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1. Introduction

A differentiable action (M™, ¢, G) is called semi-free if it is free outside
the fixed point set, i.e., there are two types of orbits, fixed points and G. We
shall study the situation where (=", @, S*) is a semi-free differentiable action
of S* on a homotopy sphere 3™, and the fixed point set F# is a homotopy sphere.
Concerning semi-free differentiable actions, Browder has studied in [5] and has
posed the following problem.

“What are the homotopy spheres which are being operated on in our con-
structions ?”’

On this problem we shall prove some theorems (see Theorems 2.1-2.5),
generalizing a theorem stated in [11]. 'They give a partial answer to this problem
of Browder. As corollaries we shall give non existence theorems of semi-free
S'-actions on some homotopy spheres (see Corollaries 2.6, 2.7). They give an
answer to a problem of Bredon (see [19, problem 4, page 235]) and a partial
answer to a problem of Hirzebruch (see [19. problem 12, page 236]).

The author wishes to express his warmest thanks to Professor M. Nakaoka
for his constant encouragement.

2. Definitions, notations and statement of results
Let us denote by (M™, @, G) a differentiable action of the Lie group G
on the smooth manifold M, i. e., ¢: GX M — M such that, if me M, x, yeG,
@) (> o(y, m) = p(xy, m)
(i1) (e, m) =m, e=identity of G,
(iii) ¢ is a C*-map.
A smooth submanifold N c M™ is called invariant if p(GXN)CNcCM™. An

* The author is partially supported by the Yukawa Foundation.
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action is called semi-free if it is free off of fixed point set, i. e., there are two types
of orbits, fixed points and G. All manifolds, with or without boundary, are to
be compact, oriented and differentiable of class C=. The boundary of M will
be denoted by 0M. We write M,=M, for manifolds M,, M,, if there is an
orientation preserving diffeomorphism f: M,— M, Let ©, be the group of
homotopy n-spheres and ©,(07) be the subgroup consisting of those homotopy
spheres which bound parallelizable manifolds. The inertia group of an
oriented closed differentiable manifold M” is defined to be the group
{3€0,| M"#==M"} which is denoted by I(M). Let 3%, be the generator of
0,(07) due to Kervaire and Milnor [14]. D” and S™ ' denote, respectively,
the unit disk and the unit sphere in euclidean n-space and CP” denotes the
complex projective n-space. Denote by S(£), B(E), CP(§), the total space of
the sphere bundle, the total space of the disk bundle, the total space of the
projective space bundle, respectively, associated to a complex vector bundle &.
Let (=™, ¢, S') be a semi-free action on a homotopy sphere %", with fixed
point set F' a homotopy p-sphere. Let » be the normal complex g-plane bundle
of F in X", 2g=m—p. The fixed point set F? is called untwisted when 7 is
the trivial complex g-plane bundle.
Then we shall have

Theorem 2.1. If a homotopy sphere Z?**? admits a semi-free S*-action with
some F*& @, as fixed point set for p+2q=7, then

CP(PC) = (S? X CP?) § 56727

where 1 is the normal complex g-plane bundle of F? in 3?*? and C denotes the
trivial complex line bundle.

Theorem 2.2. If a homotopy sphere Z?**? admits a semi-free S'-action
with some F*&®©, as fixed point set, for p+2q=7, p<2q—1, then

F?XCP'=(S?XCP") § 3¢,

Theorem 2.3. If a homotopy sphere Z?**? admits a semi-free S'-action
with F*€© ,(0r) as untwisted fixed point set for p+29=7 and q: odd,, then

