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Abstract
In a recent paper ([2]), Nicolas Bouleau provides a new tool,based on the

language of Dirichlet forms, to study the propagation of errors and reinforce the
historical approach of Gauss. In the same way that the practical use of the normal
distribution in statistics may be explained by the central limit theorem, the aim of
this paper is to underline the importance of a family of errorstructures by asymptotic
arguments.

1. Introduction

The choice of a relevant mathematical language for speakingabout errors and their
propagations is an old topic. A new approach based on the theory of Dirichlet forms
([1], [9], [14]) has been recently suggested in [2], [3]. This method is a natural and
powerful extension of the seminal works of Gauss ([2]) and itseems to be an appropri-
ate framework to study the sensitivity to small changes of parameters in physical and
financial models ([3], Chapter 7).

From now on, we shall call a term (W,W,m,D,0) an error structure, if (W,W,m)
is a probability space,D is a dense sub-vector space ofL2(W,W, m) (also denoted by
L2(m)) and0 is a positive symmetric bilinear map fromD� D into L1(m) fulfilling:
1) the functional calculus of classC1\Lip meaning that ifU 2 Dn, V 2 Dp, for F 2
C1(Rn, R)\Lip = fC1 and Lipschitzg and G 2 C1(Rp, R)\Lip one has (F(U ), G(V )) 2
D2 and

(1) 0[F(U ), G(V)] =
X
i , j

�F�xi
(U )

�G�x j
(V)0[Ui , Vj ] m-a.e.,

2) 12 D (this implies0[1, 1] = 0),
3) the bilinear formE [F , G] = (1=2)Em[0[F , G]] defined onD � D is closed i.e.D
is complete under the norm of the graph

k . kD = (k . k2
L2(m) + E [ . ])1=2.
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We always write0[F ] for 0[F , F ] and E [F ] for E [F , F ].
From the hypotheses mentioned above,E is a local Dirichlet form and0 its asso-

ciated squared field operator. The property 1) is none other than the so-called Gauss’s
law of small errors propagation ([2]), thus, whenU 2 D, the intuitive meaning of0[U ]
is the conditional variance of the error onU given U . Moreover this first order calcu-
lus dealing with variances can naturally be reinforced by a calculus on biases involving
the infinitesimal generator associated toE ([3], Chapter 3).

Thanks to property 3), the domainD is preserved by Lipschitz functions ([3],
p.40): if F : Rn ! R is a contraction in the following sense

jF(x)� F(y)j � nX
i =1

jxi � yi j
then for U = (U1, : : : , Un) 2 Dn one hasF(U ) 2 D and

(2) 0[F(U1, : : : , Un)]1=2 � nX
i =1

0[Ui ]
1=2.

As mentioned in [4], one of the lacks of this new theory in practical cases is the
need of a priori choices. In fact, for a rational treatment, error hypotheses should
be obtained by statistical methods. In finite dimension, error structures are connected
(through a robust identification) to statistical parametric methods thanks to Fisher in-
formation [4]. Moreover, this study can be reinforced by the refinement of the main
limit theorems of the probability theory in our setting ([5], [6]).

In this way, Bouleau and Hirsch have introduced notions of independence and con-
vergence for error structures that extend the independenceand the convergence in dis-
tribution for random variables ([1], Chapter 5). By using these definitions, they prove
a central limit theorem in finite dimension for erroneous random variables, the errors
being modelised by error structures ([1], p.220). The main contribution of our paper is
to propose an infinite dimensional extension of this result,at the very least, in the case
of a separable Hilbert space. This finding, associated with the recent improvements of
the Donsker theorem ([5], [6]), can explain the importance of the error structures of
the Ornstein-Uhlenbeck type (structures where the measureis Gaussian and where0
operates on cylinder functions as a first order differentialoperator with constant co-
efficients) in the applications.

From a technical point of view, the key stone of our study willbe the notion of the
vectorial domain of a Dirichlet form which was defined by Feyel and de La Pradelle
([8], p.900).
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2. Preliminaries on error structures

2.1. Finite dimensional images and infinite products. Let us present the two
fundamental algebraic operations on error structures thatare compatible with the con-
struction of probability spaces. We refer to [4] for their statistical interpretations.

