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Introduction

In the classical theory of functions, one can find many theorems on the
boundary behaviour of meromorphic functions defined on the unit disc. Above
all, the theorem of Plessner is well-known. A meromorphic function on a domain
D of a complex plane is an analytic map of D into a Riemann sphere, and it is
natural to attempt to generalize the theorem of Plessner to an analytic map
between Riemann surfaces. An immediate generalization is rejected since the
angular limit is meaningless on Riemann surfaces. The first successful contribu-
tion to this problem is due to Constantinescu-Cornea [4]. Their argument based
essentially on the notion of fine filters converging to minimal boundary points of
the Martin compactification, which is defined by L. Naϊm [11] originally. In
their book [5], it is given in a course of systematic development of compactifica-
tions. Among various compactifications, the Martin's and the Wiener's are of
great importance. The boundary behaviour of an analytic map φ from a hyper-
bolic Riemann surface into another R' is described simply in the Wiener compacti-
fication, that is, at each Wiener boundary point % either φ has a limit or the
image of every neighbourhood of X is dense in R'.

In this paper, we shall give a new proof of the theorem of Plessner in accord-
ance with the following idea: making use of the relations between the Wiener and
the Martin boundaries, we may transmit the results obtained in the Wiener compacti-
fication to the Martin's. At the same time, we may proceed with above program
in an axiomatic setting. In fact, we can consider a harmonic map between harmon-
ic spaces satisfying the axioms of Brelot and obtain a theorem of Plessner type.

In §1, we recall the definitions, give the notations which will be used later
and list up the hypotheses assumed in this paper. §2 is devoted to lemmas used
in the following. The study of boundary behaviour of a harmonic map leads us
into the investigation of some cluster sets. The properties of cluster sets are in-
vestigated in § 3, and Lemma A and Lemma B are fundamental tools for our study.
The theorem of Plessner type mentioned above is stated in §4 with the theorem
of Fatou type. In Corollary 2 to Theorem 5, a relation between a fine cluster set
and a different sort of cluster set are considered. In the classical case of the



642 T. IKEGAMI

unit disc, the latter is a certain tangential one. And it gives a result analogous to
a result of Bagemihl [1] concerning an angular cluster set and a horocyclic cluster
set. The author wishes to express his hearty thanks to Prof. F-Y. Maeda for his
valuable remarks and advices.

1. Preliminaries

Let X be a harmonic space in the sense of Brelot0, that is, X is a locally
compact connected Hausdorff space satisfying the axioms 1, 2 and 3 of Brelot.
We assume that X is non-compact and has a countable base of open sets.

The family of harmonic spaces possessing positive potentials (resp. positive
harmonic functions) will be denoted by S* (resp. M). Thus, for example,
J fe ίPU <$l means that there exists a positive superharmonic function on X.

We assume i G f f and the axiom of proportionality: for every flGl,
potentials with a single point support {a} are all proportional.

As in [3] and [10], we define the Martin compactification XM of X, the
Martin boundary A=XM—X and the minimal boundary Ax of Δ.

Let us denote by ^(X) the family of all Wiener functions on X2:>. We
assume that the constant functions are Wiener functions.

The Wiener compactification Xw of X is a compact Hausdorff space conta-
ining X as a dense subset and all Wiener functions are extended continuously on
Xw and separate points of Xw. We know that the Wiener compactification and
the Martin compactification are resolutive. Consequently, we may consider
harmonic measures on each boundary which are denoted by ωw and ωM respec-
tively.

The harmonic boundary of Xw will play an important role in our investi-
gation. It is denoted by Γ^.

As in the classical case, where X is a hyperbolic Riemann surface35, XM is
considered as a quotient space of Xw, that is, there exists a continuous map π of
Xw onto XM mapping each point of X onto itself.

We define

Δf = {*GΞΔi; π-\x)f]TwΦ0} .