P J(SP X CPY).
Theorem 2.4. If a homotopy sphere Z'*"'"? admits a semi-free S'-action
with F**7'€0,,_(0r) as untwisted fixed point set for 4p—14-4q=7, then
S#(—oU)el(S* ' xCP*),

where U is a manifold constructed as follows. Let W*? be a parallelizable manifold
with OW=F. Then U is a parallelizable (4p-+4q)—manifold such that Index U
=Index W and 0U is a homotopy sphere.
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Theorem 2.5. If a homotopy sphere 3?9 admits a semi-free S'-action
with F***'€ 0, ,,,(07) as untwisted fixed point set for 4p+1+-4q (4 13)=7, then

S #(—0U)eI(S*" ' x CPY),

where U is a manifold constructed as follows. Let W***? be a parallelizable
manifold with 0OW=F. Then U is a parallelizable (4p+2+4q)-manifold such
that Arf U=Arf W and 0U is a homotopy sphere. When 4p+1-+49=13 or 29,
Zel(S* x CP*).

Corollary 2.6. Any homotopy sphere 3?7 which is not a spin boundary,
does not admit any semi-free S'-action with F?&®© ,(0r) as untwisted fixed
point set for p+1, q: odd and p+29=7.

Milnor [17] and Anderson, Brown and Peterson [1] have proved that there
exist homotopy spheres Zg**!, 3§*** not bounding spin-manifolds for any
k=1. Hence Corollary 2.6 brings about the following

Corollary 2.7. The homotopy sphere Z§*** (resp. 2§***) does not admit any
semi-free S'-action with F*€© ,(0r) as untwisted fixed point set, if p+1 and

(81-+1—p)/2 (resp. (8k-+2— p)[2) is odd.

Remark 2.8. When (8k+2—p)/2 is even, G.E. Bredon has constructed
some examples in [2]. For example, the homotopy sphere =3° (resp. =°) admits
a semi-free S'-action with the natural sphere as untwisted fixed point set of any
codimension divisible by 4.

On the other hand we can construct some semi-free S*-actions on homotopy -
spheres by making use of the results of Brieskorn and Hirzebruch [4], [8].

Proposition 2.9. For any ke Z, k337 admits a semi-free S'-action
with k23" as fixed point set.

Proposition 2.10. For any ke Z, k="' admits a semi-free S'-action
with R 2" as fixed point set.

REMARK 2.11.  Theorem 2.1 is a generalization of H. Maehara [15].

3. Preliminaries

In this section we shall, for the benefit of the reader, prove a lemma of
Browder [5] which will be necessary afterward. For a general discussion of
semi-free S'-actions we refer to [3] and [5].

Let (2™, @, S*) be a semi-free action, with fixed point set F?C =™, F? a
homotopy p-sphere. According to Uchida [23], the normal bundle of F? has a
complex structure such that the induced action of S* on it, is the scalar multi-

plication when we regard S* as {z& Cllz[ =1}. In particular the codimension
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m—p=2q. Let » be the complex bundle over F defined by the action. It
is shown by Hsiang [9] and Montgomery-Yang [18] that if ¢g=1 and m>6,
then 3”=S" and F=S""? embedded as usual, and the action is linear. There-
fore we may restrict ourselves to ¢>1. Let B(y) be an invariant tubular
neighbourhood of F in 3™ (see [7, page 57]) (here we identified an invariant
tubular neighbourhood with the total space of the normal disk bundle), and
let S*7* be the boundary of a fibre of B(n). When ¢>1, it follows from a
general position argument that z,(3—F)=={1}. By making use of the Alex-
ander duality theorem, we can prove that the inclusion S**7'*C=—F induces
isomorphisms Hy(S*?")=H(=—F) of homology groups. It follows from
J.H.C. Whitehead [24] that if ¢>1, then S*?"'C=—F is a homotopy equiva-
lence. Now let N=3—B,(n) where B,() is the interior of an invariant
tubular neighbourhood of F, with By(7)C Int B(z). Then S* acts freely on N,
and on S??7'CN, and S?**7* is homotopy equivalent to N. It follows from
the exact homotopy sequence of the fibre maps, using the diagram

