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1. Introduction

Let S^(ri) be the number of the lattice points in the area 0<x<n,
/n, where k and n are positive integers and a is a positive integer

which is prime to n. Then we have

«*>(») = £[***/»],

where [ ] denotes the Gauss symbol. Let

ax*/n = [«#*/«]+ {ax11 jn} ,

where {ax'Ίn} denotes the fractional part of axk/n. Then we have

or
»-1 .

We put

ι-\

«-l ^ _ J

If we suppose that S^(n) behaves approximately as 2 axkln— - then c%\ri)

can be regarded as error term. T. Honda has conjectured the followings.

Conjecture 1. For a fixed k and any positive real number £ we have

for a=l.
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Conjecture 2. £i2)(n)>0 and c^\n)=0 if and only if n is an integer of the
following type

where p19 •• ,pj are distinct primes and each p{ is equal to 2 or congruent to 1

modulo 4.

In this paper we shall give the complete proof of the above conjectures.
Conjecture 1 is true not only in the case α=l but also in the case a is any posi-
tive integer which is prime to n. In the case k is odd, c^(n) is a very simple
quantity. On the other hand in the case k is even, c^\n) is an interesting
quantity which is rather difficult to handle. For example, c^\n) can be ex-
pressed in terms of the class numbers of imaginary quadratic fields whose dis-
criminants are divisors of n. For the even k>2, c^(n) is also related to some
class numbers of some subfields of the cyclotomic field Q(ζ) where ζ is a
primitive n-th root of unity.

I would like to express my deep gratitude to Professor T. Honda for his
presenting this problem to me.

2. Preliminaries

For positive integers k, n and an integer #, we denote by N^(xy n) the
number of the elements of the set

Lemma 1. Let n= Π pe

fϊ be the prime decomposition of n. Then we have
« = 1

Proof. Consider the following map

/; Z/nZ -* Π Z/pί'Z , (f(a mod rc) = Π α mod pϊi) .

We can easily see that this /is a ring isomorphism. From this we can immedi-
ately obtain the lemma.

Let n be a positive integer which is not equal to 1. We denote by (ZjnZ)x

the unit group of the residue ring Z[nZ. We put

Γ(n) = {X|%; (Z\nZY -+ U, homomorphism} ,

where U={z^C\ \%\ =1}. Then Γ(ri) is an abelian group isomorphic to
{Z\nZY . An element % of T(ri) is extended on Z by setting
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f 0 if(»,»,Φl
[ %(# mod n) otherwise.

This function is denoted by %, and is called a character modulo n. If % has
always the value 1 for any a such that (α, n)=l, then % is called the trivial
character modulo n, and denoted by 1. If % is a non-trivial character modulo n
and there is no character %' of (Z\n'Zγ with a proper divisor nr of n satisfying
%'(a)=%(0) for any (α, n)— 1, then X is called a primitive character modulo n.
Any non-trivial character % modulo n can be uniquely decomposed to the
following form

X = %0%' ,

where %0 is the trivial character modulo n and %' is a primitive character modulo
n' with some divisor n' of n. We call this nf the conductor of % and denote it by
/χ. If X is a primitive character modulo some n, then we call % simply primitive.

In this case the conductor /χ is equal to n. Let n= Π pίί be the prime decom-

position of n. Then we have (Z/nZ)x = ΐ[(Z/pe

ίiZ)x. Therefore if % is a

character modulo n, then % has the following unique decomposition

( i ) * = ri %, ,
ί = l

where each %,- is a character modulo />?«'. It is clear that % is primitive, if and

only if each %, is primitive. Let % be a character modulo n. Then we put

Lemma 2. Lei X be a non-trivial character modulo n. If X(—l)=l then
we have ί/χ=0.

Proof. First we should note X(n)=0. Then we have

We put
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Lemma 3. Let p be a prime number. Then we have

(i) Wk\b,pe)= 2 X(*)=l+ Σ
e) X : primitive

(ii)
Λ=J**=!

Proof. If we note that ΓCA)(/>β) is the character group of the factor group

(Z\peZY\(Z\pβZγk and %(i) is zero for any (ft,/>')Φ 1, then we can easily obtain
the lemma.

Lemma 4, H^ denote by fiΓ^ri) the number of the elements of the set
ΓCΛ)(w). Let p be a prime. Then we have

(i) *fΓί»(ί )=(ί-l,*)

peo(p-ί,k) i f e
where we define ea by

p'φ,

2'-* if
(iii)

2'

roe define ea by

2'φ, e0>0.

