ON SOME NEW CLASSES OF SEMIFIELD PLANES

M. CORDERO* and R. FIGUEROA†

(Received October 21, 1991)

1. Introduction

In [9] Hiramine, Matsumoto and Oyama introduced a construction method that associates with any translation plane of order \(q^2 \) (\(q \) odd) and kernel \(K \cong GF(q) \), translation planes of order \(q^4 \) and kernel \(K' \cong GF(q^2) \). In this article we study the class of semifield planes of order \(q^4 \) obtained from this method and show that with a few exceptions, the members of this class are new semifield planes. This class includes some recently constructed classes of planes; namely the class presented by Boerner-Lantz in [4] and the one by Cordero in [6].

2. Notation and preliminary results

Let \(S = (S, +, \cdot) \) be a finite semifield which is not a field. We denote by \(\pi(S) \) the semifield plane coordinatized by \(S \) with respect to the points \((0), (\infty), (0, 0) \) and \((1, 1) \). The dual translation plane of \(\pi(S) \) is also a semifield plane and it is coordinatized by the semifield \(S^* = (S, +, \cdot) \), where \(a \cdot b = b \cdot a \). Let \(q \) be an odd prime power, \(F = GF(q^2) \) and \(x^q = x = x^q \) for \(x \in F \). Let \(\pi \) be a semifield plane obtained by the construction method of Hiramine, Matsumoto and Oyama. Then \(\pi \) admits a matrix spread set of the form

\[
\mathcal{M} = \left\{ M(u, v) = \begin{bmatrix} u & v \\ f(v) & u \end{bmatrix} : u, v \in F \right\}
\]

where \(f: F \to F \) is an additive function. \(\pi \) is coordinatized by the semifield \(\mathcal{P} = \mathcal{P}_f = (\mathcal{P}, +, \cdot) \), where \(\mathcal{P} = \mathcal{F} \times \mathcal{F} \) and

\[
(x, y) \cdot (u, v) = (x, y) \begin{bmatrix} u & v \\ f(v) & u \end{bmatrix}.
\]

We shall denote this plane by \(\pi_f \). We define the following classes:

*Research partially supported by NSF Grant No. DMS-9107372
† Research partially supported by NSF Grant No. RII-9014056, EPSCoR of Puerto Rico Grant, and the ARO Grant for Cornell MSI.
\(\Omega(\mathcal{F}) = \{ f: \mathcal{F} \to \mathcal{F} : f \text{ is an additive function and } \mathcal{P}_f \text{ is a proper semifield} \} \).

\(\Lambda(\mathcal{F}) = \{ f \in \Omega(\mathcal{F}) : \text{ either } f(v) = \alpha \theta \text{ for some } \alpha \in \mathcal{F} - GF(q), \text{ or } f(v) = av^\theta \text{ for some nonsquare } a \in \mathcal{F} \text{ and } \theta \in \text{Aut}(\mathcal{F}), \theta \neq \tau \} \).

\(\Pi(\mathcal{F}) = \{ \pi_f : f \in \Omega(\mathcal{F}) \} \).

\(\Sigma(\mathcal{F}) = \{ \pi_f : \pi(\mathcal{P}_f) \in \Pi(\mathcal{F}) \} \).

Notice that \(\Pi(\mathcal{F}) \) is the class of semifield planes of order \(q^4 \) which are obtained from the construction method of Hiramine, Matsumoto and Oyama applied to translation planes of order \(q^2 \).

Among the known classes of proper finite semifields we have the following:

(i) Cohen and Ganley commutative semifields [5]

(ii) Kantor semifields [13]

(iii) Knuth semifields of characteristic 2 [14]

(v) Sandler semifields [15]

(vi) Knuth four-type semifields [14], these include the Hughes-Kleinfeld semifields [10]

(vii) Generalized Dickson semifields [8]

(viii) Boerner-Lantz semifields [4]

(ix) \(p \)-primitive type IV and type V semifields [6]

The semifield planes coordinatized by the semifields on class (viii) belong to the class \(\Pi(\mathcal{F}) \), see [12], Theorem 4.3, and those coordinatized by semifields on class (ix) belong to \(\Pi(F) \) where \(F = GF(p^2) \) and \(p \) is a prime number, see [6]. The two main results on this paper state that the only known semifields (from classes (i) to (vii)) which belong to \(\Sigma(\mathcal{F}) \) are the Knuth semifields which are of all four types and the Generalized Dickson semifields.