DEFINITION 1. Let S = (W, W, m, D, 0) be an error structure andU a random
variable inDd. For f 2 C1(Rd, R) \ Lip, we put

0U [ f ](x) = Em[0[ f (U )] j U = x], x 2 Rd.

Thus, (Rd, B(Rd), U�m, C1(Rd, R) \ Lip, 0U ) is a closable error pre-structure in the
sense of [3], p.44. LetU�S be its smallest closed extension called the image structure
of S by U .

DEFINITION 2. Let Sn = (Wn,Wn, mn, Dn,0n), n � 0, be a family of error struc-
tures. The product structure (W, W, m, D, 0) =

Q1
n=0 Sn is defined by (W, W, m) =�Q1

n=0 Wn,
Q1

n=0 Wn,
N1

n=0 mn
�

with an explicit domainD ([1], p.203) and8F 2 D,0[F ] =
P1

n=0 0n[F ] where the operator0n acts on then-th variable.

Thanks to the preceding definitions, it is easy to equip the fundamental spaces en-
countered in stochastic models (Wiener space, Monte Carlo space, Poisson space) with
error structures, starting from elementary structures onR ([3], Chapter 6).

Now, in order to deal with Hilbert valued random variables, we first have to give
sense to a coherent extension of the domain of an error structure.

2.2. Vectorial domain of an error structure.

DEFINITION 3. We say that an error structureS owns a gradient if both a separa-
ble Hilbert space (H,k kH) and an operatorr from D into L2(m;H) (whereL2(m;H)
is the space of square integrable random variables with values inH) called the gradient
exist such that

8U 2 D, krUk2
H = 0[U ].

Thus, according to (1), a gradient fulfills the classical chain rule.

From now on, we suppose that the error structureSsatisfies the property mentioned in
Definition 3. In practice, this assumption is not restrictive because Mokobodzki showed
a gradient exists wheneverD is separable ([1], p.242).

We introduce a slight variant of the gradient which is very useful when computing
errors on Wiener space thanks to the Itô formula ([1], p.145 and [3], p.167). This
notion has been introduced by Feyel and de La Pradelle in the Gaussian case and used
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by Bouleau and Hirsch to prove important results concerningthe regularity of solutions
of stochastic differential equations with Lipschitz coefficients ([1], Chapter 4).

DEFINITION 4. Let (Ŵ, Ŵ, m̂) be a probability space which is a copy of
(W, W, m) and J an isometry fromH into L2(m̂). For U 2 D, let U# be the de-
rivative of U defined by

U# = J(rU ) 2 L2(m� m̂).

Of course we can suppose (what we shall do) that8h 2 H, Em̂[ J(h)] = 0. Thus,
Em̂[U#] = 0.

Let (B, k kB) be a separable Banach space andB0 its topological dual space. Leth , i be the duality betweenB and B0. One of the main interests of the derivative is
to allow a natural definition of a tensor product ofD with B.

DEFINITION 5. LetDB denote the vector space of random variablesU in L2(m; B)
such that there existsg in L2(m� m̂; B) such that

8� 2 B0, h�, Ui 2 D and h�, Ui# = h�, gi.
Then we putg = U# and equipDB with the norm

kUkDB =

�kUk2
L2(m;B) +

1

2
kU#k2

L2(m�m̂;B)

�1=2
.

From the preceding definition we have obviouslyDRd = Dd.

REMARK 1. Let B be a separable Hilbert space. IfU 2 L2(m; B) the following
statements are equivalent:
i) U 2 DB.
ii) There is an orthonormal basis (ei )i2N of B such that8i 2 N, hei , Ui 2 D andP1

i =0 E [hei , Ui] <1.
iii) For all orthonormal basis (ei )i2N of B, 8i 2 N, one has hei , Ui 2 D andP1

i =0 E [hei , Ui] <1.

Henceforth, we suppose thatB satisfies the approximation hypothesis: There exists
a sequence (Pn)n2N of continuous linear operators of finite rank fromB into B such
that 8x 2 B, limn!1 Pn(x) = x (this assumption holds whenB owns a Schauder basis,
particularly, whenB is a separable Hilbert space or the Wiener space).

