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Introduction

In the classical theory of functions, one can find many theorems on the
boundary behaviour of meromorphic functions defined on the unit disc. Above
all, the theorem of Plessner is well-known. A meromorphic function on a domain
D of a complex plane is an analytic map of D into a Riemann sphere, and it is
natural to attempt to generalize the theorem of Plessner to an analytic map
between Riemann surfaces. An immediate generalization is rejected since the
angular limit is meaningless on Riemann surfaces. The first successful contribu-
tion to this problem is due to Constantinescu-Cornea [4]. Their argument based
essentially on the notion of fine filters converging to minimal boundary points of
the Martin compactification, which is defined by L. Naim [11] originally. In
their book [5], it is given in a course of systematic development of compactifica-
tions. Among various compactifications, the Martin’s and the Wiener’s are of
great importance. The boundary behaviour of an analytic map ¢ from a hyper-
bolic Riemann surface into another R’ is described simply in the Wiener compacti-
fication, that is, at each Wiener boundary point % either @ has a limit or the
image of every neighbourhood of % is dense in R'.

In this paper, we shall give a new proof of the theorem of Plessner in accord-
ance with the following idea: making use of the relations between the Wiener and
the Martin boundaries, we may transmit the results obtained in the Wiener compacti-
fication to the Martin’s. At the same time, we may proceed with above program
in an axiomatic setting. Infact, we can consider a harmonic map between harmon-
ic spaces satisfying the axioms of Brelot and obtain a theorem of Plessner type.

In §1, we recall the definitions, give the notations which will be used later
and list up the hypotheses assumed in this paper. §2 is devoted to lemmas used
in the following. The study of boundary behaviour of a harmonic map leads us
into the investigation of some cluster sets. The properties of cluster sets are in-
vestigated in § 3, and Lemma 4 and Lemma B are fundamental tools for our study.
The theorem of Plessner type mentioned above is stated in §4 with the theorem
of Fatou type. In Corollary 2 to Theorem 5, a relation between a fine cluster set
and a different sort of cluster set are considered. In the classical case of the
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unit disc, the latter is a certain tangential one. And it gives a result analogous to
a result of Bagemihl [1] concerning an angular cluster set and a horocyclic cluster
set. 'The author wishes to express his hearty thanks to Prof. F-Y. Maeda for his

valuable remarks and advices.

1. Preliminaries

Let X be a harmonic space in the sense of Brelot®, that is, X is a locally
compact connected Hausdorff space satisfying the axioms 1, 2 and 3 of Brelot.
We assume that X is non-compact and has a countable base of open sets.

The family of harmonic spaces possessing positive potentials (resp. positive
harmonic functions) will be denoted by & (resp. ). Thus, for example,
X & PUH means that there exists a positive superharmonic function on X.

We assume X< P and the axiom of proportionality: for every ac X,
potentials with a single point support {a} are all proportional.

As in [3] and [10], we define the Martin compactification X of X, the
Martin boundary A=X»—X and the minimal boundary A, of A.

Let us denote by 9Y(X) the family of all Wiener functions on X*. We
assume that the constant functions are Wiener functions.

The Wiener compactification X% of X is a compact Hausdorff space conta-
ining X as a dense subset and all Wiener functions are extended continuously on
X% and separate points of X%. We know that the Wiener compactification and
the Martin compactification are resolutive. Consequently, we may consider
harmonic measures on each boundary which are denoted by »” and w™ respec-
tively.

The harmonic boundary of X" will play an important role in our investi-
gation. It is denoted by T'%.

As in the classical case, where X is a hyperbolic Riemann surface®, XM is
considered as a quotient space of X%, that is, there exists a continuous map = of
X% onto X mapping each point of X onto itself.

We define

Af = {xeA; 77 (x)NT7£0} .