St > N

51S* — NJS"

that S?77!/S*— N/S' is a homotopy equivalence. Set N=N/S'. Since the
action of S* on S**7* is standard, S*?7'/S'=CP?"’, and since S??™* is the fibre
of B(n) over F it follows that its normal bundle is equivariantly trivial, so that
we get an embedding D?*' X CP?'c N™7}, and it is a homotopy equivalence.
Similarly it is easy to prove that the region between dN and S?XCP? " is an
h-cobordism, so if m>6, by the A-cobordism theorem of Smale if p>1 [22],
or its generalization, the s-cobordism theorem if p=1 [13], it is diffeomorphic to
the product S?XCP?'x1I, and hence N is diffeomorphic to D?*'xCP?},
and N— N is equivalent to

tdXh: D?*'x §%7 — D CPY?

where h: S**"'—>CP?"' is the Hopf map, i.e. the principal bundle N—N is
induced by the map N —CP“"" of the homotopy equivalence.
Hence we have shown the following

Lemma 3.1. Let (3™, @, S*) be a semi-free action on a homotopy sphere
3™, with fixed point set F' a homotopy p-sphere. Then the normal bundle of F
in 3 has a complex structure such that the induced action of S* on it, is the scalar
multiplication when we regard S as {zeC‘lzl:l}. In particular m—p==2q.
Let N be the complement of an invariant open tubular neighbourhood of F in
™. If ¢>1 and m>6, then N is equivariantly diffeomorphic to D?*'x S*,
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with the standard action on S**7*, trivial action on D**'. In particular 3™ is
diffeomorphic to B(n)UD?* X S*™' where f is an equivariant diffeomorphism

s
f: 0B(n)— S?x 8% and U means we identify 0B(n)C B(n) with S?xS**
7
c D?+' X S*7 via the diffeomorphism f.

4. Proof of Theorem 2.1

When ¢g=1, Theorem 2.1 trivially holds (see §3). Hence we may assume
that ¢>1. Let (2™, @, S*) be a semi-free S*-action on a homotopy sphere %",
with fixed point set F a homotopy p-sphere. Let » be the normal complex
g-plane bundle of F in 3™, 2g=m—p. Then we have an equivariant
diffeomorphism f: S(7)—S?x.S??"* such that B(7) &JD"“X S?77* is diffeomor-

phic to the homotopy sphere =™ by Lemma 3.1. We write B(%) (resp. S?x D*?)
in the form

B(n) = DY x D**y D§ x D*
n
(resp. S?x D* = D% x D**\J D% x D*)
id
where U means we identify (8D{)x D* with (0D§)x D** via the diffeomor-

n .
phism % obtained as follows. Let /€=, (U,) be the characteristic map of

the bundle . Then the diffeomorphism
h: (8D})x D** — (0D3)x D*
is defined by
h(x,y)= (x, “l(x)y) .
We can assume that
fIDEx S ": DEx S* ' —— D4x S§**

and that f | D§ X S*?"'=id by making use of the relative ~-cobordism theorem.
Let B,(n) be DYx D2 Dj§x D% where D?? denotes the disk of radius &,
7'/

0<&€<1 and »’ denotes the restriction of ». Canonically we can extend the
diffeomorphism f to the equivariant diffeomorphism

f: B(n)—Int By(n) —> S?x D**—S?x Int D
Hence we have the following equivariant diffeomorphism
D$x D U (B(n)—Int B,(n)) U D?*' x S
id f

L DPXDPU(SPx D¥—S?x Int D) DP X St
dufuid U nt DY)y
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It is clear that D{x Dy (B(n)—Int Bs(n)) UD?*tx §*7" is diffeomorphic to
id f
=" —Int (D} x D??) and
DX D (S?x D*— S Int D)y DP* x S~
id id’

is diffeomorphic to S™—Int(D§x D??). It follows that the obstruction to
extending the diffeomorphism

id U f Uid: =™ —1Int (D¢ x D7) — S™—Int (D% x D7)

to ”— S™ is nothing but =", Here we identified ®,, with the pseudo isotopy
group 7%, (Diff S™7*) of diffeomorphisms of S™~' due to Smale [22]. Conse-
quently we have

