3], p.44. Leu.S be its smallest closed extension, arfi;(Dy) the
associated Dirichlet form. The structutd, S is called the image ofS by U or the
Dirichlet law of U andVF € Dy, we have&y[F] = E[F(U)].

ExaMPLE 1. One of the simplest examples of error structures is tha ter
R, B(R), u, HY(w), y: u > u’?)

where . is the standard normal distribution dk and H(x) the first Sobolev space
associated tqu.. We consider (Definition 2) the following product

o0

S=(W, W, m, D, T) = [[(R, BR), 1, H(u), v)-
n=0

Let (On)heny be the coordinate mappings & and n)nen @an orthonormal basis of
L2([0, 1], dx). Fort € [0, 1], we set

Bi=) (/Ot ¢n(8)d5>gn.
neN

Thus, the continuous procesB)i[o,1) is @ standard Brownian motion and we can eas-
ily see that it belongs t®g where B = Cy([0, 1], R) is the Wiener space. The image of
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S by (Bi)tepo,17 is known as the Ornstein-Uhlenbeck error structureBoand letTI'oy be
its squared field operator. This structure possesses aegtaghich is none other than
the gradient in the Malliavin sense with an adjoint operalat £xtends the It6 integral
([as]). 1f we put A={f(As,...,An);n €N, (A1,...,An) € B' and f € CL{(R", R) NLip},
we can see thatF = f(Ly,..., Ap) € A,

" of of
r = — (A1, .., A&
3 ou[F] 2 o% 3Xj( Toevos An)ai |

where the coefficients; ; only depend on;, ;). Thus, from now on, we will say
that an error structure on a separable Banach space is ofrtige-Uhlenbeck type if
the associated measure is Gaussian and if the opdrai®rof the form (3) on smooth
cylinder functions.

Now, we extend the definition of the Dirichlet independenaeoduced by Bouleau
and Hirsch in finite dimension ([1], p.217). Let be the product of two error structures.

DEFINITION 7. For U, V) € (Dg)?, U andV are said to be Dirichlet independent
if U,S® V,S=(U, V),S In other terms, the Dirichlet law ofl), V) is the product
of the Dirichlet laws ofU and V.

We can show that Theorem 4.1.4, p.218 of [1] remains valid un foamework,
thus, we have the following characterization of the Dirgthindependence obg.

Proposition 2. For U and V inDDg to be Dirichlet independentit is necessary
and sufficient that the following four conditions are fudfd
a) U and V are independent on the probability spgt€, W, m),
b) V(r1, 22) € (B')? Eml[[[(A1, U), (A2, V)] | U, V] =0 m-ae,
c) Vi e B, En[T[(x, U)] |U, V] =En[T[(A, U)] | U] m-ae,
d) Vae B, EqT[{A, V)] U, V]=ER[T[{x, V)] | V] m-ae

Finally, we introduce a notion of convergence on the veatodomain that re-
inforces the convergence in distribution for random vddahtaking into account the
underlying Dirichlet forms.

DEFINITION 8. We say that a sequendd,|nen in Dg converges in Dirichlet law
if there exists an error structurg= (B, B(B), v, D, ') such that:
i) (Up)im —2V weakly,
— 00

i) CLB,R)NLipcDandVF e CYB, R)NLip, E[F(Up)] — E[F].

For convenience, we shall say that,]..y converges in Dirichlet law towards.
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In the next section, we prove an extension of the centralt ltheorem in Hilbert
spaces (in the sense of the preceding definition).

3. Main result

We suppose thag = (W, W, m, D, I') owns a gradientv: D — L?(m; H). Let
#:D — L%(m x M) be a derivative operator. Although noncanonical, the ahaif the
isometry J is not specified because, according to Remark 1, such a clezids to the
same definition ofDy when H is a separable Hilbert space.

Theorem 1. Let(H,( }) be a separable Hilbert spacé_et(Un)nen+ be a sequence
of centered random variables iy, Dirichlet independent with the same Dirichlet law
If ¥ is the covariance operator of 4) then V, = (Uy +---+U,)//n converges in
Dirichlet law towardsS = (H, B(H), v, D, I') where
i) v is a centered Gaussian measure on H with covariance operator
i) VF e CY(H,R)NLip, FeD and

A 1
@ §F1=5 [ (F00 97 dut, )

wherep is a centered Gaussian measure of With covariance operator K defined by

(KX, Y)n2 = (ZX1, Y1) + 28[(U1, X2), (Uz, ¥2)]

for all x = (xq, X2) and y= (y1, y») in H?,

iiiy the form(CY(H,R)NLip, €) is closable Let (D, £) be its smallest closed extension
that owns a squared field operatadr.