Especially for a fixed k, there is a constant c0 such that

for any p and e.

Proof. If we note the following facts

if
2Z if

then we have immediately the lemma 4.

3. Main theorem and its proof
j

Let n^2 be a positive integer and rc=Π/>t

ff be the prime decomposition
» = 1

of n. We define index sets A(n) and B(n) as follows
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A(n) = {1, 2, ..-,;•

B(n)= {i<=A

For a subset a= {«ι, •••, α/} of the set A(n) we denote by da the integer

dΛ=ίip«ί, if
ί = l

dφ = 1 .

For a fixed positive integer k, we put

and
j

ι=l

Let d be a positive divisor of n. Then we put

n(d) = n^k\d) = n\(dk, n),

d*(ri) = d*(dγk) = dkl(dk, n).

Under the above notation we have the following proposition.

Proposition 1.

»)= Σ ma*- Σ μ(dj
: rimitive L*csC«) I 2

)- Σ
χ : primitive

n, χk=l

we denote by μ( ) the Mό'bius function.

Proof. By the definition of c^(ri) we have

where we consider α"1^ in (Z\nZY . If (Λ?, rf5(rt))=l then by Lemma 1 and
Lemma 2 we have

a-*x, n) = Π (1+ Σ
primitive

Therefore we get
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= M-Γ- Σ Π (1+ Σ %(<*
Z Ln *=ι ί=ι χ : primitive

+ Σ Π(i+ Σ

Σ
' : primitive

where we should note that

- Σ %(*)* = - Σ Σn *=ι w *=ι .=0

Then we have

= Σ
χ : primitive

On the other hand we see that

Therefore we have

(«)= Σ
/ : primitive

: primitive

χ : primitive
/xl«, **=!
CΛ, </.) = !

= i- f Σ κ(*)* =n x *=ι

^ : primitive
Λ|if, **=!

«(«*•)-]
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Σ x(*)#χ- Σ
χ : primitive ΛCBC«)

: primitive

But by the definition of n( d) we have
n

n(dΛ) n

Therefore we get

/.<*>ΛΛ V* Ύ(sj\ff V{/a \'*') — / -j Λ'\~*') * * y.— s i
y : nrimitive <*cs(»: primitive

χ : primitive

Thus Proposition 1 is proved

Let % be a non-trivial character modulo n such that %Λ=1. Then we

define the integer W(%)=WCΛ)(%) as follows,

n(X)= Π
p: prime

0

1 otherwise,

where we denote by vp( ) the normalized />-adic exponential valuation of the
field of the rational numbers Q. Then we can easily obtain the following two

remarks.

REMARK 1. For a prime/) if p divides w(%), then/)2 divides w//x.

REMARK 2. If n(X) is divisible by dy then n\(dk, n) = 0 mod/x.

Lemma 5. Let n be a positive integer. For distinct primes p^ •••,/),• such

that p\\n (ί— 1, " ,y), «̂ ^ />M^ d0=p1 pj and n(d0)=nl(doy n). Let X be a
character modulo n(d0). Then % induces the character modulo n through the homo-

morphism (Z/nZ)x-^(Z/n(d0)Z)x. Denoting this also % we have that if d divides
n(d0)(X) then dd0 divides n(X).

Proof. We shall show that vp(ddQ)^Vp(n(X)) for every prime p. We con-
sider the two cases.
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The case I. p*p{ (i= 1, -, j) .

By the definition of n(d0) we have

Vp(n) = vp(n(d0))

and

It follows from this

£ρ,n = £ρ,*(<ι0 )

From this and by the definition of d we have

vp(dd0) =

Thus Lemma 5 is proved in our case.

The case II. p=pi (for some t)

By the definition of n(d0) we have

p(n/fχ)-k if pk\n,
*^\ ' •* ' •*-

Therefore we shall consider the two cases.
(i) The case vp(n(d,)lf^)=Vp(nlf^-k.

In this case we have

This shows that £/>,«=£/.,«<:<*„:>• Noting this we have

This also completes the proof of Lemma 5 in our case.

(ii) The case vp(n(d0)/fχ)=Q

In this case we should note that vp(fχ)=Q. Then we have

It follows



NUMBER OF THE LATTICE POINTS 655

£ = 0

This shows Vp(d)=Q. On the other hand we have

Vp

This shows that

or

vά»lf*)-k[vύnlfj±]>l, (i.e., €P.Λ= 1) .