Then, A¥==(T")N A, and o™(A—A¥)=0.
Next, let X’ be another harmonic space. We assume that X’ has a countable
basis of open sets, X'€ P U I and constant functions are Wiener functions on X'.
Here, we shall give a remark on resolutivity of compactification. In order to
include a compact case, we define a compactification X’* of X’ to be resolutive if
for every bounded continuous function fon X’* the restriction of f to X’ is a

1) Cf.[2]. We note that X may be compact.
2) Cf.[6].
3) Cf. [5].
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Wiener function. When X’ is compact, X’ itself is considered as a resolutive
compactification, since all bounded continuous functions on X’ are Wiener func-
tions. When X’ is non-compact and X’ P, the present definition is equivalent
to the original one, that is, every bounded continuous function on X"*—X" is
resolutive with respect to the Dirichlet problem®.

Let @ be a harmonic map® of X into X”. We define some cluster sets at a
minimal Martin boundary point: for x& A¥

P(x)= N {p(TN X); U is an open neighbourhood of = *(x)NTY in X%}
and for x€ A,

P(x) = N {p(ENX); X—E is thin at £} ,
where closures are taken in a compactification X"*.

Summing up the hypotheses, we assume
X: axioms of Brelot 1, 2 and 3; axiom of proportionality; countable
basis of open sets; non-compactness; X € P; 1€ Y(X).
X’: axioms of Brelot 1, 2 and 3; countable basis of open sets; X'
PUI; leW(X).

2. Auxiliary lemmas

Let @ be a harmonic map of X into X’, X" be the Wiener compactification
of X and X’* be an arbitrary resolutive compactification of X’. For & A"=
X" _X, we define

o*(%)= N {p(T N X); U is an open neighbourhood of % in X%},
where the closure is taken in X’*, and
Ap = {ZEAV; p*(Z) = X'*}
and
Ap = {Z€ AW"; p*(X) consists of a single point} .

We remark that @ is extended continuously on A .

Lemma 1. Using above notations we have
a) A%=ApUAp,
b) Ap is an open and closed subset of TV .
¢) if U is an open subset of X% and UN Ap==0, then there exists a
component of UN X on which ¢ is not a Fatou map.

The proof is carried out quite in the same way as [6] (p. 54).

In [9], the author investigated the relations between the Wiener and the

4) Cf.[6].
5) Cf. [8].
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Martin boundary of a hyperbolic Riemann surface. Most parts of the results ob-
tained there are readily extended to the case of a harmonic space. The following
lemma will be of use in our present study.

Lemma 2. For f&€ W(X) we can find aset NC AV of dw"-harmonic mea-
sure ero such that
lim f(a) = fine lim f(a)®  for every 2 AV —N .
ayz ayn(3)

For, f=h¥+q", where ¢ is a Wiener potential®. We may assume f>0.
Putting u,=hi, we have hf=vz+v5, where vy is %,-quasi-bounded and vy is %,-
singular, i.e., vp=lim (kXA nu,) and vsAu,=0%, the latter is equivalent to the

7.y00

fact that inf (vs, #,) is a potential. A u,-quasi-bounded harmonic function vy
has a fine limit g(x) at dw™-almost every boundary point x& A and the limit g(%)
of vy at = AV coincides with g[z(X)] do"-almost everywhere. We know that
a Wiener potential has the limit zero at every point X&T'" and has the fine limit
zero at dw™-almost every point of A. Combining these results we can derive

the lemma.

We shall remark that the limits in Lemma 2 may be considered on a subset
of T'% since T'? is the carrier of the harmonic measure »".

Lemma 3. Let X'* be a metrizable compactification of X’ and G’ be an
open set of X"*. Then the following sets are Borel sets:

A= {x€A,; P(x)c G},
B = {x€A,; d(x)NG’ = ¢} ,
C= {x€A; P(XNG" + 0},
D = {x€ A,; P(x) contains at least two points} .
Proof. Without loss of generality, we may assume G’4 X’*. Set
F,= {x¥eX'*; p(«, X'*—~G)>1/n} ,
where p denotes the distance in the metric of X’*. F}, is compact and

G'= UF;.

n=l

It is readily seen that

fxeh; PX)CGY = U {r€A,; X—@ (F4LN X’) is thin at x} .

