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1. Introduction

1.1. Background In this paper, we are concerned with compressible, viscous,
isentropic flow in three (and two) space dimensions. The fluid motion is described in
the following form by the conservation laws of mass and momentum:

1.1) pr +div(pu) = 0,
(1.2) (pu); +div(pu @ u) + Vp(p) — pAu — (A + p)V(divu) = pf.
Heret > 0 is time,x =(1,...,x,) € R" (n =2 or 3) is the spatial coordinate,

plx, 1), u(x,t)= (ul(x, t),...,u"(x, 1), p(p)=ap” (@ >0, v>1)

represent respectively the fluid density, velocity, and presgure, (FI&). ..., f"(x))
is the external force, and, A are viscous coefficients which satisfigs> 0, 3\+2u >
0 by physical requests.

The local (in time) solvability to the various initial boundary value problems for
the full Navier-Stokes equations (which include also the conservation law of energy)
was obtained by Nash [11], Solonnikov [14], and Tani [16]. The first result about
the global theory is that of Matsumura and Nishida [7], who proved the global exis-
tence of H3-solutions around a constant state for the Cauchy problem without external
forces. Afterwards, in the case that external potential force field is small enough, and
for the interior or exterior problems, almost the same results were derived by Mat-
sumura and Nishida [8]-[9], and Valli [18]. But there have been no remarkable re-
sults in the case witlarge external potential forces except for that of Matsumura and
Padula [10], who proved the stability of the corresponding stationary state (more pre-
cisely, the global existence df3-solutions which tend toward the stationary solution)
for the interior problems.

On the other hand, discontinuous, namely weak solutions play an important role
in the physical as well as in the mathematical theory, and the problem of global exis-
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tence of those have been attracting the attention of many mathematicians. In the case
of ‘small data’, the most general results are those of Hoff [1]-[3] extending that of
[7] (that is to say, for the Cauchy problem without external forces), who proved the
global existence of weak solutions in the casesycf 1, v > 1, and recently for the
full system. In the case of ‘large data’, however, many problems are open even for
the isentropic model. Various researches for these problems have been done by Padula
[12]-{13], Lions [5], Vaigant and Kazhikhov [17], Mamontov [6] and so on, but global
existence results of weak solutions have been obtained only in fairly restricted forms
even under the spatial periodic condition, and there are no satisfactory conclusions in
a physical viewpoint.

Under these backgrounds, placing emphasidaoge external forces aneveak so-
lutions, we consider the Cauchy problem of (1.1)—(1.2) with the initial data

(1.3) (p u)(x, 0) = (po, uo)(x), infpo>0

and with the external force in the form

fx) ==Vo(x),

where ¢ satisfies suitable decay properties in the far field (see (2.1)—(2.3) below). In
particular, we shall derive an asymptotic stability of the corresponding stationary state,
more precisely, prove the global existence of weak solutions when the initial perturba-
tion is suitably small inL2 N L> for density and inH?! for velocity, and the ratio of
specific heats is close to 1.

To show the existence of the global weak solution, we shall basically follow
the arguments [1]-[2] by Hoff. This weak solution will be constructed as a limit of
smooth approximated solutions which satisfy the equations (1.1)—(1.2) with mollified
initial data, so that the main argument in this paper is to obtain a priori estimates for
these approximated solutions. The required estimates will be obtained by way of the
energy methods. We shall start with the energy balance law used in [10], afterwards
apply the arguments of [1]-[2], but various difficulties will arise because the stationary
solution is not a constant owing to the external force. One of the most essential part of
this paper is that we can overcome the above difficulties by making use of Rasincar
type inequalities for unbounded domains and estimating carefully the weighted (in the
spatial direction)L? norm for density.

1.2. Notations and Brief Overview of the Analysis At this stage we give a
brief overview of the analysis for the three-dimensional case, with introducing some
notations.