Then, Af=π(Tw)ΠA1 and ωM(Δ—Δ?)=0.
Next, let X' be another harmonic space. We assume that Xr has a countable

basis of open sets, X'^9?\33ί and constant functions are Wiener functions on Xf.
Here, we shall give a remark on resolutivity of compactification. In order to

include a compact case, we define a compactification X'* of X' to be resolutive if
for every bounded continuous function / on X'* the restriction of / to Xr is a

1) Cf. [2]. We note that X may be compact.
2) Cf.[6].
3) Cf.[5].
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Wiener function. When Xf is compact, X' itself is considered as a resolutive
compactification, since all bounded continuous functions on Xr are Wiener func-
tions. When X' is non-compact and P G ^ , the present definition is equivalent
to the original one, that is, every bounded continuous function on X'*—X/ is
resolutive with respect to the Dirichlet problem4).

Let φ be a harmonic map4) of X into X'. We define some cluster sets at a
minimal Martin boundary point: for x^Af

φ(x)=z Π {<p{UΪ\X)\ 0 is an open neighbourhood of ^ Π Γ ^ in Xw}
and for

φ(x) = n {φ(E ΠX); X-E is thin at x5>} ,

where closures are taken in a compactification X'*.

Summing up the hypotheses, we assume
X: axioms of Brelot 1, 2 and 3; axiom of proportionality; countable

basis of open sets; non-compactness; Z G ^ ; 1^(W(X).
Xf: axioms of Brelot 1, 2 and 3; countable basis of open sets; X ' e

2. Auxiliary lemmas

Let φ be a harmonic map of X into X'y Xw be the Wiener compactification
of X and X'* be an arbitrary resolutive compactification of X'. For
Xw-X, we define

φ*(%)=: Π {<p( U Π X) C/ is an open neighbourhood of X in
where the closure is taken in X'*, and

and

AF = { I G Δ ^ ; 9>*(̂ ) consists of a single point} .

We remark that φ is extended continuously on AF.

Lemma 1. Using above notations we have
a) Δ ^ Δ p U Δ ^ ,
b) Δ P is an open and closed subset of Tw.
c) if U is an open subset of Xw and £7ίΊΔPΦ0, then there exists a

component of Uf)X on which φ is not a Fatou map.

The proof is carried out quite in the same way as [6] (p. 54).

In [9], the author investigated the relations between the Wiener and the

4) Cf. [6].
5) Cf.[8].
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Martin boundary of a hyperbolic Riemann surface. Most parts of the results ob-
tained there are readily extended to the case of a harmonic space. The following
lemma will be of use in our present study.

Lemma 2. For / e HV{X) we can find a set Na Aw of dωw-harmonic mea-
sure zero such that

lim/(α) = fine limf(άf:> for every £ e Aw—N.

For, f=h?+qΊ\ where q is a Wiener potential7^ We may assume / > 0 .
Putting Uo—hf, we have h*=vB-\-vs> where vB is %-quasi-bounded and vs is u0-
singular, i.e., v B=lim (h?Λnu0) and Z; S ΛM 0 =0 8 ) , the latter is equivalent to the

fact that inf (vSy u0) is a potential. A w0-quasi-bounded harmonic function vB

has a fine limit g(x) at dωM-almost every boundary point xGΔ and the limit g(%)
of vB at I G Δ ^ coincides with g[π(%)] rfω^-almost everywhere. We know that
a Wiener potential has the limit zero at every point %&ΓW and has the fine limit
zero at Jω^-almost every point of Δ. Combining these results we can derive
the lemma.

We shall remark that the limits in Lemma 2 may be considered on a subset
of Tw since Γ ^ is the carrier of the harmonic measure ωw.

Lemma 3. Let X'* be α metrizαble compαctificαtion of X' and Gf be an
open set of X'*. Then the following sets are Borel sets:

A={x*ΞAι;φ(x)c:G'},
B=

D = {^G^; φ(x) contains at least two points} .