6) For the notion of fine limit, see [8].
7) For the notation h}Y and the definition of a Wiener potential, see [6].
8) wuAwv denotes the greatest harmonic minorant of # and v.
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Since X—@ ! (F,N X") is open in X, the set
{xeA,; X—@p (FAiNX’) is thin at x}

is a Borel subset of A,”. We know that A, is a Gg-set. Thus A is a Borel set.
If F’ is a closed set of X’*, then there exists a decreasing sequence {G.} of

open sets such that /=G, Then, we have

nei
v A AHCFY = A {reiy; Y GI)
and we conclude that
{xeA,; $(x)CF’}
is a Borel set. Thus,
B = {xeA,; p(x)c X"*—-G’} and C= A,—B

are Borel sets.
Finally, let {U}} be a countable basis of open sets for X”*. We consider
pairs of indices (m, n) such that U,C U,. Then,

D =("p”){xeAl; P(x) N Un=0, P(x) N [X"*— Uil 0}

is a Borel set.

3. Some results on cluster sets

In the following, let X’* be a metrizable and resolutive compactification of
X’. We define
P = {xeA,; P(x) = X'*},
F = {xeA,; $(x) consists of a single point}
and
P* = {xe A¥; p(x) = X'*} .
It is readily seen that P and F are Borel sets and n(Ap)C P*.

Lemma A. Let A be a d o™-measurable  subset of A, G’ be an open set of
X'* and f’ be finite continuous function on X'* whose carrier is contained in G’.

If G NP(A)=0, where H(A)= U H(x), then

lim f'lp(@)l =0  do¥—ae onz"(A)NTW.

9) Cf. [8], Lemma 2.
10) “d wW (resp. d w¥)-a.e.”” means “except a set of d ®W (resp. d wM)-measure zero”.
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Proof. Putu,=HY!, i.e., the Dirichlet solution for the characteristic func-
tion X4 of 4 on A, and f=f’o@. Then, it is derived that fu, is a Wiener func-
tion on X. For, if we choose an open set G{ containing the carrier of f’ and is
contained with its closure in G’, then @ '(Gj{) is thin at every point of A, thus
R.‘f;l‘“l" is a potential™. Hence fu, is a Wiener function on X'». By lemma 2,

lim f(a)u(a) = fine lim f(a)u,(a) d ®"-a.e. on AV .

ayw(x)

Since fine lim fu,=0 d w™-a.e. on A,

(3.1) lim fu, = 0 on I'".
On the other hand, since
lim u,(a) = fine lim u 4(a) d o"-a.e. on AV
" asF )
ﬁnglim uy(a) =1 d oM-a.e. on 4,
we have
(3.2) limu, =1 d o"-a.e. on #7Y(4) .

Lemma A is derived immediately from (3.1) and (3.2), q.e.d..

Lemma B. Let G’ be an open set of X'* with G'NX'eP, G=5"(G"),
where P is a continuous extension of @ on X\UAy. If C is a compact subset of
GNTVY, then we have

(3.3) P(n(%) = p*(®) do-ae.onC.
If there exists a closed set F with x~(F)NT"CG, then
Px)cG’  dwM-ae. onF.

Proof. We note that ¢ is a Fatou map on each component of GNX. Let
£ be a continuous function on X% with the following properties:

1) 0<g<1,
(3.4) 2) g=1onC,
3) the carrier of g is contained in G .

Let {f}} be a countable set of continuous functions on X’* separating points of

11) If we denote by z, the canonical measure of u=h{, i.e., u(a)=s wy(a)dps(w,), where
w, is an extreme harmonic function corresponding to xE4;, then us= Aw,d,u.,(w,). The

result is an immediate consequence of [8], Cor. to Th. 1. Cf. [10].
12) Cf. [6], Th. 2.6.
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X* and 0< f41<1. Adding functions 1—f} to the set, if necessary, we may as-
sume that for each pair of points y{= yj there exists an f} so that f7(y1) > fa(y.).
Since the restrictions f,|¢/nx’ are bounded Wiener functions on G'’NX’, f,=
fhl e’ x’op are Wiener functions on GNX. Set

_ (min(f, g onGNX
"o on X—G.