Provided that an arbitrary potential forgewith suitable decay properties is given
(see (2.1) for more precise), lep,(0) be the corresponding stationary solution which
will be exactly given by (2.4). Then supposing that there exists a sufficiently smooth
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solution (, u#) defined up to a positive tim& , we define
T
@u(1):= sup ([ + 1o~ AN} + [ [Tuto|Par
o<i<T 0
T
@1 = sup [Vu)|+ [ o)
0<t<T 0
T
@1 = sup o)+ [ o) it0|fas
0<t<T 0
and
U(T) = |lp— ﬁ”%w(R”x[O,T])'
Here,
o(t) = min{1,t},
andu is called as the material derivative of , generally given by
. D 0
= —f=|—+u-V
th L’)t ! } f
= fi+ul fj.
(fj = fr;» and summation over repeated indices is understood.) Moreover, with respect
to the notations for norms which we shall use frequently later, we denote the Lual

norm in the spatial direction bjf-|,, in particular theL? norm by|| - || for simplicity.
The initial perturbation, on the other hand, will be measured in the norm given by

Co = |lpo — pll2e + [lpo — AII* + luol|51.

Then, our goal is to obtain the following a priori estimate (see Proposition 4 below):

There exist positive constants, <o, p, p, C and ¢ independent of” such that, if
O, U< p<plx,t)<p, L<y < andCo < gq, thend(T) +¥(T) < CC§.
Here we have denoted & + O, + O3. Once we obtain this estimate, the remaining
arguments to obtain the global weak solution and its asymptotic behavior are almost
the same as that of [1]-[2].

This paper is organized as follows:

In Section 2, we shall give a precise formulation of our results after referring to
the stationary solution.

In Section 3, we shall start to derive the required a priori estimates, in particular,
deal with ® . Then we can conclude thét is estimated by the initial perturbation term
Co, the weighted norm for density
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o —B?
’a) = | L @

which will arise by the decay properties ¢f and the higher order terms

T T
Ry(T) := /O IVu(®)||3de,  Rs(T) = /O o(t)||Vu(t)||3dt

owing to the convection term - Vu in (1.2).

Section 4 is devoted to the key estimates ®y, also for R, and R3;. To do
that, we shall employ the quantitigs  (called ‘effective viscous flux’) &nd QE&( )
(which is related to vorticity) given as follows:

Y
Fo= 2“~+)\div:4a{<g> 1},
p7 p

ik
Qik = MY

,37

We note here that Hoff used the similar quantities in [1]-[2], but we have divided
them by p? from technical reasons.

In Section 5, we shall estimat¢  and complete the all estimates. This part of the
argument is similar to [1] except for some adjustments.

Remark. The argument in the two-dimensional case is similar except for a little
adjustments about the weight and some exponents, as guessed easily from the follow-
ing lemmas. More precisely, replacing the weight(11+ |x|)? by

1
(1 +[x[)*{1 +log(1 +|x[)}?

and improving exponents about the Sobolev’'s embedding, we can apply the proof for
n = 3 also forn = 2. Therefore, we shall mainly discuss the case of = 3, and the
indication ton =2 will be given at the points where it is required.

1.3. Auxiliary Lemmas As the last part of introduction, we recall some in-
equalities frequently used below.

First, combining standard Sobolev inequalities (see Ziemer [19]) abidads in-
equality, we then derive the following elementary estimates:

Lemma 1 (Sobolev's Embedding). For any f € HY(R"),

£ < Cull fIIE=P/2| v £|®P=8)/2 for p € [2,6], whenn =3,
1£15 < Cull FIRIV £11P72, for p > 2, whenn = 2.
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Moreover we shall prepare the following inequalities which are obtained by easy
calculations. Similar inequalities are proved in Ladyzhenskaya [4].

Lemma 2 (Poincaé-Type Inequality). For any f € HY(R"),

|.} (;C)| / 2 =
BN N < \V/ =
/3 ( ‘ |)2d.x C 3| f| , whenn 3,

/ | f(x)[?
re (1+|x[)2{1+log(l +|x[)}?

dx < c/ IVf|?, whenn=2
R2

2. Precise Formulation of the Results

In this section, we shall give a precise formulation of our results.

2.1. Stationary Solution Now, we shall discuss the external potential force and
the corresponding stationary solution. We assume that the given poteénisalksuffi-
ciently smooth (it is enougly € H%), and that its first and second derivatives have
decays in a suitable sense. As is known from the following argument, in the three-
dimensional case, it is sufficient that

C 5 c
. < — < -
(2 1) ‘D¢(X)|_ 1+|.X|’ |D ¢(x)|— (1+|X‘)2
where D* f :={(0/0x)*f | |a| = k}. In what follows, we assume that satisfies
(2.2) Il + lIxI1Dglll, + llx[*I D2l < M

for someM < co. In the two-dimensional case, on the other hand, we assume a little
stronger condition

(23)  [I9llms + lllxltog( +|xIDo|l, + [I{Ix[log(d +|x)}* D*6[] ,, < M.