Proof. Without loss of generality, we may assume G rΦ X'*. Set

F'n = {*'(ΞX'*; P(X', X ' * - G ' ) > 1 M ,

where p denotes the distance in the metric of X'*. F'n is compact and

It is readily seen that

,; φ(x)czG'} = U {x^A,; X—<p-\FZnX') is thin at x}

6) For the notion of fine limit, see [8].
7) For the notation h?f and the definition of a Wiener potential, see [6].
8) uAv denotes the greatest harmonic minorant of u and v.
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Since X— φ~\F'n ΠZ') is open in X, the set

{x^A,; X—φ-\F'nr\X') is thin at x}

is a Borel subset of A^. We know that Δx is a Gδ-set. Thus A is a Borel set.
If Ff is a closed set of X'*, then there exists a decreasing sequence {Gή} of

CO

open sets such that F'= Π G£. Then, we have
»«1

Φ(χ)c:F'} = n

and we conclude that

is a Borel set. Thus,

-G / } and C = At-

are Borel sets.
Finally, let {Uή} be a countable basis of open sets for X'*. We consider

pairs of indices (m, n) such that U'mCL U'n. Then,

D= U { ^ Δ 1 ; ^ ) n C / ί , Φ 0 , ^ ) Π [ X / * - i ^ ] Φ 0 }

is a Borel set.

3. Some results on cluster sets

In the following, let X'* be a metrizable and resolutive compactification of
X'. We define

ft = {xG^; φ(x) consists of a single point}

and

It is readily seen that P and ft are Borel sets and 7r(ΔF)cP*.

Lemma A. Let A be a d ωM-measurable subset of A, Gf be an open set of
X'* and f be finite continuous function on Xr* whose carrier is contained in Gr.
If G'ΠΦ(A)=0, where Φ(A)={Jφ(x), then

lim f'[<p(a)] = 0 d ωw-a.e. on π'\A) Π Γ^10).

9) Cf. [8], Lemma 2.
10) "d ωw (resp. d ωM)-a.e" means "except a set of d ω^ (resp. d ωM)~measure zero".
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Proof. Put uA=H!)fA, i.e., the Dirichlet solution for the characteristic func-
tion XA of A on Δ, and/=/'o£). Then, it is derived that fuA is a Wiener func-
tion on X. For, if we choose an open set G[ containing the carrier of / ' and is
contained with its closure in G\ then φ~1(G/

1) is thin at every point of A, thus
β*-ι&ι'> i s a potential1^. Hence fuA is a Wiener function on X12). By lemma 2,

lim f(a)uA(a) = fine lim f(a)uA(a) d ωw-a.e. on Δ ^ .

Since fine limfuA=0 dωM-a.e. on Δ,

(3.1) limfuA = 0 o n F .

On the other hand, since

lim uA(a) = fine lim uA{a) d ωw-a.e. on Aw

and

fine lim uA(a) = 1 d ωM-a.e. on A,
a+x

we have

(3.2) lim uA = \ d ωw-a.e. on π~\A).

Lemma A is derived immediately from (3.1) and (3.2), q.e.d. .

Lemma B. Let Gr be an open set of X'* with Gf{\Xf^.S3 G=φ-\G%
where φ is a continuous extension of φ on X\J AF. If C is a compact subset of
G Π Γw, then we have

(3.3) 0M*)) = <P*W d ωw-a.e. on C .

If there exists a closed set F with π~\F) Π Γ ^ c G , then

φ(x)aG' d ωM-a.e. on F.

Proof. We note that φ is a Fatou map on each component of 0 Π X. Let
g be a continuous function on Xw with the following properties:

(1)

(3.4) I 2) g=lonC,
[ 3) the carrier of g is contained in G .

Let {/£} be a countable set of continuous functions on X'* separating points of

11) If we denote by μu the canonical measure of u=hf, i.e., u(a)=\ wx(ά)dβu{wx)y where

wx is an extreme harmonic function corresponding to ΛJGJI, then UA=\ Wχdβu(wχ) The

result is an immediate consequence of [8], Cor. to Th. 1. Cf. [10].
12) Cf. [6], Th. 2.6.
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X'* and 0 < / £ < l . Adding functions 1—f'n to the set, if necessary, we may as-
sume that for each pair of points yί + y'2 there exists an/£ so that fή(y{)> fή(y2)
Since the restrictions f'n | G 'nχ' are bounded Wiener functions on G/Γ\X\fn=
fήIGft\χ'°φ are Wiener functions o n G Π X Set

fmin (/„,£) on
gn~[0 onX-G.