The functions g, PW(X)™.
By Lemma 2, there exists a set IV of d »"-measure zero such that

lim g(a) = fine lim g,(a)  for each X A"—Nandn=1,2, --.

a7 ayn(x)

(we may suppose that N O AW —T'%) Therefore

lim f,(a) = fine lim g,(a) for each ¥€C—Nandn =1, 2, --.

ayz ayn(%)
We shall show that
P(z(%)) = P(X) = p*(&)  for each xeC—N.
In fact, if P(m(%,))= P(%,) for some point Z,&C—N, then there exists a point

2’ P(n(%,)) and a function f} satisfying

a = fu[P(Z)]> fu(z) = B.
Since
= lim f,(a) = fine lim g,(a) ,

ayz, LES.7ED)

we have a set D such that
(3.5) X—D is thin at #(%,) and g,>(a+B)/2on D .
From (3.5) we have DCGNX and f,>(a+B3)/2 on D. However this is im-
possible since 2’ P(z(X,))C (D) implies

fuZ)=(a+B)2>6 .
It is clear that the set

E = {xeA; ="' (x)C N}

is of d wM-measure zero. Let x& F—E. Then, z7(x) N T CG and there exists
a point ¥=7z"'(x)—N. Applying the above result to the compact set = (F)NTY,
we have

13) Cf. [6], Lemma 5.3..
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Px) = p(X)C G, q.ed..

Theorem 1. coW(n'"(A—p) NAp)=0.
In particular, o™ (z~*(F) N Ap)=0.

Proof. Let {G}} be a countable basis of open sets for X’*. We shall show
that

mW(”—l(Bn) n AP) = O ’
where B,= {xE A,; H(x) N G4=0}. In fact, suppose for a moment that
o (z ' (B,)NAp)>0.

Let f” be a finite continuous function on X”* such that the carrier of f’ is con-
tained in an open set G’ with G’C G}, and let f=f’op. Since $(B,)NG'=0,
applying Lemma A, we have

lim f(a) = 0 d o”—a.e. on z (B, )NT" .

asx

Then, at some point X, z~(B,)N Ap
lim f(a) = 0.

as%,

However this is impossible, since Z,& Ap and @*(%,)=X"*.
We have AI—IS= G B, therefore
0" (z (A, —P)N Ap)gi}co“’(n"(B,,) NAp)=0, gq.ed..
Theorem 2. o"(Ap—Ay)=0, where A= {XE A y; P(n(X))=p*(Z)}.
In particular, o"(Ap—z~(£))=0.

Proof. Let G’ be an opensetof X’* with G’'N X’ P, and let G=p"(@).
We shall show that

o"(GNTY—AL)=0.
In fact, suppose for a moment that
o”(GNTV—AL)>0.

We choose a compact subset C of GNT'W—A} with positive d »”-harmonic
measure. Applying Lemma B, we have

P(7(X)) = p*(X) dw”—a.e. onC.

However, this is impossible since this occurs at some point %,& C and %, & Af.
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Let G{ and G; be open sets of X’* such that
{UG)= X"*and Gi{NX'€Pfori=1and 2.
‘Since Az NT7=(G,NT")N(G,NT7), where G,=@ (G} (i=1, 2) we have
o"(Ar— AR <o (G, NTY—A})+0"(G,NT"—AL) =0, q.ed..
Theorem 3. (i) oM(P—=(Ap)) =0,
(#) oM(F—7(ARNTW)) = 0,

Proof. (i) oM(P—n(Ap))<wM(A—F—n(Ap))
= 0"z [A—F—n(Ap)) oW (A" — Ap—7(F))
= 0"(Ap—n"'(F))= 0. [by Lemma 1 and Theorem 2)
(i) oM(F—n(ALNT7)) = ¥ (z " [F—=(AFNT™)])
<o™(z '(F)—(AFNT™))
<oz (F)YNAp)+ 0¥ (Ap—Ay) = 0.
(by Theorem 1 and Theorem 2)

It is an open question to the author whether P=n(Ap) except a set of
d wM-measure zero or not.