The following proposition extends the property (2) of stability of the domainD by
contractions and the functional calculus (1) toDB.
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Proposition 1. Let F be a contraction from B intoR. If U 2 DB then F(U ) 2 D
and 0[F(U )] � Em̂[kU#k2

B]. Moreover, if we suppose that F is of class C1, F(U )# =hF 0(U ), U#i.
Proof. Let us first suppose thatF 2 C1(B, R)\Lip. For all n 2 N, we define the

cylinder approximations ofF by Fn = F Æ Pn. According to the Banach Steinhaus
theorem we have supN2NkPnk < 1 thus, by dominated convergence,Fn(U ) ���!

n!1
F(U ) in L2(m). Moreover, sinceFn is a cylinder function,Fn(U ) 2 D and from the
chain rule it follows thatFn(U )# = hF 0(Pn(U )), Pn(U#)i. Hence, we easily obtain that
Fn(U )# ���!

n!1 hF 0(U ), U#i in L2(m
 m̂). Using the fact that the derivative is a closed

operator, the conclusion holds.
When F is only a contraction, the result follows from an adaptationof the proof

of Theorem 2.2.3 of [1], p.140.

A direct consequence of the preceding proposition is to allow the construction of
the image ofS by an element of its vectorial domain by using the same idea asin Def-
inition 1.

DEFINITION 6. For U 2 DB, the term (B,B(B), U�m, C1(B, R)\Lip, 0U ) where8F 2 C1(B, R) \ Lip, 0U [F ] = Em[0[F(U )] j U ], is a closable error pre-structure in
the sense of [3], p.44. LetU�S be its smallest closed extension, and (EU , DU ) the
associated Dirichlet form. The structureU�S is called the image ofS by U or the
Dirichlet law of U and 8F 2 DU , we haveEU [F ] = E [F(U )].

EXAMPLE 1. One of the simplest examples of error structures is the term

(R, B(R), �, H1(�),  : u 7! u02)

where� is the standard normal distribution onR and H1(�) the first Sobolev space
associated to�. We consider (Definition 2) the following product

S = (W, W, m, D, 0) =
1Y

n=0

(R, B(R), �, H1(�),  ).

Let (gn)n2N be the coordinate mappings ofS and (�n)n2N an orthonormal basis of
L2([0, 1], dx). For t 2 [0, 1], we set

Bt =
X
n2N

�Z t

0
�n(s) ds

�
gn.

Thus, the continuous process (Bt )t2[0,1] is a standard Brownian motion and we can eas-
ily see that it belongs toDB whereB = C0([0, 1],R) is the Wiener space. The image of
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S by (Bt )t2[0,1] is known as the Ornstein-Uhlenbeck error structure onB and let0OU be
its squared field operator. This structure possesses a gradient which is none other than
the gradient in the Malliavin sense with an adjoint operator that extends the Itô integral
([15]). If we put A = f f (�1, : : : , �n);n 2 N, (�1, : : : , �n) 2 B0 and f 2 C1(Rn, R)\Lipg,
we can see that8F = f (�1, : : : , �n) 2 A,

(3) 0OU[F ] =
nX

i , j =1

� f�xi

� f�x j
(�1, : : : , �n)ai , j

where the coefficientsai , j only depend on (�i , � j ). Thus, from now on, we will say
that an error structure on a separable Banach space is of the Ornstein-Uhlenbeck type if
the associated measure is Gaussian and if the operator0 is of the form (3) on smooth
cylinder functions.

Now, we extend the definition of the Dirichlet independence introduced by Bouleau
and Hirsch in finite dimension ([1], p.217). Let
 be the product of two error structures.

DEFINITION 7. For (U , V ) 2 (DB)2, U andV are said to be Dirichlet independent
if U�S
 V�S = (U , V)�S. In other terms, the Dirichlet law of (U , V) is the product
of the Dirichlet laws ofU and V .

We can show that Theorem 4.1.4, p.218 of [1] remains valid in our framework,
thus, we have the following characterization of the Dirichlet independence onDB.

Proposition 2. For U and V in DB to be Dirichlet independent, it is necessary
and sufficient that the following four conditions are fulfilled:
a) U and V are independent on the probability space(W, W, m),
b) 8(�1, �2) 2 (B0)2, Em[0[h�1, Ui, h�2, Vi] j U , V ] = 0 m-a.e.,
c) 8� 2 B0, Em[0[h�, Ui] j U , V ] = Em[0[h�, Ui] j U ] m-a.e.,
d) 8� 2 B0, Em[0[h�, Vi] j U , V ] = Em[0[h�, Vi] j V ] m-a.e.

