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1. Introduction

The algebraic knot cobordism group G. was introduced by Levine [4] in
order to study the cobordism groups of codimension two knots. In [5], he
gave a complete set of invariants for G. and showed that G, is isomorphic to
Z~D(Z|2Z)*P(Z|AZ). In particular the order a(K) of an odd dimensional
knot K in the algebraic knot cobordism group is equal to 1, 2, 4 or infinite,
and it is determined as follows.

Theorem A. ([5] Prop. 22) (1) a(K) is finite if and only if the local sig-
nature oo(K) vanishes for every symmetric irreducible real factor @(t) of the
Alexander polynomial A(t) of K.

(2) Suppose that a(K) is finite. Then a(K)=4 if and only if for some p-
adic number field Q,, there exists a symmetric irreducible factor \(t) of A(t) over
Q,, such that

(=) MN(—=1), —1), = —1 and &K)=1.

Here ( , ), is the Hilbert symbol and d—=(1/2)deg \(t), and &\(K) is defined as
follows. Let ®(t) be the symmetric irreducible factor of A(t) over Q which has
M2) as an irreducible factor over Q,. Then &\(K) is the exponent of ®(t) in A(t)
modulo 2.

However, in order to determine whether a(K)=4 or not, we must check
the Hilbert symbols for every prime number. The purpose of this paper is to
prove the following theorem, which improves Theorem A and enables us to
determine 4(K) through a finite procedure.

Theorem. If p ¥ 2A(—1), then ((—1)A(1)N(—1), —1),=+1 for any
symmetric irreducible factor \(t) of A(t) over Q,.

Thus, to determine whether a(K)=4 or not, it suffices to check the Hilbert
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symbols only for prime factors of 2A(—1). By using this theorem, we deter-
mine a(K) of evrey prime classical knot K up to 10-crossings.

Acknowledgement. The author wishes to thank Professor A. Kawauchi
for suggesting the problem and his helpful advice, Professor J. Tao and many
people in KOOK Seminar for their encouragement.

2. Proof of Theorem

We need the following lemma for the proof of Theorem (see [7] p. 26,
13: 7).

Lemma. Let f(t) be the product fi(t)fy(t) -+ fu(t) of irreducible polynomials
fi(t) 1=i=n) in Q,[t] such that f,(0)=4+1 (1<i<n). If f(t)yeZ,[t], then
fi(t)eZ,[t] for any i (1<i<n).

Proof of Theorem. If p-adic integers g, r are coprime with p and p=+2,
then we have (g, 7),=-+1 (cf. [9] p. 20 Theorem 1). Hence it suffices to show
that M(1)A(—1)€Z, and M(1)A(—1)==0 (mod pZ,) for any symmetric irreducible
factor A\(t) of A(?) in @,[t].

Since A(t)=A(t™"), there is a polynomial F(x) in Z,[x] such that A(t)=
F(t—2+t™") and F;(0)=A(1)=+1. Let F(x)=F,(x)Fy(x) - F,(x) be a prime
factorization of F(x) in @,[x]. If necessary by multiplying a constant to each
factor, we may assume that F;(0)=4-1 for any j(1<j<#). Then, by Lemma,
Fix)eZ,[x] for any j (1<j<mn). Put \;(t)=F;(t—2+t""). Then n(¢) is
symmetric and A(2)=X\,(£),(2) -+ A,(2).

Since F;(x) is irreducible in @,[x], A;(f) can not be decomposed into
symmetric irreducible polynomials in @,[t]. Hence A;(#) is irreducible or
decomposed into non-symmetric irreducible polynomials in @,[t]. Hence we
may suppose that Ay (Z), -+, A(2) are irreducible and A,y (2), ==+, A, (f) are de-
composedinto non-symmetric irreducible polynomials in @,[f]. Since F;(x)E
Z [x], for any j (1< j <k),

A (DA ,(—1) = F(O)F(—4)EZ, .
Since p ¥ A(—1),
T2 M (On(—1) = A()A(—1)=0  (mod pZ,) .
Hence, for any j (1< j <F),
AN (—1)=E0  (mod pZ,) .

This completes the proof of Theorem.



OrpEeRs or KnoTts 861

3. Application

By using our theorem, we can determine a(K) of every prime knot K up
to 10-crossings. To illustrate our method, we present the calculation for the
knot 8,;. The Alexander polynomial A(f) of 8 is 2¢#—7£4-11#—7t42. The
irreducible factorization of this polynomial in R[¢] is

A(t) = (@t +Bt+7)\ v+ Bt+a),
where a = (1+V29+V2(vV29—1))/4,
8 =(1-vV29)2,
v = (1+V29—V2(v/29—1))/4 .
Thus A(#) has no symmetric irreducible real factor and hence a(8;3) is finite
by Theorem A (1). Since A(t) is irreducible in Z[z], a(8,5)%1 by [3]. So we
consider whether a(8,3)=2 or 4. Since 2A(—1)=2-29, it sufficies to check the

Hilbert symbols only for @, and @,, by Theorem. The irreducible factorization
of A(t) in @,[t] is

A(t) = (at+-b)(ct+d)(et*+ft+e) ,
where  a=0+41:240:224-0-2°+-, b=1+1240:2240:2%+...
c=1+4+0:240-2241.234-.. | d=0+1-241:224-0:23+4-..,
e=1+40-240-2240:234-.. , f=140:240-2240-2%+-.. .