Therefore [vp(n/fy}/k]+6ptn is positive in both cases. Then we have

vp(dd0) = vp(d0) =

Thus Lemma 5 is completely proved.

The following lemma is a converse of Lemma 5 in a sense.

Lemma 6. Let % be a character modulo n and d be a positive divisor of

n(X). Let p^ " y p j be distinct primes each of which is a divisor of d. If we put
d0=pl ..... pj and d=dQdr with a positive integer d' ', then X is a character modulo
n(d0) and d' is a divisor of n(d0)(X).

Proof. The former assertion is obvious by Remark 2. So we shall show
the latter half in the same manner as in Lemma 5. Let p be a prime.

(I) The case />Φ/>, (ί=l, -J)
In this case we can show that v p(n(X))=v p(n(d0)(X,)) by the same method as

in the case (I) of Lemma 5. Then we have

vp(d') - vp(d)<vp

(II) The casep=pi (for some i).
In this case we have

This shows that

or

= 0 and £,.„=!

Therefore we shall consider the two cases.
(i) The case M«/
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In this case we can easily see that

l n \ l -i 1

. («,«)/*
Therefore we have

But we can show by the same method as in the case (Π)-(i) of Lemma 5 that

Therefore it follows

(ii) The case [v Xra//x)/&]=0 and 6PtΛ=l.
In this case we have

This shows that

Therefore we have

These complete the proof of Lemma 6.

Now we are in a position to state our main Theorem.

Theorem 1. Notation being as above. Then

; primitive

Proof. Let w — Π ^f1 be the prime decomposition of n. Then we put
i i=1

ί(w)=Σ(β» ~l) We shall prove our theorem by the induction with respectt
ι = l

to s(n). If s(ri)=Q, i.e., n is a square-free integer, then by taking B(ri)=φ in
Proposition 1 we get
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χ primitive
**=!
Λl*

On the other hand, in this case we have n0=l, n(X)=l and B(n)=φ. This
shows that our theorem is true in our case. If s(ri)>0, then we assume that
the theorem is valid for any m such that s(m)<s(ri). Now we can easily see that
s(n(dΛ))<s(n) with respect to n(da) of Proposition 1. Therefore by the assump-
tion we have

^ primitive
**=!
Λ 1»

d*

Σ
w.))

Hereafter we shall only consider primitive characters which take values A-th
roots of unity or zero, though we shall not mention it explicitly. From (2) and
Proposition 1 we get

- Σ

n(dΛ)-l+

2

- Σ
f%\n

Therefore if we prove the following two facts (I) and (II), then the proof of
Theorem 1 is completed.

ι
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(II)

yi \u > '*{<**}j^-11 u ) yi

rfβT<Z)(2bc*)

-Λ|Σ

V1 Y~V/7^

"/??« ( }

' dΛ\n(d)(χ-)

First we shall prove (I). By the definition of n(da) we get

n(da\ = (—?-
\(αίί, i

and

By examining ^>-adic valuation of (n/(d*y ri))0 ((d*, n)lda) for each /> such that
p I /z, we can easily see that

On the other hand we have

- Σ

It follows (I).
Next we shall prove (II). We can rewrite the left hand side of (II) to the

following formula

( 3 ) Σ x-W
Λl«

(da,fj-

- Σ Σ
d
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Here we note that

dd
'(dj>nV _((ddΛγ,n)

ddΛ

and

d*(n)d" _ dl d" _ (dda)
k

(d*, n(da)) (d'u, n) ' (,„ n \ ((dd.)", ») '

* '

And by Lemma 5 we note that

By the definition of n(d) we can easily see that

Then we can rewrite the inside of the bracket of (3) as follows

/ 4 \ ί vι i,f/J \Ύ(rl u ί NΠ (̂  >n) y-if ^\ ^ / i 2-ι M^Λ/^v^α/f—i 2-ι —~;—^̂  I/"/!—

ίtf?) dβ\n(d)Cχ)

Here we can easily see that if β^B(n) and έ/β|n(έ/)(X) then βaB(n(dΛ)). This
shows that we may change B(n(dΛ)) of the last term of (4) for B(ri). Moreover
by Lemma 6 we see that da \ d implies that /x | n(dΛ) and d' | n(da)(X,). Therefore
we may exclude these conditions of (4). Then we have

(4)={ Σ
^c5(w

- Σ

• Σ
df\n(d)(z)

= Σ
,n)/adB(n)
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which implies (II). Thus the proof of Theorem 1 is completed.