Lemma 4.1. The obstruction to extending the diffeomorphism
f: S(n) — S?x S

to B(n)— S?x D* is nothing but =™.
Let (S(vyEBC), Py S ‘) denote the S'-action which is given as follows.
By making use of a local trivialization, we can represent each point of S(7pC)

by (x, 2, *+, 2, %) With ilzi|2+ |2|*=1 where x is a point of F. Then the
action -
@0 S'XS(nPC) —> S(rPC)
is defined by
‘7’1(&’, (x) Byttt zq,'z)) - (.X', 831 R gz) .

Since the bundle »@C is a complex vector bundle, this operation does not
depend on the choice of local trivializations.

Let (S(n)xDZHB(n)xS‘, Pn SY), (SPX S, @, 8, (S?X S x D
S?x D*x S, ¢, S*) denote the S’-actions which are given in similar ways.
Denote by S,(»C) (resp. SZ(nGBC)) the following invariant submanifold of
S(npC) for €, 0<eE<]:

{(x’ Rty Ry z)‘lz,|2—|—---—|—|zq|2—}—|z|2:1, lzl é&}
(resp. {(x, 2,0, gy z)llz,!z—l—---—l—lquz—l—|z|2=1, | 2] ge}) .

Since the structural group of the fibre bundle S(»PC) is the unitary group
U(g+1), the above set does not depend on trivializations. Let d,: S,(npC)—

S(n) x D? (resp. d,: S,(nPC)—>B(n) X S ‘) be the diffeomorphism defined by
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)

(resp. dz(x’ 1yt Ry z) = (.’X‘, \/fl—é‘z’ cery \/12182’ fr))
where a=\]z|"F+z*-

Z P4
dl(x: Bty g 2) = <x’ ’j)"’ )—al;

mlbz

Since for g€ 87, (x, 2,,*, g, 2)ES,(nPC)

d1°¢1(g) (x) Bty By 2'))
= d\(x, g3;,***, £3¢, £7)
- (xgegi g_z)

a a &
= & R R
¢2<g)<x9 a ’ ’ a ) E))
= ¢2(g? dl(x’ Bty gy 2‘)) ’

d, is equivariant. Similarly d, is equivariant. Hence we have the following
equivariant diffeomorphism

d=d Ud,: SmPC) = S,(nPBC)US,(nBC)
— (S(n)xngB(n)x S, @, 7).

Similar arguments prove that there exists an equivariant diffeomorphism
d': (S?xS*, @, SY)—>(S?XS* ' xD*US?xD*xS", ¢,,S'). Define a map
id

d;: B(n)xS'—— B(n)x S"
(resp.d,: SPX DX S' — S?XD*?x S")

dy(y, 2) = (P45 ) 2) for yeB(n), z€S"
(resp. d(y, &) = (¢34(2, ), z) for yeS?xD¥, zc S‘)
where ), (resp. #,) denotes the action defined by
éz(g, (%, 2500y zq)) = (%, g2,,*, 83,) for (x, 2+, 2,)EB(n)
(resp. gﬁ‘(g, (%, 2y 000y zq)) = (x, g3,,°++, 8%,) for (x, 2, 2,)E S"XD“) .

Let (B(v;)x S, @, S 1)(resp. (S?xD*x S, @, S 1)) be the action defined by

2. (2 (3, ) = (3, g2) for yeB(n), z, g=S"
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(resp. <ps(g, (», z)) = (y, g2) for yeS?xD¥, z g= S‘) .
Then we have
Lemma 4.2. d, (resp. d,) is an equivariant diffeomorphism
d,: (B(n)x S", ¢/, 8') —> (B(1)x 8%, @5, %)
(resp. d,: (S?xD*x S*, @/, 8) — (S?x D x S*, @,, S))
where @, (resp. @) denotes the restriction of @, (resp. @,).
Proof

dogp. (8, (3, 2)) = d(Ple, ¥), £3)
= (2.(22, P48 7)), 83) = (P 558, ¥)» £2)
= (242 9), £2) = 2:(& (P2, ¥), 2))
= o:(g, d(y, 2)) .