Hence, the symmetric irreducible factor of A(z) in Q,[t] is only ef+ft+e.
Put A(t)=ef+ft+e. Then

(=) MOM=1), —1)o = (—(2e+1)(2e—f), —1)e
= (14+0:241-224-1-284.., —1),
= +1 (cf. [9] p. 20 Theorem 1).

Next, we check the Hilbert symbols for @,. In general, if p=1 (mod 4), then
(¢, —1),=+1 for any element q of @, (cf. [9] p. 20 Theorem 1). Since 29=1
(mod 4),

(=D AMOM—1), —1)pe = +1

for any symmetric irreducibe factor A (t) of A(f) in @y[t]. Hence we obtain
a(813)=2.

The following is a table of knots up to 10-crossings in the table of [8] with
finite order in the algebraic knot cobordism group. The second column
(JA(—1)]) is a list of the prime factorization of |A(—1)| of the Alexander
polynomial A(¢) of a knot K (cf. [1]). The third column ({p, A(f)>) is a list
of a minimal prime number and a symmetric irreducible factor A(f) of A(t)
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over Q, with ((—1)*A(1)A(—1),, —1)=—1 and §(K)=1. Inthe third column,
the symbol “—" denotes that there is no factor and prime number with this
condition. In the last column, o(K) denotes the order of a knot K in the
classical knot cobordism group C, introduced by [3]. The symbol “A”
(resp. “S”’) denotes that the corresponding knot is amphicheiral (resp. slice).
Amphicheirality is copied from [1]. Sliceness is copied from [2] (cf. [6]).

K |a(-1)| <p, A a(K) o(K)
4 5 — 2 2(A)
6, 32 — 1 1(S)
63 13 — 2 2(A)
7 3.7 3, AR 4 ?
8, 13 — 2 ?
8, 17 — 2 2
8, 52 — 1 1(S)
85 52 — 1 1(S,A)
8, 29 — 2 2@
815 29 — 2 ?
81 37 — 2 2(A)
855 325 — 2 2(@)
820 32 — 1 1(S)
9.4 37 — 2 ?
95 41 — 2 ?
19, 325 — 2 ?
9, 72 — 1 1(S)
90 53 — 2 ?
955 61 — 2 ?
9, 323 By 22— (14134 )t4+1> 4 ?
9,  32.5 — 2 ?
9, 72 — 1 1()
9% 17 — 2 ?
9% 32 — 1 1)
10, 17 — 2 ?
10, 52 — 1 1(S)
10,  32:5 — 2 ?
105, 53 — 2 ?
10, 41 — 2 2@
10, 72 — 1 1)
105 61 — 2 ?
105 53 — 2 ?
10, 3-19 3, AR 4 ?
105  5-13 — 2 2(A)
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K Ja(-1)| <p, 0P a(K)  o(K)
10,4, 37 — 2 ?
1045 72 — 1 1 (S)
104, 53 — 2 2@
10, 34 — 1 1(S)
10,3 73 — 2 2 (A)
10,5 89 — 2 2(A)
10, 72 — 1 1(S)
1055 5-13 — 2 ?
105 5:17 — 2 ?
10is  3-19 3, AR 4 ?
10, 7-11 {7, PP—(5+2:T+)t+1> 4 ?
105 34 — 1 1(S)
104 61 — 2 24
105 5-17 — 2 24
1086 83 <83, AR 4 ?
10g; 34 — 1 1 (S)
10gg 101 — 2 2 (A)
10 7-11 <7, 2= (54074 )t +1> 4 ?
10y, 73 — 2 ?
10  3-31 By t2—(141-34 )t +1) 4 ?
1050 3¢ -~ 1 15,4
10, 73 — 2 2
10,04 7-11 T, 28— (54474 n+1> 4 ?
10, 3-31 G, (14234 )8+ (04034 )2+ (14 t+1> 4 ?
10500 5-17 — 2 2@
10,5 109 — 2 2(@4)
10,5 97 — 2 24
1049 101 — 2 ?
10,5 112 — 1 1(S, A)
10,59 52 — 1 1(S)
10,35 37 — 2 ?
10457 52 — 1 1(S)
10440 32 — 1 1(S)
10,6 3-11 B, 2= (14134 )41 4 ?
1055 1 — 1 1(S)
10555 52 — 1 1(8)
1045 - 32+5 — 2 ?
1055 32:5 — D) :
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