Thus V, converges in Dirichlet law towards a structure of the Ormstghlen-beck type

REMARK 2. The operatoK is in the trace class becau3kis a covariance op-
erator andU; € Dy (Remark 1).

Before we turn to the proof, note the following. The hypothesf Dirichlet in-
dependence allows us to consider that the variableare of the formU; o g where
the @)ien+ are the coordinate mappings of a product of error structures

Indeed, defins=(2, 4, P,d,y)=(W,W,m,D, )Y ande[., .]=(1/2)Ep[y[., .]].
We set

(H) = 3 (No)ner; Vi € N*, hj e H and Y [Ihi[5, < oo f.
i=1

Classically, we can construct a gradient operafofor s setting

ViFedr (..., VilFl ...) e L%P; (3(H))
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where V[j; means that the operatéf acts on the -th variable ofF. In the same way,
if (&, A, P) is a copy of , .4, P), we obtain the following derivative operatofor s:

(5) VF ed, F(o, &)= Z J[Vii[Fl(@))(@) € LAP ® P)
i eN*

where the series converge Ir%(P). For alli € N*, we putX;: = (@))jen € 2 —
Ui(wi). Then, we can state the following easy lemma.

Lemma 1. a) With the preceding notation®i € N*, X; € dy and (X;) (w,®) =
U (wi, ).
b) The variables(X;)icn- are Dirichlet independent with the same Dirichlet law

Let Z, = (Xy +---+ X,)/4/n. The next statement will be used hereafter.
Lemma 2. VF e CY(H, R) N Lip, we havef[F(V,)] = e[F(Z)].

Proof. We first suppose thd is a cylinder function. To lighten the notations we
only consider the casé = f((x, .)) wherex € H and f € C}(R, R) N Lip.
By the functional calculus we have

AF(Z)= 5 [ 3 12 0106 X0, (x X AP,

ij=1

For everyk, X is Dirichlet independent of X, ..., Xk_1, Xk+1, ..., Xpn). Then,
Proposition 2 entails

dF(Z)= 5 [ 3 1z 0Pl Ix, X1 1 X0 dP,
i=1

Since (Xg,..., Xp) has the same law adJ{,...,U,) and y[(X, Xi)](@) = T[{X, Uj)](w),
the conclusion holds.

For the general case, leg)iey be an orthonormal basis dfi and P, the pro-
jection on the vector space vesj(..., e,) spanned bye, ..., e,). SinceZ, € dy
and V,, € Dy, using the same argument as in the proof of Proposition 1 \eetisat
VF € C(H, R) N Lip,

e[F o P(Zn)] — elF(Zn)] and E[F o P(Vo)] ——— E[F (Vo).
The result follows by unigueness of the limit. 0

Now we can come back to the proof of the theorem.
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Proof of Theorem 1. The convergence in distribution of thgueace ¥,).m to-
wardsv is a consequence of the classical central limit theorem fitlhelrt valued ran-
dom variables ([13]).

Let us first show tha¥F e C1(H, R) N Lip, we have

E[F(Vn)] — E[F].
n—o00

According to Lemma 2, we study the asymptotic behavioreld¥ (Z,)]. Since Z, €
dy, we obtain from Proposition 1 that

26[F(Zy)] = /Q fg (F(Zo), Z)2 dP df.

Since the pairs X;, X{) are i.i.d., the central limit theorem in Hilbert spaces en-
sures that Zn, Z/) converges in distribution irH? towards a centered Gaussian mea-
sure u with a covariance operatd fulfilling

(er Y)HZ = EP]EIS[((XL X;_), X>H2<(X1! X:/I_)l y>H2]

for all x = (X, x2), andy = (y1, y2) in H2
Using the definition ofX; and Lemma 1, it is easy to see that

Ep[(X1, X1) (X1, Y1)] = Em[(Uz, X1){(U1, Y1)] = (Ex1, y1)

and that
EpEp[(X1, %) (X1, ¥2)] = EmEal{UT, X2) (U7, ¥2)] = 2E[(U1, X2), (U1, Y2)]-
Now, as a consequence of Fubini’s Theorem we ob¥{in, z,) € R?
EpEp[(X1, 21)(X1, 22)] = EmEm[(Us, 21)(UF, 22)] = Em[ (U1, z0)Eal{U7, 22)]]-
Moreover from Definition 4 we have
En[(Uf, 22)] = Eal(U1, 22)"] = 0.