Now, we take a constani,, > 0 and consider a stationary solutioﬁﬁ(x), ii(x))
satisfying the condition

(), @(x)) — (poc. 0) as|x| — oc.

Since the stationary solution will turn out to be unique anhdbe zero on Section 3
(see Remark in the proof of (3.1)), it suffices to look for the stationary solution in the
form (g, 0) from the beginning. Then by (1.2),

aV(p?) = —pVe,

and a formal calculation leads us to obtain
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pwexp{—gqs(x)] T
_ 1/(r-1)
[poov—l—” )

avy

(2.4) plx) =
Jf oy > 1

Therefore, in order to avoid the vacuum state, we must expect

(2.5) supg < ﬂlpoo%l, if > 1
o

In fact, it is easy to see that if is close enough to 1 for givep then (2.5) holds.
More precisely, there exist constarii§M) > 1 and p(M), p(M) > O such that the
condition 1< v <7 implies (2.5), and in particular

(2.6) p <infp < supp < p.

2.2. Main Theorem To begin with, we shall give the definition of weak solu-
tions.

DerinimioN.  We say that 4, ) is a weak solution of Cauchy problem. (1 1)—(1 3)
provided thatp € L% (0, co; L>(R")), u € L% (0, oo; HY(R")), and for all test func-
tions 1) € D(R" x (—o0, x0)),

oot s s [ v Tvyaxar =0
and
L mebo 0+ [ ol - s ploy, ) v
— /000 g {MVuj Vi + (u+ A)(diVu)¢j} dxdt = /OOO/R poivdxdt, j=1,... n.
Then, we can formulate our results as follows:

Theorem 1 (Main Theorem). In (1.1)—(1.2) letn =3, p =ap” (a > 0, v > 1)
and fix a positive constang,, and the system parametets p, A\. We also assume
that an arbitrary f = —V¢ satisfying(2.2) for someM < oo is given. Then, there
exist positive constantsy (€ (1,7)), €0 (depending only oM p.,, a, 4 and A) such
that if

{ 1< v <,
Co = |lpo — pl|% +1lpo — B> + Juol?: < <o,

then the Cauchy problerfl.1) — (1.3) has a global weak solutiofp, u) satisfying
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p—p€C([0,00); HYR3), p(-,1)—pe(L?>*NL®)R%, ae.r>0,
uecC ([O, 00); LZ(R3)) :
0 < infp < supp < co.

Moreover, (p, u) — (p, 0) ast — oo in the sense that, for alp € (2, oc],
Iim ([ (o(-. 1) = 3 u-.0))], =0.

RemaArk. In the isothermal case = 1, for an arbitrary¢ satisfying (2.2), ifCo
is sufficiently small, then the same statement as Theorem 1 holds.

Remark. We can obtain further regularity of the solution. See [1]-[3].

Theorem 2 (Two-Dimensional Case).Whenn = 2, replacing the assumption
(2.2) in Theorem 1by (2.3), the similar statement tdheorem 1holds.

3. L2 Bounds

In this section, we start to derive a priori estimates for smooth solutions of (1.1)—
(1.2). As stated in the previous section, we shall mainly discuss the three-dimensional
case.

To begin, lety, p, p be as (2.6) andpy( u) be a smooth solution of (1.1)—(1.2)
which is defined up to a positive timg . (The assumption that§ is smooth means
that (o — p, u) € (C* N H*)(R" x [0, T]) for sufficiently largeks, k».) And we assume
that vy € [1,7], p(x,t) € [p,p] and &, ¥, Cy < 1. Moreover,C > 0 will denote a
generic positive constant ‘which may depend Mn p.., a, 1 and A, but not onvy (as
long asy <7) and T . Under these assumptions, we remark that

- C 2 C
< — D < —

|vp(‘x)| — 1+|x|7 | p(x)| — (1+|x‘)2
In the following proposition, we derive a bound for the quantity

Proposition 1. &(T) < C {Co+ (v — 1?Ra(T) + Ro(T) + R3(T) }.