Finally, we introduce a notion of convergence on the vectorial domain that re-
inforces the convergence in distribution for random variables taking into account the
underlying Dirichlet forms.

DEFINITION 8. We say that a sequence (Un)n2N in DB converges in Dirichlet law
if there exists an error structurêS = (B, B(B), �, D̂, 0̂) such that:
i) (Un)�m���!

n!1 � weakly,

ii) C1(B, R) \ Lip � D̂ and 8F 2 C1(B, R) \ Lip, E [F(Un)] ���!
n!1 Ê [F ].

For convenience, we shall say that (Un)n2N converges in Dirichlet law towardŝS.
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In the next section, we prove an extension of the central limit theorem in Hilbert
spaces (in the sense of the preceding definition).

3. Main result

We suppose thatS = (W, W, m, D, 0) owns a gradientr : D ! L2(m; H). Let
#: D ! L2(m� m̂) be a derivative operator. Although noncanonical, the choice of the
isometry J is not specified because, according to Remark 1, such a choiceleads to the
same definition ofDH when H is a separable Hilbert space.

Theorem 1. Let (H , h i) be a separable Hilbert space. Let (Un)n2N� be a sequence
of centered random variables inDH , Dirichlet independent with the same Dirichlet law.
If 6 is the covariance operator of U1, then, Vn = (U1 + � � � + Un)=pn converges in
Dirichlet law towardsŜ = (H , B(H ), �, D̂, 0̂) where
i) � is a centered Gaussian measure on H with covariance operator6,
ii) 8F 2 C1(H , R) \ Lip, F 2 D̂ and

(4) Ê [F ] =
1

2

Z
H2
hF 0(x), yi2 d�(x, y)

where� is a centered Gaussian measure on H2 with covariance operator K defined by

hK x, yiH2 = h6x1, y1i + 2E [hU1, x2i, hU1, y2i]
for all x = (x1, x2) and y= (y1, y2) in H2,
iii) the form(C1(H , R)\Lip, Ê) is closable. Let (D̂, Ê) be its smallest closed extension
that owns a squared field operator̂0.
Thus, Vn converges in Dirichlet law towards a structure of the Ornstein-Uhlen-beck type.

REMARK 2. The operatorK is in the trace class because6 is a covariance op-
erator andU1 2 DH (Remark 1).

Before we turn to the proof, note the following. The hypothesis of Dirichlet in-
dependence allows us to consider that the variablesUi are of the formUi Æ gi where
the (gi )i2N� are the coordinate mappings of a product of error structures.

Indeed, defines=(�,A, P, , )= (W,W,m,D,0)N
�

ande[ . , . ]= (1=2)EP[ [ . , . ]].
We set

`2(H) =

(
(hn)n2N� ; 8i 2 N�, hi 2 H and

1X
i =1

khi k2
H <1

)
.

Classically, we can construct a gradient operatorr̃ for s setting

r̃ : F 2 7! ( : : : , r[i ] [F ], : : : ) 2 L2(P; `2(H))
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wherer[i ] means that the operatorr acts on thei -th variable ofF . In the same way,
if (�̂, Â, P̂) is a copy of (�,A, P), we obtain the following derivative operator0 for s:

(5) 8F 2 , F 0(!, !̂) =
X
i2N� J[r[i ] [F ](!)](!̂i ) 2 L2(P 
 P̂)

where the series converge inL2(P̂). For all i 2 N�, we put Xi : ! = (! j ) j2N� 2 � 7!
Ui (!i ). Then, we can state the following easy lemma.

Lemma 1. a) With the preceding notations, 8i 2 N�, Xi 2 H and (Xi )0(!, !̂) =
U#

i (!i , !̂i ).
b) The variables(Xi )i2N� are Dirichlet independent with the same Dirichlet law.

Let Zn = (X1 + � � � + Xn)=pn. The next statement will be used hereafter.

Lemma 2. 8F 2 C1(H , R) \ Lip, we haveE [F(Vn)] = e[F(Zn)].