This shows that d, is equivariant with respect to @,’, @,. On the other hand,
define a map

ds: B(n)x S*— B(n)x S*
by
ds(y9 z) = (@2(23 y), 2) .

Then we have d;od,(y, 2)=ds(¢2(2, ), 2)=(¢'2(z, Po%, y))’ 3)2(@(2'2: ) z)

== (y’ 2’) and d3°d5(y» 2’) = da(‘ﬁz(z) y)) Z) - (‘ﬁz (27 ¢2(2‘, y))) 2) = (@2(2'2’, y)) 2)
=(y, ?), 1.e., d;od,=d,od,=identity. Obviously d; and d, are differentiable,
hence d, is an equivariant diffeomorphism. As for d,, the proof is left to the
reader.

It follows from Lemma 4.2 that we can construct a semi-free differentiable
action

(S(mx D UB(1)X S, o/ U, S?)
(resp. S"szq“xDZ’EJ,SPxD”x S, @/ Ups, SY)
where dy = d,| S(n)x S* (res;. d/ =4d,|S?x S5 xS
and @, = @,| S(m) X D? (resp. p,”” = ¢,| S X S* 7' x D?) .

Then we have
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Lemma 4.3. id Ud, (resp.id Ud,) is an equivariant diffeomorphism
id Ud,: (S(1)x D? UB(7)x S, @, %)
— (S(n)x D? Y B(n)x S*, " Ups, S')
(resp. id Ud,: (prSz"'lxDziLdJ S?x D*x S*, ¢, S7)
—— ($PX S X DY SPX DX S, 9" U, SY).
Proof. Since the map is well-defined, this lemma follows easily from

Lemma 4.2.

It is clear that the orbit space S(nPC)/p, is diffeomorphic to CP(nPHC)
and S?x S**/p, is diffeomorphic to S?xCP?.

Lemma 4.4. The composition d,o(f X id)od3'|0B(n) X S* is equal to
fxid|0B(n)x S*.

Proof. For ye0B(n), z& S", we have
d,o(f xid)od5(y, %)
= d,o(fxid)o(P(z, y), %)
= d,o($.(2 f(9)), )
= (@5 2(2 /(). 2)
= (f(y), 2),
completing the proof of Lemma 4.4.

Lemma 4.5. The composition (d,|~)o{(fxid)|~}o(d5/~)|0B(n) of the
maps induced by the equivariant maps, is equal to f.

Proof. Since the action ¢, (resp. @) is trivial on the first factor B(n) of
B(n)x S* (resp. S?xD* of S?xD* x S"), this lemma follows directly from
Lemma 4.4.

Now we prove Theorem 2.1. It is clear that the orbit space S(»PC)/p, is
diffeomorphic to CP(7@C), hence (S('r])XD"’ U B(n)xS‘) [(p,” Ug;) is diffeomor-
dy’

phic to CP(npC) by Lemma 4.3. Similarly (S?x S***xD*US?xD**x .S")/
dy/
(@, Up,) is diffeomorphic to S? X CP? by Lemma 4.3. Hence the composition

T = {(id U d,)|~}o{(fxid)|~}o{(id Udy) |~}
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gives a diffeomorphism
T: CP(nPC)—Int B(n) —> S?XCP?—S? X Int D>

such that T |0B(7)=f by Lemma 4.5. It follows from Lemma 4.1 that the
obstruction to extending the diffeomorphism

T |0B(n): 0B(n) —> S?x 0D
to B(n)— S?x D* is nothing but Z#**?, 'Thus we have a diffeomorphism
TUS: CP(nPC)—> (S?XCP?) g 32+

where S denotes a diffeomorphism obtained by Lemma 4.1. This makes the
proof of Theorem 2.1 complete.