The functions gn<= <W(Xy*\

By Lemma 2, there exists a set N of d ω ̂ -measure zero such that

lim gn(a) = fine lim gn{a) for each £ e Aw—N and n = 1, 2,

(we may suppose that N^>AW—TW) Therefore

(tf) = fine lim^rt(α) for each %^C—N'and n = 1, 2, ••

We shall show that

φ(π(x)) = Φ{%) = φ*(%) for each %SΞ C-N.

In fact, if Φ(π(%0))Φφ(%0) for some point %0^C—iV", then there exists a point
and a function/ή satisfying

Since

a = lim/M(α) = fine lim £„(#),

we have a set Z> such that

(3.5) X-D is thin at π(%0) and gn>{a+β)β on D .

From (3.5) we have DdQnX and fn>(cc+β)β on Zλ However this is im-

possible since z'^φ(π(%0))c:<p(D) implies

f'n(z')>(a+β)l2>β.

It is clear that the set

E= N

is of d ωM-measure zero. Let x^F—E. Then, π~\x) Π ΓW(ZG and there exists
a point %Eί π~1(x)—N. Applying the above result to the compact set π~\F) Π Tw,
we have

13) Cf. [6], Lemma 5.3..
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φ(x) = φ{%)<Z.G'y q.e.d..

Theorem 1. ωw(π~\A—P) Π ΔP)=0.
In particulary ω

w(π~\P) Π Δ P ) = 0 .

Proof. Let {Gή} be a countable basis of open sets for X'*. We shall show
that

where Bn= {#e Δx φ(x) Π Gή=0}. In fact, suppose for a moment that

ωw{π'\Bn)^AP)>Q.

Let / ' be a finite continuous function on Xr* such that the carrier of / ' is con-

tained in an open set G' with G7C G£, and let f=fΌ<p. Since 0(5 r t) Π ̂ ' =
applying Lemma A, we have

= 0 d ωw-a.e. on π-\BH) Π Tw .

Then, at some point £ o e π~\Bn) Π Δ P

However this is impossible, since %0&AP and 9?*(^0)=X/*.

We have Δ ^ P = \jBnf therefore

ω ^ - X Δ ^ ^ ) Π AP)<,iB<*W(.π-XBn) Π ΔP) = 0 , q.e.d..

Theorem 2. ω T Γ ( Δ F - Δ ^ ) =
In particular, ωw(AF—τr""1(/l))=O.

Proof. Let G7 be an open set of X'* with G' Π ^ 7 e S>, and let β = ^ - 1 ( G / ) .
We shall show that

In fact, suppose for a moment that

We choose a compact subset C of β ί Ί Γ ^ — Δ p with positive d ω^-harmonic
measure. Applying Lemma B, we have

φ(π{%)) = <p*(Z) d ωw-a.e. on C .

However, this is impossible since this occurs at some point %0&C and
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Let G'χ and G'2 be open sets of X'* such that

GίUG'2 = X'* and G't ΠX'e5> for i = 1 and 2 .

Since AF Π Γ ^ = (Gt Π Γ^) Π (G2 Π Tw), where G,=^"'(GO (t= 1, 2) we have

ω ι Γ ( Δ , - Δ W ^ « Ϊ Γ ( C 1 n Γ w ' - Δ W + ω Ϊ Γ ( G i n Γ w ' - Δ ί , ) = 0 , q.e.d. .

Theorem 3. (i) ωM(P-π(AP)) = 0 ,

Proof, (i) ωM(P-π(AP))<ωM(A-P-π(AP))

= ωw(π-1[A-P-π(AP)])<ωw(Aw-AP-π-1(F))

= ωw(AF—π-\P)) = 0 . [by Lemma 1 and Theorem 2)

(ίi) ωM(P-π(A'FΠΓw)) = ωw{π-\P-π(A'F^Tw)\)

<ωw(π-'(P)-(AFΠΓw))

<ωw(π-\F) ΓΊ AP)+ωw(AF-A'F) = 0 .