Proof. We first suppose thatF is a cylinder function. To lighten the notations we
only consider the caseF = f (hx, . i) where x 2 H and f 2 C1(R, R) \ Lip.

By the functional calculus we have

e[F(Zn)] =
1

2n

Z
�

nX
i , j =1

f 0(hZn, xi)2 [hx, Xi i, hx, X j i] d P.

For everyk, Xk is Dirichlet independent of (X1, : : : , Xk�1, Xk+1, : : : , Xn). Then,
Proposition 2 entails

e[F(Zn)] =
1

2n

Z
�

nX
i =1

f 0(hZn, xi)2EP[ [hx, Xi i] j Xi ] d P.

Since (X1, : : : , Xn) has the same law as (U1, : : : , Un) and [hx, Xi i](!) = 0[hx, Ui i](!i ),
the conclusion holds.

For the general case, let (ei )i2N be an orthonormal basis ofH and Pn the pro-
jection on the vector space vect(e0, : : : , en) spanned by (e0, : : : , en). Since Zn 2 H

and Vn 2 DH , using the same argument as in the proof of Proposition 1 we see that8F 2 C1(H , R) \ Lip,

e[F Æ Pk(Zn)] ���!
k!1 e[F(Zn)] and E [F Æ Pk(Vn)] ���!

k!1 E [F(Vn)].

The result follows by uniqueness of the limit.

Now we can come back to the proof of the theorem.
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Proof of Theorem 1. The convergence in distribution of the sequence (Vn)�m to-
wards� is a consequence of the classical central limit theorem for Hilbert valued ran-
dom variables ([13]).

Let us first show that8F 2 C1(H , R) \ Lip, we have

E [F(Vn)] ���!
n!1 Ê [F ].

According to Lemma 2, we study the asymptotic behavior ofe[F(Zn)]. Since Zn 2
H , we obtain from Proposition 1 that

2e[F(Zn)] =
Z
�
Z
�̂


F 0(Zn), Z0

n

�2
d P dP̂.

Since the pairs (Xi , X0
i ) are i.i.d., the central limit theorem in Hilbert spaces en-

sures that (Zn, Z0
n) converges in distribution inH2 towards a centered Gaussian mea-

sure� with a covariance operatorK fulfilling

hK x, yiH2 = EPEP̂[h(X1, X0
1), xiH2h(X1, X0

1), yiH2]

for all x = (x1, x2), and y = (y1, y2) in H2.
Using the definition ofX1 and Lemma 1, it is easy to see that

EP[hX1, x1ihX1, y1i] = Em[hU1, x1ihU1, y1i] = h6x1, y1i
and that

EPEP̂[hX0
1, x2ihX0

1, y2i] = EmEm̂[hU#
1 , x2ihU#

1 , y2i] = 2E [hU1, x2i, hU1, y2i].
Now, as a consequence of Fubini’s Theorem we obtain8(z1, z2) 2 R2

EPEP̂[hX1, z1ihX0
1, z2i] = EmEm̂[hU1, z1ihU#

1 , z2i] = Em[hU1, z1iEm̂[hU#
1 , z2i]].

Moreover from Definition 4 we have

Em̂[hU#
1 , z2i] = Em̂[hU1, z2i#] = 0.

Hence,

hK x, yiH2 = h6x1, y1i + 2E [hU1, x2i, hU1, y2i].
Furthermore, using the independence of the (Xi , X0

i )’s, it follows that

EPEP̂[kZnk2 + kZ0
nk2] = Em[kU1k2] + EmEm̂[kU#

1k2] =
Z

H2
kxk2

H2 d�(x),



466 C. CHORRO

thus, thek(Zn, Z0
n)k2

H2 ’s are uniformly integrable.

Since the function�: (x, y) 2 H2 7! hF 0(x), yi2 is continuous and satisfies�(x, y) �
ck(x, y)k2

H2, wherec is a constant, we have

2E [F(Vn)] ���!
n!1

Z
H2
hF 0(x), yi2 d�(x, y).

To conclude, it remains to show the closability of the formÊ defined onC1(H , R)\
Lip by (4). The proof is based on three lemmas whose proofs areleft in Appendix.