The proof consists of three separate energy-type estimates:

Lemma 3.
(3.1) ®(T) < CCo,
(3.2) ®,(T) < C{Co+ (v — 1)*Ry(T) + Rx(T)},

(3.3 @3(T) < C{Co+ (v — 1PRu(T) + Ro(T) + R3(T)}.
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Proof of (3.1). First, applying the mass equation (1.1) and the fact\Whdp) =
—pVo, we rewrite the momentum equation (1.2) in the form

(3.4) pit 4 p { va(p) _ V‘;@) } _uAu— (A4 )V (diva) = 0.

Multiplying (3.4) by u and integrating the resultant equation, we obtain

(3.5) / / o i+ / / {Vp(p) Vz;(ﬁ)}
—/O/u'{qu(Aw)V(diw)}:0.

Here and in what follows we omit the symbols of integral variables, e.gd+’, ‘dx,
and so on, in integral notation unless we are confused. Now noting that

[eidax=15 [oras

holds in general, the first term on the left hand side of (3.5) is

[f55 =4 ]

—/Ol/div(pu)/ﬁp @ds
/Ot/,o,/ﬁp@ds
-J

G(p) = /pp/p pls(s)dsdr.

Integrating by parts also in the third integral on the left side of (3.5), we obtain the
energy-balance relation:

@6 [ {ouf

An easy observation that

t

Next, the second term is

/ol/pu-V/ﬁp@ds

where we define

+/0/{M\Vu|2+()\+ﬂ)(diVu)2} =0.

CHp—p)? < Gp) < Clp—p)
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which follows by use ofG )= G'(p) = 0 andp € [p, p], completes the proof of (3.1).
]

Remark. We know here the uniqueness of the stationary solution at least in a
H3 x H* (O C* x C?)-neighborhood of £, 0). Indeed, we let,"i) be such a solu-
tion then, by (3.6), it follows thafVii| = 0, namelyi = const = 0.

Proof of (3.2). We split the second term on the left side of (3.4) as follows:

Vplp) Vp() _ _—
A R R R
8l P\t
R {(z) ‘1} ]
R U (O
cors{(§) oo
Then, (3.4) becomes
(3.7) pit +ap’v (pi - 1> +av% (Pt Vp

—pAu — (A + p)V(divu) = 0.

Multiplying by # and integrating, we thus obtain

- //pl |2_u//u Au—()\+u)//u V(divu)

o f s (5-) o [0

e The second term on the left of (3.8) is

! 1
j i kK o
7”//“”"[17:“//’4/’/““[[ // ujju +u// wj ubuf + 1 ,/uz)
0 0

=(|uf \2)1/2

t+/0’/<9(|w3>

e By similar calculations, the third term on the left of (3.8) is

'3 o]« oty
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e On the other hand, the second term on the right of (3.8) is bounded by

Cly - 1)//|P AllullVal < Cly = 1)//|1P+|P|

e Finally, the first term on the right can be rewritten as follows:

a/ot/u-vw) (g—:—l)+a/0r/div(i¢)(p’y—,57)
=a/ot/u,~V(ﬁW)<g—j/—1>+a/or/(u-Vu)-V(ﬁ7) (%—1)
+a/or/(divu,)(p7—ﬁ7)+a/0’/div(u-vw(m—ﬁv)

=+ +H+IV .

! !
< c//|u||vu||v5\ < C//|Vu|2.
0 0

(3.9) (") = — (" divu +u -V (o)}

First,

Next, in light of

which follows from the mass equation (1.1), we obtain that

I=a/u-V(ﬁ7)(g—:—l) .

+a/0/u-V(m)ﬁ%{wvdiku-wm)}

=+l g
< c{ fullo= 70+ [ lolioo - 71}
t t
I < C//|u||Vu||V,5| < c//\wz,
0 0
! 1
I3 = —a//div <u-V(p”)~—u> o7
0 pY
t
< ¢ [ [ {uloul v+ (052 + 1%}
t
< C//|Vu|2.
0
Similarly,

e a/(diVu) (0" — 77

;+a/0t/(diVu) {vp"divu+u -V (p")}
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=+ + 1,

c{ [ 19ullo =i+ [ 1¥uolloo~ 71}
N, < C/O’/Wuz.