Corollary 1. coM(Is -—P*) =0.
Corollary 2." If @ is an open map, then
X'~ Np(U,®NX)

is a polar set for d w™-almost all points x of P, where U (x) denotes an r-neighbour-
hood of x in a metric of X™.

In fact, we shall show that X’'— ﬂ(p(U,(x)ﬂX) is a polar set for every
r>0
xEn(Ap). Let x€7z(Ap) and X7 (x) N Ap. From the definition of Ap,

(U NX)= X* for every neighbourhood U of %.

There exists a sequence of open neighbourhoods {U,} of % such that U,Cz™*
(U, u(x)). Since

X'~ ApUn®) N X)C X'~ N p(U,N X) = X —p(T.NX)],
in order to prove the assertion, it is enough to show that

X' — (U, N X)

14) (ii) is pointed out by F-Y. Maeda.
15) Cf.[7], Th.6..
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is polar. Suppose, on the contrary, X’—@(U,NX) is not polar, then there
exists a positive potential on each component of @(U,NX), therefore ¢ is a
Fatou map on each component of U,NX. However, this is impossible since,

by Lemma 1, ¢ is not a Fatou map on some component of U, N X.

T. Fuji’i’e considered cluster sets of analytic maps of Riemann surfaces and
obtained some results [7]. Some of them are extended to harmonic maps between
harmonic spaces. For example, let us consider the following. Let J be the
family of boundary sets with vanishing d w™-harmonic measure. Following
Fuji’’’e, we shall define

C¥p,x)=0N N[ U é@)],

BET r>0 €W, nAD-H

where U, is an r-neighbourhood of x€ A, in a metric of X#. Then we have
Theorem 4. C*(p, x)=@P(x)  for x€ A¥.
Proof. First, we shall show that
(3.6) PHH(UNA)—E)
for every open neighbourhood U of x in X™ and E< J, where
AUNA)—E)=_U $(x).

re@nap-#
Suppose 2’ @(x)—PH(UNA,)—E). Let G’ be an open neighbourhood of 2’
with
GnH(UNA)—E)=0,

S’ be a finite continuous function on X’* with carrier contained in G’ and f’(2")
0. Then, by Lemma A, we have

limf'[p(@)] =0  dow%-ae onz"'[(UNA,)—E]INTY,
from which we derive
lim f/op = 0 onz '(x)NTY,
and we have f’(2’)=0, which is absurd. Thus we have (3.6).

Next, we show
C*(p, x)CP(x) .

Suppose 2’ C*(p, x)—@P(x). Then, we know that @(x)=+X"* and =~ (x) N Ap
=0. Hence, P is defined and continuous on 7 '(x) NT'?. It is easy to find an
open subset G’ of X'¥ satisfying $(x)C G’ and 2’& G, and an open neighbour-
hood U of x in X™ such that
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P(y)cG’ for every ye UNAF.

From this we may derive z-'(U)NT%Cp (G’)NTY. Let VV be a compact
neighbourhood of x satisfying V' U. Then, by Lemma B, there exists a set

E,e ] such that
AWV NA)—E)G' .
Thus,

,Do¢[( Ur n AI)—EI] c G

and 2’€ C*(p, x)C G’ which is absurd. Hence we have proved the theorem.