5. Proof of Theorems 2.2, 2.3, 2.4 and 2.5

5.1. Proof of Theorem 2.2

According to Theorem 5.5 of Browder [5], the normal complex bundle »
of the fixed point set F' in =" is stably trivial. Therefore this theorem follows
directly from Theorem 2.1.

5.2. Proof of Theorem 2.3

In the proof of theorem 6.1 of Browder [5], it is shown that F? X CP” is
diffeomorphic to S? X CP? for F?&® (=) and for ¢: odd. Applying Theorem
2.1, it follows that S? X CP'=F? X CP'=(S? X CP?) # =***, i.e., 2?7 belongs
to the inertia group I(S? X CP?), completing the proof of Theorem 2.3.

5.3 Proof of Theorem 2.4

Let W** be a parallelizable manifold with 9W=F*"". Let U be a paral-
lelizable (4p+-4¢)—manifold such that Index W=Index U and 98U is a homotopy
sphere. Remark that there always exists such a manifold U (see Milnor [16]).
Then it is shown that F**7'x CP?* is diffeomorphic to (S*?"'XCP**) 43U in
the proof of Theorem 6.2 of Browder [5]. Applying theorem 2.1, it follows that
(8?7 X CP*) g 0U=(S"?"' X CP*) § 327" je., S #(—0U)el(S** ' X CP*),
completing the proof of Theorem 2.4.

5.4 Proof of Theorem 2.5
We first show the following

Lemma 5.4.1. There exists a parallelizable (4k-+2)-manifold M**** with
boundary a homotopy sphere OM**** such that Arf invariant of M is equal to 1 for
any integer (=1, 3)>0.

Proof. Let ¢: 7,,(SO,.,)—>7,(SO) be the natural homomorphism induced
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by the inclusion SO,,,,CSO. Let veKer ¢ be the unique non trivial element
(see Kervaire [12]) and let (B, S**', D**| p) be the disk bundle over sphere
with the characteristic map vEz,(SO,.,). Let B,, Bs be two copies of B.
When we regard

Bm as D§k+1XD§k+1L\‘JD§I;+1XD§k+1
and BB as D§k+1XD2k+l E‘JD?I’HIX D§k+1 ,

the plumbing manifold of B, and Bg is defined to be the oriented differentiable
(4k+2)-manifold obtaind as a quotient space of B, U B, by identifying D3**'x
D' and DE**!' x DE**' by the relation (x, y)=/(y, x)(x & D3**'= D1,
ye D3 '=D3*") and is denoted by B,V B (=BVYB). Let M*'* be the
manifold B,V B,. Since v belongs to Ker ¢ and 0M ****=¢p, M **** is paralleli-
zable. It is easy to prove that 0M/*** is a homotopy sphere. According to
Lemma 8.3 of Kervaire and Milnor [14], Arf invariant of M is equal to 1.
This completes the proof of Lemma 5.4.1.

Now we prove Theorem 2.5. Let W*"* denote a parallelizable manifold
with 0W=F*". Let W,=W—Int D***?>, Regarding W, as a parallelizable
cobordism between F**** and the natural sphere S*’*!) we can construct a
normal map