For the terms containing the second derivatives: of

Iy

IN

s+ IV
a /Ot/ o7 {—=div(u divu) + div(u - Vu)} —a /OI/ prdiv(u - Vu) +a /Ot/ vp" (div u)?

=—(uju£)j+(ufu]j".)kSC|VM|2
1
c/O/(\W|2+|u\|W||vm>

1
c//\wz.
0

Substituting these estimates back into (3.8) and applying the previous bound (3.1), we
then obtain (3.2). O

IN

IN

Proof of (33) Noting that
" d u P Pl

we operatesi/[9/0t + div(u )] to (3.7 and integrate. Then we obtain

(3.10) /Ota/ p%% — M/OIU/ uw {Au,’ +diV(Auju)}
—(A+p) /Ota/ i {diVuj, + div((diVuj)u)}
o {):+((6) )
jt J
—a’y/ota/l;tjp% {%(pv—l_ﬁ'y—l)}.

e The first term on the left side of (3.10) is

2 [ sl ;— %A’a,/pwz ?/pmﬁ(rw/of/mmz)-
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e Next, the second term on the left of (3.10) is

,u/olcr/{(itj)ku,jk+(uj)ku1j,uk}
= [ @)l +uta] / o[ {= @) (), + @) ol
- M/ /|Vu| +M/ / (i) guu] (uf)lkuku{ +0 (|Vil|VuP?)}

_u/ /|Vu| //o Vit [Vuf?)

e Similarly, the third term on the left of (3.10) is

O+ ) /Ola/|(di\-/u)|2+/ota/(’) (v )] [Vuf?) .

e On the other hand, the second term on the right side of (3.10) is

o oo A e )

=(1—7)p7—tdivu
t
< ¢ [ of (il + V).

e Finally, due to (3.9), the first term on the right of (3.10) turns out to be

a/oto/ (itjﬁnY deIVu / / wp W j 7—u V()
+a/0ta/ (W), (E)juk

=+ 1+10

Here,

1
| < C/J/ Vul (|Vie] + |V 3]
0

and

e+ = a/ora/ H(ufm)jg—:}k,m—{(uf)kﬁmk}jg—:

t
< ¢ [ of 19al(97ul + V).
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Substituting these estimates back into (3.10) and applying (3.1)—(3.2), we thus obtain
(3.3). ]

4. Weighted L2 Bounds for Density and LP Bounds for Velocity

In this section, we shall derive bounds for the ter®s R,, and R3, so that we
close the estimates fob  as in Proposition 2. All the assumptions and notations de-
scribed in Section 3 will continue in this section.

Proposition 2. If (y — 1) is sufficiently small, then
&)< C {CO +(T)/2 + \D(T)Z} :
4.1. BasiclLP Estimates To begin, we shall state important estimates based on
singular integral operator theory, with a formal proof. For more details, see Hoff [1]

and Stein [15].

Lemma 4. Let p, g € (1, 00). Then fort > 0,

A

(4.1) IVu@lly < €, (IFOI, * 1201, * 160 = DO,
(p —P)()

(4.2) [IVF@,, [[dve@)ll, < 4 {llit(f)q +[Vu@llg + (v — 1)‘ 1+|x|

i

Proof. These inequalities are followed from the Martinkiewicz theorem, namely
the fact that the operato’?/A’ is linear and bounded o.”
e (4.1) is easily derived by the following bountbr each f € wi»,

IVl < Cplldiv £, + [ eurd £],).

This inequality is, for example, obtained by the following formal calculation:

4 ) .
Bil= ZUAfi
(VY= TAf
= % {0;div f +O(curl £y X}
= % div f + %(curlf)j’k.
e To prove (4.2), we rewrite the equation (3.7) using the quantities2 , as follows:

VF+pdive = pﬁ +O((v = DIV7llp — 5l + V5| Vul).

OperatingVdiv /A, we get the required result fov F, therefore also for di®2 .
]
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4.2. WeightedL? Bounds for Density and LP Bounds for Velocity Using the
above estimates we shall derive bounds Rar R, and R3, to obtain Proposition 2.