4. Theorems of Fatou and Plessner type

Theorem 5. (Plessner) Let X'* be a metrizable and resolutive compactifica-
tion of X', @ be a harmonic map of X into X’. Then, H(x) is either X'* or a set
of a single point for d w™-almost all points of A, i.e.,

oMA—F—P)=0.
Proof. wM(A—F—P)= o¥(z"(A—F—P))
= w¥(z"(A—P)—z"Y(F))
< o™z (A—P) N Ap)+0™(Ap—n"'(F))
= 0. (by Theorem 1 and Theorem 2)

Corollary 1. H(x) is a set of a single point for d wM-almost all points of A—
”(Ap), i-e.,

oMA—n(Ap)—F) = 0.
In particular, P(x) is a set of a single point for d w™-almost all points of
{xe Af; Plx)+ X"}
This is an immediate consequence of Theorem 3 (i) and the above theorem.

Corollary 2. For d wM-almost every point x there exists a point X< ~(x) N
T'% such that

P(x) = p*() .
In particular,
P(x) C P(x) d wM-g.e. on A .

By the above theorem, for d w™-almost every point we have (1) xe P or (2)
x€F. In case (1), we have, by Theorem 3 (i)

xen(Ap)  for d wM-almost all x of P.
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Thus, letting &7~ (x) N Ap we have
X% = p¥(%) = ().
In case (2), we have, by Theorem 3 (ii)
xex(AFNTY) for d wM-almost all x of F.
Thus, there exists a point X 7~ (x) NT'" with §(x)=@*(%), q.e.d..

REMARK. As we have shown in [10], in the classical case of the unit disc:
X={z; |2| <1}, a Wiener boundary point Zz"'(x) N\T'¥, where |x| =1, has
a neighbourhood whose trace (the intersection with X) lies outside a horocycle
at x (a circle internally tangent to | 2| =1 at x)'*. By Corollary 2 to Theorem 5,
we have for d wM-almost all points x a fine cluster set P(x) is a cluster set concerning
a tangential filter converging to x. Therefore the following facts hold for d w™-
almost all points of A: if a fine cluster set is total at x, i.e., xE P, then it is also
true for a tangential cluster set Pp(x), and if a tangential cluster set P(x) at x is re-
duced to a single point, then it is also true for a fine cluster set. 'This is analogous
to the results of Bagemihl': almost every Plessner point is a horocyclic Plessner
point and almost every horocyclic Fatou point is a Fatou point. However, a defin-
ing filter of a cluster set @(x) would be more tangential than a horocycle.

In [10], the author obtained the following theorem of Riesz type concerning
fine cluster sets. Under the additional condition:

(*) when X'< J(-P there exists a non-polar subset E’ of X’ each point of which

is polar,
if
“.1) Px)C A" for every x€ ACA,

holds for a polar set A’ of an arbitrary compactification X'* and a boundary set A
of outer d w™-harmonic measure positive, then @ is a constant map.

Now, from Corollary 2, we have a theorem of Riesz type concerning a
different sort of cluster set @(x). It is noteworthy that in the classical case of
the unit disc, @(x) is a tangential cluster set, so that the following result is, so
to speak, a theorem of Riesz type concerning tangential cluster sets.

Corollary 3. Let @ be a non-constant harmonic map, When X' IH-P, we
assume further the existence of non-polar set each point of which is polar. Let X'*
be a metrizable and resolutive compactification of X’ and A’ be a polar set of X'*.
If we have

Py A’ for each x€ AC A¥,

16) Cf.[9], Th. 5.2.
17) Cf.[1], Th. 1 and Th. 2.
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then w™(A)=0.

Theorem 6. (Fatou) Let X'* be a metrizable and resolutive compactification

of X'. Inorder that a harmonic map @ of X into X’ be a Fatou map, it is necessary
and sufficient that P be reduced to a single point d wM-almost everywhere on A.

Proof. Let @ be Fatou map. Then we have Ap=0 and by Theorem 3 (i),

wM(P)=0. By Theorem 5, we conclude that

oMA—F)=0.

Next, if oMA—F)=0, then ”(A¥—7z"'(F))=0. By Lemma 1 and

Theorem 2, we have 0%(Ap—z~'(F))=0. Since

o"(Ap N7 Y (F)) = 0 (by Theorem 1)

we have ©”(Ap)=0 and Ap=0, which implies that @ is a Fatou map. q.e.d..
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