Lemma 3. Let � be an orthonormal basis of H, one has

(C1(H , R) \ Lip, Ê) is closable() (A� , Ê) is closable

whereA� =
S

p2N�f f (he1, . i, : : : , hep, . i); (e1, : : : , ep) 2 � p, f 2 C1(Rp, R) \ Lipg.
Moreover, when one of the assertions is fulfilled their smallest closed extensions co-
incide.

Since6 is a covariance operator, it is positive and belongs to the trace class. Thus
([12]), there exists an orthonormal basis�0 = (ei )i2N of H consisting of eigenvectors of6. According to the preceding lemma, we only have to prove that(A�0, Ê) is closable.
Let (� 2

i )i2N be the corresponding eigenvalues, hence, the sequence (hei , . i)i2N, defined
on (H ,B(H ), �), is a sequence of independent and centered Gaussian randomvariables
on R with variances (� 2

i )i2N.
From U1 2 DH , it follows from Proposition 1 that the bilinear operator

T :

 
H2 ! R

(x, y) 7! E [hx, U1i, hy, U1i]
!

is continuous because

E [hx, U1i, hy, U1i] � kxk kykEm̂Em[kU#
1k2].

Therefore, there exists a bounded operatorC : H ! H such thatT(x, y) = hCx, yi.
The operatorC is clearly self-adjoint and positive. Let us define

DC = C1=2D : A�0 ! L2(�; H )

where D stands for the Fréchet derivative inH . Thus, we have the following equality:8F 2 A�0,

Ê [F ] =
Z

H
kDC[F ]k2 d�.
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Therefore, the closability of the form (A�0, Ê) is equivalent to the closability ofDC in
L2(�; H ). We have formulated our closability problem in terms of directional gradient
in the sense of Goldys et al. in [10]. According to the following lemma we can impose
that 8i 2 N, � 2

i > 0.

Lemma 4. When we study the closability of(A�0, Ê) we can suppose that6 is
injective.

Thus, the operatorV = C1=26�1=2 is well defined on dom(V) = 61=2(H ) and we
have the following result:

Lemma 5. (A�0, DC) is closable, (dom(V), V) is closable.

We show the closability ofV : Let (xn)n2N be a sequence in61=2(H ) fulfilling
xn ���!

n!1 0 and V xn ���!
n!1 u. For all n 2 N, let hn be the unique element inH

such thatxn = 61=2(hn). Then, it follows that
R

Whhn, U1i2 dm ���!
n!1 0 and E [hhn �

hm, U1i] ����!
n,m!1 0. Since S is an error structure, the closedness property implies

E(hhn, U1i) = kV xnk2 ���!
n!1 0 andu = 0. Thus, the theorem is proved.

Corollary 1. When B is a separable Banach space isomorphic to H, the con-
clusion of Theorem 1remains valid: Let (Un)n2N� be a sequence of centered random
variables inDB, Dirichlet independent with the same Dirichlet law, then, (Vn)n2N� con-
verges in Dirichlet law towards an error structure of the Ornstein-Uhlenbeck type.

Proof of Corollary 1. Let8 be the isomorphism betweenB and H . According to
[1], p.267, (8(Un))n2N� is a sequence of centered random variables inDH having the
same Dirichlet law. From Proposition 2, we can show easily that these random vari-
ables are Dirichlet independent. Thus, applying Theorem 1,(8(U1) + � � � +8(Un))=pn
converges in Dirichlet law towards an error structure of theOrnstein-Uhlenbeck type
S̃. Finally, we immediately obtain thatVn converges towards8�1�S̃ which is of the
Ornstein-Ulhenbeck type because8�1 is linear.

4. Concluding remarks

We use the notations of the preceding proof. Let us consider3 the set of subsets
of N. If u = fi1, : : : , ing 23, �u is the canonical projection fromH into vect(ei1, : : : , ein)
and �u the natural homeomorphism betweenRn and vect(ei1, : : : , ein). Let us define
the following error structure

Ŝu = (Rn, B(Rn), N (0, �i1)
 � � � 
N (0, �in), D̂u, 0̂u)
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with 8 f 2 C1(Rn, R) \ Lip,