Lemma 5. If (y — 1) is sufficiently small, then

4.3) R(T) < C{Co+@(T)},
(4.4) RoT) < C {c§/2 + (T)¥2 + \II(T)3/2} ,
(4.5) Ry(T) < C{CE+d(T)?+W(T)}.

To prove, we here write down again the mass equation in the following form:
D ~ Y _ 5 = Y ~
(4.6) (2u+A)E(p—p)+ap(p =p)=—pp"F — (2u+ Nu - Vp.

Proof of (4.3). Multiplying (4.6) byp(p — 5)/(1 +|x|)?, we then get

2u+ X D lp=pf 5" =5")p— )
p 5 +ap 5
2 "Dr ) @+ D

~ F  p=p u-Vp p—p ~ 1
= _ 23 2P o+ ) —2 . + _ 52 — = 1),
e e RO e R el (B ee )
Therefore,
Dlp=pP , oalo=0P _f IFP | luf
Dt (1 +|x|[)? @+xh2 = 7 L@+ @+x)?)
Integrating and by use of (4.2),
S =p? p° // 1p -5l
Pa+2 | (1 +[x[)?
< ¢ [ (IvFP+ 1w
< ¢ [+ v +eq -7 [ [ L
B (L +x)?
Thus if ¢y — 1) is sufficiently small, (4.3) holds. U

Now, it will be convenient to state some bounds as a lemma that follow easily
from (4.3) and (4.2).
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Lemma 6. If (y — 1) is sufficiently small, then

T
sup o(1) | V(0|2 + / IV EQ)|2dt
(4.7) 0<i<T 0

T < C{Co+O(T)}.
sup a(t)||div§2(t)||2+/ | div Q(r)||%d1
0<t<T 0

Proof of (4.5). In light of (4.1), it suffices to prove the following bounds:

T T
.8) /aHFni,/ ol < C (C3+a?),
0 0
T
4.9) | olo- i< c(croreu?),
0

e For (4.8), we estimate as follows:

T T
4 3
/0 ollFIlf < / SIFIIVE]

T
< sup (|F|P+o|VF|?) / IVF|2
0<t<T 0
< C(CE+a?).

Here we applied (4.7) in the last inequality. The bound for  is proved in a similar
way.

e The proof of (4.9) is similar to that of (4.3). Multiplying (4.6) byp(p — )3, we
then obtain

D4 i
opp = AI'+ C oo = p* < Co (|F[* + ulf).

Integrating the first term in by parts,

o(T)/p|p—ﬁ|4(T>+/oTo/ p—ﬁ“<C/ol/ p—ﬁ“+/oro/ (F1+ lul?).

In light of that the first term on the right side is bounded 6&¢(¥ (1), and that the
second integral on the right has already been estimated in (4.8) (where the tesm for
may be estimated similarly), we then obtain (4.9). U

Proof of (4.4). We divide the proof into the two cases as follows:
e WhenT > 1, applying (4.5) to obtain

r ’ 1/2 r 1/2
I ivuis < (/ w2> (/ ||W||3>
0 0 0
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< c(c?+ 0¥ u?).

e WhenT < 1, we shall discuss as same as the proof of (4.5). Specifically, it suf-
fices to estimatq’o1 73, fol [2]3 and fol llp — p5|13. For the term ofF , we have that

[1eE < /lHFnS/zquHs/z 4
(/ |F|6> (/ ||VF||2>

cCc* (Co+ @)%
c (c3?+0%2).

The required bounds fa? is obtained similarly. Finally, for the ternpofmultiplying
(4.6) by psgnp — p)|p — p|?> and integrating, we then get

1 1
[oo=apws [ [lo=oP<c [mion—il+ [ (1FIZ+]uld)-
0 0

3/2

IN

IN

N

Noting that the first term of the right side is bounded G¢, °, we then obtain the
required estimates. O

Remark. Whenn = 2, the proof is similar except for some exponents concerned
with Sobolev’s embedding. For example, note that

T T
4 2 2
/Oanms/o ol FIZIVE.

to prove (4.8), and so on.

5. Pointwise Bounds and Closing the Estimates

In this section, we derive pointwise bounds for the density and close the all esti-
mates. Therefore, we will be able to complete the proof of Main Theorem by repeating
the arguments of Hoff [1]-[3]. All the assumptions and notations described in Section
3 will continue to hold throughout this section.