We now state some properties of \(\mathcal{P}_f \) and \(\pi_f \).

Lemma 1. Let \(f \in \Omega(\mathcal{F}) \) and \(\mathcal{P} = \mathcal{P}_f \). The nuclei of \(\mathcal{P} \) are:

(i) \(\mathcal{N}_1(\mathcal{P}) = \{ (x, 0) : x \in \mathcal{F} \} \),

(ii) \(\mathcal{N}_m(\mathcal{P}) = \mathcal{N}_r(\mathcal{P}) = \{ (x, 0) : f(xy) = xf(y), \text{ for any } y \in \mathcal{F} \} \)

Proof. For \(a = (x, y), b = (u, v) \) and \(c = (r, s) \) in \(\mathcal{P} \) the condition \((a \cdot b) \cdot c = a \cdot (b \cdot c) \) is equivalent to the two equations

\[y(rf(v) + uf(s)) = yf(us + vr) \] (2.1)

and

\[ys f(v) = yf(s) \] (2.2)

Clearly, from 2.1 and 2.2, \((x, 0) \in \mathcal{N}_1(\mathcal{P}) \) for \(x \in \mathcal{F} \) and since \(\mathcal{P} \) is not a field, (i) follows.

Assume now that \((u, v) \in \mathcal{N}_m(\mathcal{P}) \). If \(v \neq 0 \), then from 2.2 with \(y = 1 \) we
have that \(f(s) = f(v) \), for any \(s \in \mathcal{F} \), which implies that \(c = f(v) \in GF(q) \) and \(f(s) = c^s \). This implies that \(\mathcal{P} \) is a field, which is not the case. Thus, \(v = 0 \) and from 2.1 we get that \(\mathcal{N}_m(\mathcal{P}) = \{(u, 0): f(us) = uf(s), \text{ for any } s \in \mathcal{F}\} \).

Let \((r, s) \in \mathcal{N}_m(\mathcal{P})\). Then, as above, \(s = 0 \) and from 2.1 we get that \(rf(v) = f(vr) \), for any \(v \in \mathcal{F} \). By taking \(x = r \) (so \(s = r \)), we have \(sf(v) = f(vx) \), for any \(v \in \mathcal{F} \). This completes the proof of (ii).

The following lemma is a consequence of the previous one.

Lemma 2. Let \(f \in \Omega(\mathcal{F}) \). Then \(f(v) = av \) for some \(a \in \mathcal{F} - GF(q) \) if and only if \(\mathcal{N}_m(\mathcal{P}) = \mathcal{N}_m(\mathcal{P}) \approx \mathcal{F} \).

3. On the class \(\Pi(\mathcal{F}) \)

Let \(f \in \Omega(\mathcal{F}) \) and let \(\pi_f^* \) denote the dual translation plane of \(\pi_f \) with respect to \((\infty)\). We begin this section by showing that the semifields on classes (i)-(v) above do not coordinatize planes in \(\Pi(\mathcal{F}) \).

Lemma 3. Let \(f \in \Omega(\mathcal{F}) \) and let \(S \) be a semifield belonging to any one of the classes (i)-(v) above. Then neither \(\pi_f \) nor \(\pi_f^* \) is isomorphic to \(\pi(S) \).