0̂u[ f ] = 2
nX

k,l=1

� f�xk

� f�xl
E [heik , U1i, hei l , U1i]

and whereD̂u is the domain of the smallest closed extension of (C1(Rn, R)\ Lip, Êu).
We can see that ((�u)� Ŝu)u23 is a projective system of error structures in the sense

of [1], p.206. Since (�u)� Ŝ = (�u)� Ŝu, this projective system has a limit which is
none other than̂S. Thus, our result may be seen as the projective limit of the result
of Bouleau and Hirsch in finite dimension ([1], p.220). Moreover, by the so-called
Kwapien’s theorem ([13], p.246) and by Corollary 1, it is easy to see that Theorem 1
extends to Banach spaces having type 2 and cotype 2. We can nowwonder about the
extension of such a result in more general settings. Unfortunately, the classical con-
ditions for the central limit theorem to hold in Banach spaces having finite type and
cotype ([13]) or in the Wiener space ([11]) seem to be, for themoment, insufficient
to overcome the lack of orthogonality that is the keystone ofour proof.

5. Appendix: Lemmas

5.1. Proof of Lemma 3. The implication “(C1(H , R) \ Lip, Ê) is closable)
(A� , Ê) is closable” is obvious. For the converse we suppose that (A� , Ê) is closable.

Let D̂A� denote the domain of its smallest closed extension. We can see that (̂DA� , Ê)

possesses a gradient with values inL2(�; H ) (which is the smallest closed extension
of (DC, A�)). Let J be the canonical isometry betweenH and a copyĤ of H and

(D̂A� )H the associated vectorial domain. According to Remark 1, theidentity mapping

of H belongs to (̂DA� )H . From Proposition 1,C1(H , R)\Lip � D̂A� thus (C1(H , R)\
Lip, Ê) is closable andD̂ � D̂A� . The result follows.

5.2. Proof of Lemma 4. We set N = fei 2 �0 j 6(ei ) = 0g. Suppose thatei1 2
N. Using the locality of the formE ([1], p.28) we obtainE [hei1, U1i] = 0. Thus, if
F = f (hei1, . i, : : : , hei p , . i) 2 A�0 we have

(6) Ê [F ] =
pX

k,l=2

Z
H

f 0k f 0l (0, hei2, . i, : : : , hei p , . i)E [heik , U1i, hei l , U1i] d�.

Putting

A�0nN = fF(hei1, . i, : : : , hein , . i); n 2 N, (ei1, : : : , ein) 2 �0 n N, F 2 C1 \ Lipg
we deduce from (6) that

(A�0nN , Ê) is closable() (A�0, Ê) is closable.
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Since the restriction of6 to vect(�0 n N) is injective, this entails the conclusion.

5.3. Proof of Lemma 5. The main ideas of the proof are taken from [10]. Let
us define

P(V�) = fFk j F 2 A�0, k 2 dom(V�)g � L2(�; H ).

In a natural way, we can extendDC to P(V�) putting

DC[Fk] = DC[F ] 
 k

where
 is the tensor product onH . Using [10], p.4, we show that the operator

W[ ](x) = �trace(DC[ ](x)) + h6�1=2x, V� (x)i, dom(W) = P(V�)
is well defined and that (W, dom(W)) and (DC, A�0) are adjoint to each other.

If we assume thatV is closable, a classical result ([11], Theorem 5.28) gives that
dom(V�) is dense inH . Thus, dom(W) is dense inL2(�; H ). Since W and DC are
adjoint, DC is closable.

For the converse, let (hn)n2N be a sequence inH such that

hn ���!
n!1 0, V hn ���!

n!1 u.

Let f be in C1(R, R)\ Lip (with a Lipschitz constant equals toK ) with f (0) = 0 and
f 0(0) 6= 0. We have

Z j f (hx, 6�1=2hni)j2 d�(x) � Kkhnk2,

hence, f (h . , 6�1=2hni) ���!
n!1 0 in L2(�). Moreover

DC[ f (h . , 6�1=2hni](x)� f 0(0)u = [ f 0(hx, 6�1=2hni)� f 0(0)]V hn + [V hn � u] f 0(0).

SincekV hnk is bounded,

DC[ f (h . , 6�1=2hni] ���!
n!1 f 0(0)u in L2(�; H ).

From Lemma 3, (DC, A�0) closable) (DC, C1(H , R) \ Lip) closable. Thus,u = 0.
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