Proposition 3. If (v — 1) is sufficiently small, then for somg> 0,

W(T) < C{C§+(T)+w(T)}.

Proposition 4. If (v — 1) and Cy are sufficiently small, then

O(T)+W(T) < CC§.



WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 415

Once we have Propositions 2 and 3, we can obtain Proposition 4 by an elementary
argument based on the continuity ® awd rin and on smallnes% .o herefore,
it remains to prove Proposition 3, which is easily derived from the following lemma:

Lemma 7. If (v — 1) is sufficiently small, then

(5.1) U(T) < C{Co+@(T)+W¥(1)}, forT >1,
(5.2) W(T) < C{Cy+d(T)+W(T)?}, for T <1

Proof of (5.1). Multiplying (4.6) by sgm(— p)|p — p|”/3, we then get
D - _ -
(5.3) Slo = A+ Mo — 53 < € (|FP2 + u]?).
Integrating along particle trajectories to obtain that, far [1, T],

1
1= AOIL < 1= AL +C [ (1715 ul2?).

Applying the embeddingv11%3(R3) — L>°(R3) to the second term on the right side,
we then get

T
10/3 10/3 10/3 10/3
W(r)yR < PR+ C / {Ilis + (171305 + IVulliors) + IV FISSS} -
e For the first term in the integral on the right side,
T
10/3 5 3
/ g3 < [ 1ul¥2vul? < sup ] / IVul2 < cc¥/
1 1<i<T
e Next, by Lemma 4 (4.1),
g 10/3 10/3 g 10/3 10/3 ~110/3
- (1F I+ IVuligs) < € | (1FIg3 + 12l + o = Aligs)
For the term ofF
T
10/3 2/3
/ IFI3 < [ IFI“CIVEIZ < sup |42 / IVE|2 < €22 {Co+ B(T)}
SIS

We apply a similar argument t&@ . And the term fermay be estimated by (4.6) as

T T
10/3 5/3 10/3 10/3
/1 ||P_p||1o§3< C{CO/ +/1 (F||1o§3+|“||1o§3)}-
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e Finally, applying (4.2), we then get

10/3 _ r 10/3 10/3 10/3

/ IVEIGR < ¢ [ (LilidIvuligs + o - 71R5%)
and in light of T > 1, using
10/3 _ r ’
/ Jalig3 < [ 1R val? < sup al** [ |vil? < o),

1 1<i<T 1

then the required bounds are easily derived. O

RemArRk. Whenn = 2, using thaW*R?) — L>°(R?), we can derive the re-
quired estimates in a similar way.

Proof of (5.2). Integrating (4.6) over a fixed particle path (), we obtain that,
fort € (O, T],

|pﬁ|(x(t),z)§c{cl/2 /(||F\|oo+||u||oo)+/0 pﬁ(x(s),s)ds}.

Applying Gronwall’s inequality in light of7’ < 1, and taking appropriate supremums,
we then get

Y(T)* < C(Co+A?).
Here, by the embedding/>4(R®) — L>(R®),
T T
A= [P+ ) < [ (el (1Pl + [Vll) + (9P
o First,
T T

/ Hu||45/ |74 Vul 4 < sup (lull +[|Vull) < o(T)Y2

0 0 0<t<T
e Next, again by Lemma 4 (4.1),

T T
/O (||F\|4+\|wu4>sc/o (1E s+ 12+ o - Blla) -

Here,

T T T 5/8 T 3/8
[t < | ||F|1/4||VF||3/4s</ F||2/5> (/ ||VF||2>
0 0 0 0
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< ccY¥co+r ()< C (Cé/z + <I>(T)1/2) .

The bounds for2 is similar. And the term f@r can be estimated as

T
/o lp =5l < ccg/*wm¥* < c {ci® +w(n)}.

Finally, again by Lemma 4 (4.2),

T T
/0 IVFlla < C/o (licla + 1Vulla * 1o — Flla) .

and note here that

T T
/ litlls < / i [ v 34
0 0
T 1/2 T 1/8 T 3/8
</ 03/4) </ unz) (/ ovu||2>
0 0 0

CP(T)Y2.

IN

IN

All these estimates complete the proof. ]

(1]
(2]

(3]
(4]
(5]
(6]
(7]
(8]

Remark. The proof in the case of =2 is similar.
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