Proof. If \(\mathcal{P} \) (or \(\mathcal{P}^* \)) is a semifield which coordinatizes \(\pi_f \), then \(\mathcal{P} \) (or \(\mathcal{P}^* \)) has characteristic \(\neq 2 \). On the other hand, if \(S \) belongs to classes (ii) or (iii), then the characteristic of \(S \) is 2 and therefore \(S \) is not isotopic to \(\mathcal{P} \) (or \(\mathcal{P}^* \)). If \(S \) belongs to class (i), then \(S \) is commutative and by using Exercise 8.10 in [11] we conclude that \(\mathcal{P} \) (or \(\mathcal{P}^* \)) is not isotopic to \(S \). Thus in these cases \(\pi_f \cong \pi(S) \) \(\cong \pi^* \). In [3] it is shown that a generalized twisted field plane of order \(p^n \), \(p \) an odd prime, \(n \geq 3 \), admits an autotopism \(g \) whose order is a \(p \)-primitive divisor of \(p^n - 1 \), i.e. \(|g| \mid p^n - 1 \) but \(|g| \mid p^i \) for \(1 \leq i \leq n - 1 \). From Propositions 6.3 and 6.4 in [9] it follows that if \(g \) is an autotopism of \(\pi_f \) then \(|g| \mid 4(q^2 - 1) \). Therefore if \(S \) is a generalized twisted field plane then \(\pi_f \cong \pi(S) \cong \pi^* \). (Recall that every twisted field palne is a generalized twisted field plane, [2].)

Assume now that \(S \) belongs to class (v) above. Then the dimension of \(S \) over \(\mathcal{N}_h(S) \) is \(\geq 4 \) and \(\mathcal{N}_m(S) = \mathcal{N}_r(S) \) ([15], Theorem 1). Since \(\mathcal{P} \) is a 2-dimensional vector space over \(\mathcal{N}_h(\mathcal{P}) \), we have that \(\pi_f \cong \pi(S) \). If \(\pi_f^* \cong \pi(S) \), then by Theorem 8.2 in [11] we would have \(\mathcal{F} \cong \mathcal{N}_h(\mathcal{P}) \cong \mathcal{N}_r(S) = \mathcal{N}_m(\mathcal{P}) = \mathcal{N}_r(\mathcal{P}) \cong \mathcal{N}_r(\mathcal{P}) \cong \mathcal{N}_h(S) \). From here we conclude that \(S \) is a 2-dimensional vector space over \(\mathcal{N}_h(S) \) which is a contradiction. Thus \(\pi_f^* \cong \pi(S) \).

Next we deal with the Knuth four-type semifields. These semifields were defined in [14]. The semifields of type II, III and IV are characterized by their nuclei; type II: \(\mathcal{N}_r = \mathcal{N}_m \approx \mathcal{F} \); type III: \(\mathcal{N}_r = \mathcal{N}_m \approx \mathcal{F} \) and type IV: \(\mathcal{N}_r = \mathcal{N}_m \approx \mathcal{F} \). A semifield of type I has multiplication given by:
(x, y)·(u, v) = (xu + y^{σ^2}v^{σ^2}h, xv + yu^{σ^2} + y^{σ^2-1}v^{σ^2}g) \quad (3.3)

where (x, y), (u, v) ∈ \mathcal{D} \times \mathcal{D}, 1 = σ ∈ \text{Aut}(\mathcal{D}) and h and g are elements in \mathcal{D} such that the polynomial \(x^{σ^2+1} + gx - h\) is irreducible in \mathcal{D}. The next lemma gives the condition under which a semifield plane coordinatized by a Knuth semifield plane belongs to the class \(\Pi(\mathcal{D})\).

Lemma 4. Let \(f \in \Omega(\mathcal{D})\) and let \(K\) be a Knuth four-type semifield. Then \(\pi_f\) or \(\pi^*\) is isomorphic to \(\pi(K)\) if and only if \(f(v) = av\) for some \(a \in \mathcal{D} - GF(q)\).

Proof. Assume that \(f(v) = av\). Then by Lemma 2 and Corollary 7.4.2 in [14] we have that \(\mathcal{D}_f\) is of all four types I, II, III, IV where \(σ^2 = 1\) and \(g = 0\).