Let Q(\/D )=K be a quadratic extension field of Q with discriminant D.

We denote by ί—J or %D(w) the Kronecker's symbol of K. Then ί— j is a

primitive character modulo \ D \ .

REMARK 3. Conversely it is well-known that every primitive character of
degree 2 is of such type.

Let h(D) be the class number of K=Q(\/D) and 2wD be the number of
the roots of unity in K. Then the following Lemma 7 is well-known.

Lemma 7. Notation being as above. Then we have

0

h(D)
Wr

ifD>0.

REMARK 4. It is also well-known that if ί - j=l then D>0 and if

( π \ — 1
— J=-l thenZKO.

Corollary 1. In the case k=2we have

Σ
D\\n\a

Σ i Π
\D\\na WD d\n(χD)
D<Q (p,D} = l

where D runs over all the discriminants of the imaginary quadratic fields dividing n.

Proof. By the definition of n(XD) we can easily see that if d divides n(XD)
then d2 divides n. It follows

& = d and ί i = l.

Therefore by Remark 3, Remark 4, Lemma 2, Lemma 7 and the above facts,
Theorem 1 implies our Corollary.

Our Corollary in the case a=\ and n= prime is obtained by T. Honda
in [2]

Corollary 2. // k=2 then c?\ri) ̂  0. Moreover c?\ri)=Q, if and only if n
is of the following type

n=Pι ..... PJ or 2/>> ..... P J ,

where ply " 9 p j are distinct primes each of which is congruent to 1 modulo 4.
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Proof. The first assertion is obvious from Corollary 1. We shall prove
the second assertion. If c^\n)=0 then n must be square-free, because if n
is not square-free then n0>l, which implies ci2)(n)>0. Consequently we
have by Corollary 1

c?(n}=

If there exists some p such that p\ n and p = 3 mod 4, then —p is the discrimi-

nant of Q(\/--/>). This shows

W.p

Thus n must be an integer of such type as in our Corollary. The converse is

clear.

Corollary 3. If k is an odd integer, then we have

- >

therefore \c«\n)\<ίί*-l>'*.

Proof. Let % be any character modulo n of degree k. Then we have

%(-!)' = %((-!)') =1

and

%(- !)*=!.

This shows X(— 1)=1. Therefore by Lemma 2 we have H*=Q. This shows
the first assertion of our Corollary by Theorem 1. We can immediately obtain
the second assertion by a simple calculation.

REMARK 5. c{k\n) is not always non-negative for even k>2. For example
c?\29)=-2. (See the table of at the end of the section 5.)

4. Proof of Conjecture 1

Let % be a primitive character modulo /x. Then we define the Dirichlet's
L-function by

L(s, X) = Σ X(n)n-s .

We denote by G(%) the Gauss's sum with respect to X, i.e.,
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where ξ=exp(2τr///x). Then the following two lemmas are well-known. (See
Hasse [1] and Prachar [3]).

Lemma 8.

|L(l,X)|<31og/ x .

Lemma 9.

Moreover

in particular

!<?(%)!
Lemma 10.

Proof. By Lemma 8 and Lemma 9 we have

It is obvious that/χ is equal to/x. This completes the proof.

We denote by S(ri) the number of prime divisors of n.

Lemma 11. For any positive number 6 and a given positive constant A we

have

A8™ =O(nζ),

where O denotes the Landau's large O-symbol.

Proof. We may suppose A > 1. Let pQ be a sufficientely large prime
number such that

We denote by δ0 the number of primes which are less than pQ and by 8'(ri) the
number of prime divisors of n each of which is not smaller than/>0. Then we

can easily see that
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By the definition of δ'(w) we have

p

Therefore we have

From this we get

a°8 n/los 4>>α°* A/los w) < A8o rf .

This completes the proof.

Lemma 12. For any positive number £ we have

ΣI = O(«')
d\n

Proof. See Prachar [3]-I-Satz 5.2

Now we shall prove Conjecture 1.