G: (Wy; F*r+1y S*+) — (S I; S#+1 %0y S*?+ x 1)

with G|S**' =identity. Multiplying by CP?*? we get a normal map
Gx1: (Wy; FUS*?T)XCP*—(S*?*'x I; S x 0US*?*"'x1)xCP* with
Gx1|8**x CP*=identity. Then the invariant ¢(G X 1) of Theorem 2.6 of
Browder [5] is defined. Since the index of CP*? is equal to one, o(G X 1) is
equal to o(G) by Sullivan’s product formula (see Rourke [21]). By the defini-
tion o(G) is nothing but Arf W. If 4p+2+4-4g=14, we can find a parallelizable
(4p+2+-4g)-manifold U such that Arf U=Arf W and 90U is a homotopy sphere
by Lemma 5.4.1. It follows as in the proof of Novikov’s Classification
Theorem [20] that F'*2** X CP?* is diffeomorphic to (S**' X CP*?) #0U. Hence
S # (—0U) belongs to the inertia group I(S*?*' X CP*?) by Theorem 2.1. When
4p+1+4g=13 or 29, Ker (G x 1), can be killed by surgeries (see Theorem 2.10
of Browder [5] and [6]), hence F**'xCP?*? is diffeomorphic to S**'Xx CP”.
Therefore the homotopy sphere X*#*'**? belongs to the inertia group
I(S*?*' x CP*"). This completes the proof of Theorem 2.5.

6. Proof of Corollary 2.6

If a homotopy sphere %#'?? admits a semi-free S'-action with F?&® ,(0r)
as untwisted fixed point set for ¢: odd, then

S e [(SP X CPY)
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by Theorem 2.3. Since the second Stiefel-Whitney class W,(S?x CP?) is zero
for ¢: odd, S?XCP“ is a spin-manifold (see Lemma 1 of Milnor [17]). Clearly
7,(S?x CP?)={1} for p=1. It follows from Lemma 9.1 of Kawakubo [10] that
the homotopy sphere 2?**? bounds a spin-manifold. This completes the proof
of Corollary 2.6.

7. Proofs of Propositions

7.1. Proof of Proposition 2.9

Let us recall the explicit description of homotopy spheres in ©,,_,, ,,(07)
given by Brieskorn and Hirzebruch [4], [8]:

A2 el
2 -
"'+22P+2q+1 =0, |z|*+-+ ,22p4,2q+1|2 = 1} = kY.

4p—-14q __ 2p+2q+1
2alen-1 = {(zn ) zzp+2q+1)ec b

Let k=3 'Ck 23" be the imbedding defined by
(zv Tty 22p+1) = (2’1, **ty Bapts 00) .

Consider the action of S' on the last 2¢ variables of 33%;14*? defined as follows.
Let 4: S'— SO(2) be the representation defined by

cos@ —sin 0)

A(e*) =
(") (sin 0 cos 0
and let @: S*'— SO(2g) be the representation defined by

A(e') 0
A(e'?)

0 ()

() =

Then S* acts on the last 2¢ variables of Z3%;%*? by means of the representa-
tion @. It is obvious that this action is semi-free and the fixed point set is
>4%:L,. This completes the proof of Proposition 2.9.

7.2 Proof of Proposition 2.10

Let us reall the explicit description of homotopy spheres in ©,,,,.,/(07)
given by Brieskorn [4];

ip+1tag __ 2p+2q+2
E:II‘{/; ! = {(211 Tty 22p+2q+2) eC?

|21|2+"' + |329+2q+z|2 = 1}

3 2
F1+R5+ 4 z§p+2q+2 =0,

Let 3% C 2% be the imbedding defined by
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(2»'1, Ty zzp+2)}_’(zl, seey 22p+2) 0-..0) .

Let @: S*'— SO(2q) be the representation defined in the proof of Proposition
2.9. Then S* acts on the last 2¢g variables of 2?*'**? by means of the repre-
sentation @. It is obvious that this action is semi-free and the fixed point set
is %™ On the other hand there always exists the natural semi-free S’'-
action on S**'**? with S*?*! as fixed point set. This completes the proof of
Proposition 2.10.

8. A concluding remark

Concerning semi-free S*-actions, it is shown in F. Uchida [23] that the
normal bundle of the fixed point set becomes the quaternionic vector bundle.
Hence similar results are obtained about semi-free .S*-actions.
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