Let \(K\) be a Knuth four-type semifield. If \(K\) is of type II, III, or IV and if \(\pi_f \simeq \pi(K)\) or \(\pi^* \simeq \pi(K)\) then by ([11], Theorem 8.2) and Lemmas 1 and 2 it follows that \(f(v) = av\). Suppose that \(K\) is of type I. If \(g = 0\) and \(σ^2 = 1\) then from 3.3 we get that \(K = D_f,\) where \(f_j(v) = hv^{σ^2} = hv\). Hence, by Lemma 2, \(\mathcal{D} \cong \mathcal{N}_f(K) \cong \mathcal{N}_f(K) = \mathcal{I}_l(K)\). Now if \(\pi_f \simeq \pi(K)\) or \(\pi^* \simeq \pi(K)\), then by ([11], Theorem 8.2) and Lemma 2 we have that \(f(v) = av\). We now show that the case when \(g = 0\) and \(σ^2 = 1\) and the case when \(g \neq 0\) are not possible.

Let \(\mathcal{D} = \mathcal{D}_f\) and suppose that \(\pi_f \simeq \pi(K)\). Then \(\mathcal{F} \cong \mathcal{N}_f(\mathcal{D}) \cong \mathcal{N}_f(K)\). Let \((x, y) \in \mathcal{N}_f(K)\). The condition \(((x, y) \cdot (0, 1)) \cdot (0, s) = (x, y) \cdot ((0, 1) \cdot (0, s))\), for all \(s\) is \(\mathcal{F}\) is equivalent to

\[
(x + y^{σ^2}g)σ^2 = xσ^2h + y^{σ^2}σ^2g^σh, \quad (3.4)
\]

and

\[
y^{σ^2}hσ^2 + (x + y^{σ^2}g)σ^2 = xσ^2g + yσ^2σ^2h + y^{σ^2}σ^2g^σg, \quad (3.5)
\]

for any \(s\) in \(\mathcal{D}\). If \(g = 0\) and \(σ^2 = 1\), then 3.5 implies that \(y = 0\) and from 3.4 we get that \(x^{σ^2} = x\). Therefore \(\mathcal{D} \cong \mathcal{N}_f(K) \subset \{(x, 0) : x ∈ \mathcal{D}\} \text{ and } x^{σ^2} = x\) which implies that \(σ^2 = 1\), but \(σ^2 = 1\). If \(g = 0\) then from 3.4 we get that \(y = 0\), and from 3.5 we have that \(x^{σ^2}σ^2g = xσ^2g\). Hence \(\mathcal{D} \cong \mathcal{N}_f(K) \subset \{(x, 0) : x ∈ \mathcal{D} \text{ and } x^{σ^2} = x\}\) and therefore \(σ = 1\), which is a contradiction. Similar argument shows that \(\pi^* \simeq \pi(K)\) is not possible.

The last class to consider is the class of generalized Dickson semifields. Let \(\pi(D)\) be a generalized Dickson semifield plane of order \(q^4\) which is coordinatized by the semifield \(D = (D, +, \cdot)\) where \(D = \mathcal{D} \times \mathcal{D}\) and the product is given by (cf [8])

\[
(x, y) \cdot (r, s) = (xr + y^αs^βω, xs + yr^σ) \quad (3.6)
\]

where \(α, β, σ\) are arbitrary automorphisms of \(\mathcal{D}\) but not all the identity, and \(ω\) is a nonsquare in \(\mathcal{D}\). If \((u, v) \cdot ((x, y) \cdot (r, s)) = (u, v) \cdot ((x, y)) \cdot (r, s)\) then the following two conditions must be satisfied:
and
\[u\gamma^s\beta\omega + v\gamma((xy + yr)\beta)\omega = v\gamma y^\beta r\omega + (uy + vx)\gamma^s\beta\omega, \quad (3.7) \]

From now on \(D \) will denote a generalized Dickson semifield plane of order \(q^t \) with multiplication given by (3.6).

Under certain conditions a generalized Dickson semifield is a Knuth four-type semifield. In the next lemma we give the necessary conditions on the automorphisms \(\alpha, \beta, \sigma \) under which \(D \) is a Knuth four-type semifield.