(by Theorem 1 and Theorem 2)

It is an open question to the author whether P=π(AP) except a set of
d ωM-measure zero or not.

Corollary 1. ωM(P-P*) = 0 .

Corollary 2.15) If φ is an open map, then

r>0

is a polar set for d ωM-almost all points x of P, where Ur(x) denotes an r-neighbour-
hood of x in a metric of XM.

In fact, we shall show that Xf— Π<p(Ur(x)Γ\X) is a polar set for every

iP). Let x^π(Ap) and %^π~\x) ΓΊ AP. From the definition of ΔP,

φ(UΠX) = X'* for every neighbourhood U of %.

There exists a sequence of open neighbourhoods {Un} of % such that ΌnCLπ~x

(U1/n(x)). Since

in order to prove the assertion, it is enough to show that

X'-φ(UnC\X)

14) (u) is pointed out by F-Y. Maeda.
15) Cf. [7], Th. 6..
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is polar. Suppose, on the contrary, X/—φ(UftΠX) is not polar, then there

exists a positive potential on each component of φ(UnΓ\X)i therefore φ is a

Fatou map on each component of Un Π X. However, this is impossible since,

by Lemma 1, φ is not a Fatou map on some component of UnΓ\X.

T. FujiTe considered cluster sets of analytic maps of Riemann surfaces and
obtained some results [7]. Some of them are extended to harmonic maps between
harmonic spaces. For example, let us consider the following. Let J be the
family of boundary sets with vanishing d ωM-harmonic measure. Following
FujiTe, we shall define

c*(φ, x) = n^ no [χ e cu n Δ # * ) ] ,

where Ur is an r-neighbourhood of x^Ax in a metric of XM. Then we have

Theorem 4. C*(<p, Λ;)=^(Λ;) > r χ(= Δf.

Proof. First, we shall show that

(3.6) ^ ( Λ )I

for every open neighbourhood U of x in XM and 2?e JΓ, where

A1)-E)= U Φ(x).
*€ζJTΔ{E

Suppose z'^φ(x)—φ((UΠ AJ—E). Let G' be an open neighbourhood of z'
with

ff be a finite continuous function on X'* with carrier contained in Gf

Φ 0. Then, by Lemma A, we have

lim f[φ(a)] =0 d ωw-a.e. on π-^UΠAj-E] ΠTW ,

from which we derive

φ = 0 on 7t'\x) Π Γ ^ ,

and we have/^^O^^Oj which is absurd. Thus we have (3.6).
Next, we show

C*(φ, x)<zφ(x) .

Suppose #'<Ξ C*(φy x)—φ(x). Then, we know that ^ ) + Γ * and π~\x) 0 AP

= 0. Hence, φ is defined and continuous on π~\x) Π Γ^. It is easy to find an
open subset G' of X'* satisfying φ(x)dG/ and z'^G\ and an open neighbour-
hood U of x in XM such that
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φ(y) C G' for every y(Ξ U Π Δf .

From this we may derive π-\U)Γ[Γwc:φ~1(G/)Γ\Γw. Let V be a compact
neighbourhood of x satisfying VdU. Then, by Lemma B, there exists a set
E^J such that

Thus,

and z/^C*(φ,x)czG/ which is absurd. Hence we have proved the theorem.

4. Theorems of Fatou and Plessner type

Theorem 5. (Plessner) Let X'* be a metrizable and resolutive compactifica-
tion of X'y φ be a harmonic map of X into X'. Then, φ{x) is either X'* or a set
of a single point for d ωM-almost all points of Δ, i.e.,

ωM(A-P-P) = 0 .

Proof. ωM(A-P-P) = ωw(π-\A-F-P))

= 0. (by Theorem 1 and Theorem 2)

Corollary 1. φ(x) is a set of a single point for d ωM-almost all points of A—
7r(ΔF), i.e.,

ωM(A-π(AP)-P) = 0 .