Theorem 2. For any positive number 8 and a fixed positive integer k we have

Proof. By Theorem 1 we have

Σ ^̂  Π
We have already known that

ί

Therefore we shall show that

Σ I # χ l ^ Σ (-~̂  MΠ 11-

First we get by Lemma 11

Π.Jl-%(^)KΠ2 = 2«- =
p\n

Next we get

Σ K Π ( Σ l).
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But by Lemma 3 we know that

2 \<A , for some positive constant A.
x

Hence by Lemma 11 we also get

x
Λ l

Lastly we shall show that

We transform this into

Then we have by Lemma 10

|ff*l//3*-lv*<(/™*-lv*) iog/x<iog/x

Moreover by Remark 2 we can easily see that

From these and by Lemma 12 we have

*l Σ ί 2 f i < * -

This completes the proof of our Theorem.

5. Number theoretic properties of some ctf\ri).

Lemma 13. Let k be a positive integer and p be a prime number which is
prime to k. We denote by k0 the greatest common divisor of k and p— 1. Then
we have

Wk\x, p) = ΛW(#, p) .

Proof. If x = Q mod/) then the lemma is trivial. Hence we assume
mod/). Consider the following sequence of groups and homomorphisms
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{i} — >(zipz)*w** — > (zipzγ — >(zipzγk« — > (z\pzγk« — > {i},
gl g* S3

where we define the homomorphisms gly g2 and g3 as follows

ga(a) = a*** va<=(ZlpZyk« .

By the definition of k09 we see that k/k0 is prime to (p— 1)/Λ0 This shows that
£3 is an isomorphism and the above sequence is exact. By the definition of

N^k^(x9 p) and JVCJr)(#, p) we see that N^(x9 p) is not zero if and only if
x^Im(g2)=(Z/pZ)*ko and N™(x, p) is not zero if and only if x^lm(g3og2)=

(Z\pZYk». Therefore N^(x9 p) is not zero if and only if so is Wk\x, p). If
x<Ξ(ZlpZγk» then N^\x,p) = $Kεr(g2) = $Ker(g3og2) = Wk\x,p). Thus

Lemma 13 is proved.

Proposition 2. Let p19 •••,/>,• be distinct primes each of which is prime to k
and ki be the greatest common divisor of k and pi— I. If we denote by k0 the least
common multiple of k19 ~,kj, then

Proof. By Lemma 13 it is obvious that

W»(x, p) = WV(x, p) = N<*o\x, p) .

Then by Lemma 1 we have

On the other hand we have already shown in the proof of Proposition 1 that

(a-lx, n) ,

where we consider a~lx in (Z/nZ)*. Therefore we can immediately obtain the

lemma.

Lemma 14. Let p be a prime such that

p— 1 = 0 mod 2Λ

and % be a character of modulo p of degree k, then

%(-!)=!.

Proof. If we put p — l=2mk with a positive integer my then the order of
— 1 in (ZjpZy is mk. Therefore there exists some xQ^(Z/pZ) such that
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x%k= — 1 mod/),

which implies %(— l)=%(x™)k—l.

Proposition 3. Let plt •• ,/>y be distinct primes each of which is prime to k

and congruent to 1 modulo 2k, then

Proof. We put n=p1 p.. Let % be any character of conductor /χ |n,

then by the decomposition (1) in §2 of X and Lemma 14 we see that %(—!)= 1.

Therefore by Lemma 2 and Theorem 1 we can immediately obtain our Proposi-
tion.

In the case k=2, we have obtained the very beautiful formula for c^(n)

in corollary 2. But when k is an even integer> 2, c^f\n) is more complicated.

From now on till the end of the this section we shall only consider the case k=4

and n=p, where/) is a prime. If p=2, then c^\2)=0 and there is nothing to

say. If/) = 3 mod 4, then c^y(p)=c^(p) by Proposition 2. Further if p=l

mod 8, then c^\p)=Q by Proposition 3. Therefore we may confine ourselves
to the cases/) = 5 mod 8.

Let/) be a prime which is congruent to 5 modulo 8. Then the unit group
(Z/pZ)x of the residue ring Z/pZ is a cyclic group of order/)—1 which is

divisible by 4. We denote by H (respectively H0) the unique subgroup of

(Z/pZy of index 4 (respectively 2). Let K be the /)-th cyclotomic field i.e.,

K=Q(ζ), where £=exρ( —). Then there exists the subfield L (respectively
V p I

L0) corresponding to the group H (respectively H0). As the order of —1 is 2,

H does not contain —1 but H0 contains it. This shows that L is a totally

imaginary field and L0 is the maximal totally real subfield of L. Hence we

obtain the following diagram

K = Q(ζ) {1}
1 1

L

Q (zipzy.