Lemma 5. If any of the following conditions are satisfied:

1. \(\beta = a\sigma \) and \(\beta\sigma = 1 \), or
2. \(a = 1 \) and \(\sigma = \beta \), or
3. \(a = 1 \) and \(\sigma \beta = 1 \)

then \(D \) is a Knuth four-type semifield.

Proof. Assume that (i) is true. Then 3.7 and 3.8 become, respectively,
\[u\gamma^\beta s\omega = u\gamma^s\beta\omega, \quad (3.9) \]

and,
\[v\gamma^s\beta\omega = v\gamma y\beta^s\omega \quad (3.10) \]

From these equations we get that \((x, 0) \in \mathcal{N}_m(D)\) for any \(x \in \mathcal{F} \) and \((r, 0) \in \mathcal{N}_r(D)\) for any \(r \in \mathcal{F} \). Since \(D \) is not a field we have that \(\mathcal{N}_m(D) = \mathcal{N}_r(D) = \mathcal{F} \) and \(D \) is a Knuth semifield of type II. In a similar way if (ii) or (iii) occur then \(D \) is a Knuth semifield of type III or IV, respectively.

In the following lemma the nuclei of \(D \) are given.

Lemma 6. Assume that \(D \) is not a Knuth four-type semifield. Then the nuclei of \(D \) are:

1. \(\mathcal{N}_f(D) = \{(u, 0) \in D : u = u\} \),
2. \(\mathcal{N}_m(D) = \{(x, 0) \in D : x^\beta = x^{s\sigma}\} \), and
3. \(\mathcal{N}_r(D) = \{(r, 0) \in D : \sigma^r = r\} \).

Proof. Let \((u, v) \in \mathcal{N}_f(D)\) and suppose that \(v \neq 0 \). Then from 3.8 we get that \(v\gamma^\sigma = v\gamma^\sigma, \gamma^s = \gamma^s \) and \(s^\sigma = s \), for all \(y, s \in \mathcal{F} \). Hence, \(\alpha\sigma = \beta \) and \(\beta\sigma = 1 \), which is a contradiction by Lemma 5 (i). Thus, \(v = 0 \) and from 3.8 we have that \(u\gamma^s\beta\omega = u\gamma y^\beta s\omega \) for all \(y, s \in \mathcal{F} \); from this (i) follows. (ii) and (iii) are proved similarly.

In the next two lemmas the question of when a generalized Dickson semifield plane belongs to the class \(\Pi(\mathcal{F}) \) is answered.

Lemma 7. Let \(f \in \Omega(\mathcal{F}) \) and \(\mathcal{P} = \mathcal{P}_f \). Assume that \(\mathcal{U} \) is a non-
desarguesian semifield plane that admits a matrix spread set of the form

\[\mathcal{M}_1 = \left\{ Q(x, y) = \left(\begin{array}{cc} x & y \\ ky & x^\theta \end{array} \right) : x, y \in \mathcal{F} \right\} \]

where \(\theta, \varphi \) are automorphisms of \(\mathcal{F} \) and \(k \) is a nonsquare in \(\mathcal{F} \). Then, if \(\pi \cong U \), one of the following must be true:

(i) \(\theta = \varphi = \tau \), where \(x^\tau = x \), and \(f(v) = cv \) for some \(c \in \mathcal{F} - GF(q) \).

(ii) \(f(v) = cv^\varphi \), for some \(\psi \in \text{Aut}(\mathcal{F}) \) and some nonsquare \(c \) in \(\mathcal{F} \).