In particular, φ(x) is a set of a single point for d ωM-almost all points of

This is an immediate consequence of Theorem 3 (i) and the above theorem.

Corollary 2. For d ωM-almost every point x there exists a point # e π~\x) Π
such that

In particular,

φ(x)(Z<p(x) d ωM-a.e. on A .

By the above theorem, for rfωM-almost every point we have (1) x^P or (2)
. In case (1), we have, by Theorem 3 (i)

for d ωM-almost all x of P.



652 T. IKEGAMI

Thus, letting %dπ~\x) ΠΔ P we have

X'* = φ*{%) = φ(x).

In case (2), we have, by Theorem 3 (ii)

x£Ξ π{A'F Π Γ w ) for d ωM-almost all x of P.

Thus, there exists a point X^ π~\x) Π Γ ^ with Φ(x)=φ*(%), q.e.d. .

REMARK. AS we have shown in [10], in the classical case of the unit disc:
X={z; | * | <1}, a Wiener boundary point X^π'\x)Γ\Tw

9 where | f f | = l , has
a neighbourhood whose trace (the intersection with X) lies outside a horocycle
at x (a circle internally tangent to | * | = 1 at #)16). By Corollary 2 to Theorem 5,
we have for d ωM-almost all points x a fine cluster set φ(x) is a cluster set concerning

a tangential filter converging to x. Therefore the following facts hold for d ωM-

almost all points of A: if a fine cluster set is total at x, i.e.,, x^P, then it is also

true for a tangential cluster set <p(x)> and if a tangential cluster set <p(x) at x is re-

duced to a single point, then it is also true for a fine cluster set. This is analogous

to the results of Bagemihl17:>: almost every Plessner point is a horocyclίc Plessner

point and almost every horocyclίc Fatou point is a Fatou point. However, a defin-

ing filter of a cluster set <p(x) would be more tangential than a horocycle.

In [10], the author obtained the following theorem of Riesz type concerning
fine cluster sets. Under the additional condition:

(*) when X'^L Si-9? there exists a non-polar subset Έ' of Xf each point of which

is polar,

if

(4.1) φ(x)dA/ for every x^AczA,

holds for a polar set A' of an arbitrary compactίfication X'* and a boundary set A
of outer d ωM-harmonic measure positive, then φ is a constant map.

Now, from Corollary 2, we have a theorem of Riesz type concerning a
different sort of cluster set φ(x). It is noteworthy that in the classical case of
the unit disc, <p(x) is a tangential cluster set, so that the following result is, so
to speak, a theorem of Riesz type concerning tangential cluster sets.

Corollary 3. Let φ be a non-constant harmonic map, When Xf^ M-9*, we
assume further the existence of non-polar set each point of which is polar. Let Xr*
be a metrizable and resolutive compactification of X/ and A' be a polar set of X'*.
If we have

<p(x)aA' for each x^ Ad Af ,

16) Cf. [9], Th. 5.2.
17) Cf. [1], Th. 1 and Th. 2.
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then ωM(A)=0.

Theorem 6. (Fatou) Let X'* be a metrizable and resolutive compactificatίon

of X'. In order that a harmonic map φ of X into Xr be a Fatou map, it is necessary

and sufficient that φ be reduced to a single point d ωM-almost everywhere on Δ.

Proof. Let φ be Fatou map. Then we have AP=0 and by Theorem 3 (i),

ωM(P)=0. By Theorem 5, we conclude that

ωM(A~P) = 0 .

Next, if ω M ( Δ - F ) = 0 , then ωw(Aw-π~1(P))=0. By Lemma 1 and

Theorem 2, we have ωw(AP —τr"1(F))=0. Since

ωw(AP Π TΓ- 1 ^)) = 0 (by Theorem 1)

we have ω μ r (Δ P )=0 and Δ P = 0 , which implies that ψ is a Fatou map. q.e.d. .
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