Hereafter till the end of the this section we shall use the following notations.

h = the class number of L

h0 = the class number of L0
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,A* == h\h,

E = the unit group of L

E0 = the unit group of L0

w = the number of the roots of unity of L

By the condition on p we can easily see that the element 2 is not a quadratic
residue of modulo p. This shows that the group (Z\pZγ\H is generated by
the class represented by 2. We shall denote by Xcy) O'=0, 1, 2, 3) the character
of (Z\pZγ\Ή which takes value \/^ϊy at the class 2 mod H. From these
characters we obtain the characters modulo p in the sense of section 2 and we
also denote them by %cy) O'=0, 1, 2, 3). We can easily see that these characters
except %(0) have the conductor/). Then the group of characters {%(y)|./=0, 1,
2, 3} corresponds to L and {%(0), %C2)} corresponds to L0. Now we quote the
following formula for λ* from Hasse [1].

Lemma 15. Let E' be the group generated by E0 and the roots of unity
contained in L. Then we have

where Q is defined by Q=\E\ E']. In our case we can easily see Q=l

Proof. See Hasse [1] ΠI-(*).

Theorem 3. If we use the above notation, then we have

Proof. We put

— Σ Kl\x)x = a+bi a,b&Q.
P *=l

Then we have

— §Xw(*)* = e-K.
P

We shall prove that

(7) β = -ί

(8) b = -L

~2~'

2

By the definition of α we get
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P-l P-i

* -Σ*=ι *=ι

As p= 1 mod 4, if x=y2 modp then — x=y'2 modp for some y'<^Z\pZ. From
this we get

(„ g^ _*£ta.

On the other hand we have by the definition of c^\p)

(10) Cl(P'~~2~~~J Έ\^P

By (9) and (10) we have

4

Thus we obtain the formula (7). Next we shall prove (8). By the definition of
b we have

{ i P-I P-I
Σ * -S «

- l i2Ti « -̂  «
~ p l ftl4 fcl

* I *-ι 4 / "/>

On the other hand by the definition of ^(p) we have also

*=2*4modί

Therefore we obtain
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Thus we have completed the proof of our Theorem.

REMARK 6. We can easily see that

w = = 10 if /> = 5 ,

otherwise.

For the even k>2 it can be considered that £αΛ)(/>)'s have similar relations to
some relative class numbers. But for the composite n's such relations are more
complicated. We shall give the table of Λ*, c^\p) and cp(p).

Table (p=5(S), p<5W)

P

5

13

29

37

53

61

101

109

149

157

173

181

197

229

269

277

293

317

349

389

397

421

461

cϊ\P)

6/5

2

-2

2

-2

2

-6

10

6

2

-6

14

-2

6

10

-6

6

2

-6

18

2

2

-2

#>(/>)

2/5

2

2

-2

-2

-2

2

6

6

6
2

2

-6

10

-2

10

-6

10

-2

2

-10

14

-14

h*

1

1

1

1

1

1

5

17

9

5

5

25

5

17

13

17

9

13

5

41

13

25

25
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6. An afterthought

We shall give an another elementary proof of Corollary 3.

Proposition 4. If the following congruence equation has a solution

(10) **=-! modw,

then

.

Proof. If (10) has a solution, then it is clear that

N<*\x, n) = N™(-x, n) = N<»(n-x, n) .

Hence by the defintion of c^(n) we have

" ( a - l x , n)x
n **

where we consider a~1x in ZjnZ. But we can easily see that

From this it follows that

2

But by a simple computation we get

W\Q, n) = fii» .

Thus we obtain Proposition 4.

Considering the definition of c^\n), if axk=Q mod n then -̂ - =^-, but
L n J w

we suppose that I - is approximately — -- — . Therefore n° ~~ can be
L n J w 2 2

considered the known error term. From this point of view we had better to
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~(*) _ 1

consider that dak\n)=c^(n) -- - - is the essential error term. The proof of

Theorem 2 shows that the order of d^(n) is less than n^k~^/k^ for any £>0.

The Corollary 2 is true with slight modification of d£\n).

OSAKA UNIVERSITY

References

[1] H. Hasse: Uber die Klassenzahl Abelscher Zahlkδrper, Akademie-Verlag, Berlin,
1952.

[2] T. Honda: A few remarks on class numbers of imaginary quadratic number fields,
Osaka J. Math. 12 (1975), 19-21.

[3] K. Prachar: Primzahlverteilung, Springer-Verlag, Berlin-Gδttingen-Heidelberg,
1957.