Hence,

(KX, Y)Yz = (EXq, Y1) + 28[(Uq, X2), (U1, Yo)].

Furthermore, using the independence of thg, (X{)'s, it follows that

EpEs[lZnll? + 11Z)11%] = Em[IIU1)1%] + EmEm[IU11%] = /annaz dpe(x),
H
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thus, the||(Zn, Z;])|||242's are uniformly integrable.
Since the functiomp: (x,y) € H? — (F'(x), y)? is continuous and satisfiggx, y) <
cll(x, y)||ﬁ2, wherec is a constant, we have

25RO = [ (F00, 7 dt, ).

To conclude, it remains to show the closability of the fafndefined onC1(H, R) N
Lip by (4). The proof is based on three lemmas whose proofdedtrén Appendix.

Lemma 3. Let 8 be an orthonormal basis of Hone has
(CY(H, R)NLip, &) is closable (A, ) is closable
where Ay = U e {F((€1, 2), -+, (€, )i (81, - - -, &) € BP, f € CHRP, R) NLip}.
Moreover, when one of the assertions is fulfilled their snsalidosed extensions co-
incide.

Since X is a covariance operator, it is positive and belongs to theetclass. Thus
([22]), there exists an orthonormal bagig= (g )iy Of H consisting of eigenvectors of
2. According to the preceding lemma, we only have to prove (g, £) is closable.
Let (0%)ien be the corresponding eigenvalues, hence, the sequésce )iy, defined
on (H, B(H),v), is a sequence of independent and centered Gaussian ramdizbles

on R with variances ¢?)icn.
From U; € Dy, it follows from Proposition 1 that the bilinear operator

.. ( H? > R )
S\ (X, y) e ELix, Uy), (y, Up)]
is continuous because
EL(x, Ua), {y, UD]T < IXI IVIERE[IUF12].

Therefore, there exists a bounded operadforH — H such thatT(x, y) = (CX, y).
The operatorC is clearly self-adjoint and positive. Let us define

Dc =CY¥2D: Ap, — L%(v; H)

where D stands for the Fréchet derivative k. Thus, we have the following equality:
VF € Ag,,

EIF] = /Hn Dc[F]II% dv.
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Therefore, the closability of the formA4f,, é) is equivalent to the closability ob¢ in
L?(v; H). We have formulated our closability problem in terms ofediional gradient
in the sense of Goldys et al. in [10]. According to the follogrilemma we can impose
thatVvi e N, 02 > 0.

Lemma 4. When we study the closability @#g,, £) we can suppose that is
injective

Thus, the operatow = CY?2x-Y/2 is well defined on domy() = ©¥/?(H) and we
have the following result:

Lemma 5. (A, Dc) is closable< (dom(), V) is closable

We show the closability ofV: Let (x\)neny be a sequence ixY2(H) fulfilling
X» —> 0 andVx, —— u. For alln € N, let h, be the unique element i
n—o00 n—o00

such thatx, = £%?(h,). Then, it follows that/,, (h,, U1)> dm — 0 and &[(h, —
hm, U1)] — 0. Since S is an error structure, the closedness property implies

E((hn, Up)) = |V X2 —= 0 andu =0. Thus, the theorem is proved. O]

Corollary 1. When B is a separable Banach space isomorphic totlh¢ con-
clusion of Theorem lremains valid Let (Uy)nen: be a sequence of centered random
variables inDg, Dirichlet independent with the same Dirichlet lathen (Vp)nen+ CON-
verges in Dirichlet law towards an error structure of the Gtain-Uhlenbeck type

Proof of Corollary 1. Letd be the isomorphism betwedh and H. According to
[1], p.267, @(Un))nen: is a sequence of centered random variable®in having the
same Dirichlet law. From Proposition 2, we can show easibt these random vari-
ables are Dirichlet independent. Thus, applying Theorert®{U;) +- - - + ®(Uy))//N
converges in Dirichlet law towards an error structure of @nstein-Uhlenbeck type
S. Finally, we immediately obtain that, converges toward®1,S which is of the
Ornstein-Ulhenbeck type becauge? is linear. ]

4. Concluding remarks

We use the notations of the preceding proof. Let us considéhe set of subsets
of N. If u={iy,...,in} € A, my is the canonical projection frorfl into vectg,,...,q,)
and ¢, the natural homeomorphism betwe®i and vect§,, ..., e, ). Let us define
the following error structure

& = ®", BR"), N(0,01,)® - - @ N(O, 0i,), By, ')
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k,I=

and whereD, is the domain of the smallest closed extension ©FR", R) NLip, &).

We can see that (). S.)uca is a projective system of error structures in the sense
of [1], p.206. Since #.).S = (#u).S, this projective system has a limit which is
none other tharS. Thus, our result may be seen as the projective limit of tisilte
of Bouleau and Hirsch in finite dimension ([1], p.220). Moregvby the so-called
Kwapien's theorem ([13], p.246) and by Corollary 1, it is yads see that Theorem 1
extends to Banach spaces having type 2 and cotype 2. We canvaonder about the
extension of such a result in more general settings. Unfatily, the classical con-
ditions for the central limit theorem to hold in Banach sgat®ving finite type and
cotype ([13]) or in the Wiener space ([11]) seem to be, for t@ment, insufficient
to overcome the lack of orthogonality that is the keystonewf proof.

5. Appendix: Lemmas

5.1. Proof of Lemma 3. The implication “C(H, R) N Lip, €) is closable=>
(Asg, 5) is closable” is obvious. For the converse we suppose thgf Af) is closable.
Let D4, denote the domain of its smallest closed extension. We carthgg 0.4, £)
possesses a gradient with valuesLiA(v; H) (which is the smallest closed extension
of (D¢, Ag)). Let J be the canonical isometry betweéh and a copyH of H and
(IfDAﬁ)H the associated vectorial domain. According to Remark 1,idkatity mapping
of H belongs to 0.4,)u. From Proposition 1CY(H, R)NLip C D4, thus C(H,R)N
Lip, £) is closable and) c D4,. The result follows.

5.2. Proof of Lemma 4. We setN ={e € Bo | £(e) = 0}. Suppose thag, €
N. Using the locality of the form€ ([1], p.28) we obtainf[(e,, U1)] = 0. Thus, if
F=1f({e, .),..., (&, .)€ A we have

©  EFl= /fkfl(o € ... (6, ELE, Un), (6, Up] dv.
k,1=2

Putting
Agan = {F((e,, ),.... (&, ))ineN, (e,,...,8,) € B\ N, FeC'nlLip}
we deduce from (6) that

(Agon, €) is closables (A, £) is closable.
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Since the restriction o& to vect@y \ N) is injective, this entails the conclusion.

5.3. Proof of Lemma 5. The main ideas of the proof are taken from [10]. Let
us define

P(V*) = {Fk | F € Ag, k e domV*)} C L%(v; H).

In a natural way, we can exteridc to P(V*) putting

Dc[Fk] = Dc[F] ®k
where ® is the tensor product ofl. Using [10], p.4, we show that the operator

W[y ](x) = —traceOc[y](x)) + (ZY%x, V¥ (x)), domW) = P(V*)
is well defined and thatW/, domW)) and ©c, Ag,) are adjoint to each other.
If we assume thaV is closable, a classical result ([11], Theorem 5.28) gives t

dom(V*) is dense inH. Thus, dom{V) is dense inL?(v; H). SinceW and D¢ are

adjoint, D¢ is closable.
For the converse, lethf)n.n be a sequence il such that

Let f be in CY(R, R)NLip (with a Lipschitz constant equals ) with f(0) =0 and
f’(0) #£0. We have

J1£x = oh) R v < Kl
hence, f((., X~¥?h,)) ——0in L?(v). Moreover

Dclf((., = Y2hy)1(x) — £'0)u = [f'((x, = ?hy)) — F/(O)]V hy + [V hy — u] £/(0).
Since ||V h,|| is bounded,

Dc[f((.,E‘l/zhn)]mf/(O)u in L2(v; H).

From Lemma 3, Dc, Ag,) closable= (D¢, C1(H, R) N Lip) closable. Thusu = 0.
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