Proof. Let \(\mathcal{L} = \mathcal{F} \times \mathcal{F} \). Then \(\mathcal{M}^* = \{(X, XM(u, v)): M(u, v) \in \mathcal{M}_0 \cup \{(0, X)\} \) is a spread for \(\pi \), in \(\mathcal{L} \oplus \mathcal{L} \). Let \(\mathcal{M}^* \) be the spread for \(U \) in \(\mathcal{L} \oplus \mathcal{L} \) associated with \(\mathcal{M}_1 \). Since \(\pi \cong U \), there is a semilinear transformation \(T \) from the \(\mathcal{F} \)-vector space \(\mathcal{L} \oplus \mathcal{L} \) into itself that maps \(\mathcal{M}^* \) onto \(\mathcal{M}_1^* \). We may assume that \((X, 0)^T = (X, 0) \) and \((0, X)^T = (0, X) \), so the linear part of \(T \) has the form \(\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \), for some \(A, B \in GL(2, \mathcal{F}) \). Let \(\delta \) be the automorphism of \(\mathcal{F} \) associated with \(T \). Since \(T \) maps \((X, XM(u, v)) \in \mathcal{M}^* \) onto \((X, XA^{-1}M(u, v)^sB) \in \mathcal{M}_1^* \), where \((a_{ij})^s = (a_{ij}) \), we have that for each \(M(u, v) \in \mathcal{M} \) there is a unique \(Q(x, y) \in \mathcal{M}_1 \) such that

\[A^{-1}M(u, v)^sB = Q(x, y) \] (3.11)

Let \(Q(a, b) = A^{-1}M(1, 0)^sB = A^{-1}B, u \in GF(q) - \{0\} \) and \(u' = u^s \). Then

\[A^{-1}M(u, 0)^sB = u'A^{-1}B = u'Q(a, b) \in \mathcal{M}_1, \] for all \(u' \in GF(q) - \{0\} \). Thus, if \(a \neq 0 \), then \(u' = (u')^\tau \), which implies that \(\varphi \in \{1, \tau\} \). Similarly, if \(b \neq 0 \), then \(\theta \in \{1, \tau\} \).

Since \(A^{-1} = Q(a, b)B^{-1} \), 3.11 becomes

\[B^{-1}M(u, v)^sB = Q(a, b)^{-1}Q(x, y) \] (3.12)

Let \(\Delta = \det Q(a, b)^{-1} \) and \(\text{tr}(N) = \text{trace of a matrix } N \). Since \(\text{tr}(B^{-1}M(u, v)^sB) = (u + v)^s \in GF(q) \), from 3.12 we have that \(\text{tr}(Q(a, b)^{-1}Q(x, 0)) = \Delta(a^s + ax^\theta) \in GF(q) \), for any \(x \in \mathcal{F} \). If \(\phi = 1 \), then we have that \(2ax_\Delta \in GF(q) \), which implies that \(a = 0 \). Therefore if \(a \neq 0 \) then \(\varphi = a \). Likewise, considering \(Q(0, y) \) we get that if \(b \neq 0 \) then \(\theta = a \).

First we assume that \(a \neq 0 \) and \(b \neq 0 \). Then \(\theta = a = \tau \) and \(U = \pi(D) \). Letting \(r = (yb^{-1}), s = x^e(kb^s), g(s) = ds^{e^{-1}} \), where \(d = (kb)^{e^{-1}}b^{-1} \) is a nonsquare in \(\mathcal{F} \) and \(Q(r, s) = \begin{pmatrix} r \\ g(s) \end{pmatrix} \) we have that \(Q(0, b)^{-1}Q(x, y) = Q_1(r, s) \). Now 3.12 becomes

\[M(u, v)^s = BQ_1(r, s)B^{-1} \] (3.13)
Let \(B = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} \) and \(e = \det B \). Then \(u^s = e^{-1}\overline{b_1b_4r + b_2b_3g(s) - b_3b_4s - b_2b_4r} \) and \(u^s = e^{-1}\overline{-b_1b_4r - b_2b_3g(s) + b_3b_4s + b_2b_4r} \). Since \(\overline{u} = u^s \), with \(s = 0 \) we get \(\overline{b_1b_4e^{-1}} = b_1b_4e^{-1} \) and \(\overline{b_2b_3e^{-1}} = b_2b_3e^{-1} \). Thus \(b_1b_4e^{-1} \) and \(b_2b_3e^{-1} \) are in \(GF(q) \). Taking \(r = 0 \) we get \(b_1b_4e^{-1} = b_1b_4e^{-1} \) and \(b_2b_3e^{-1} = b_2b_3e^{-1} \). Thus \(b_1b_4e^{-1} \) and \(b_2b_3e^{-1} \) are in \(GF(q) \).

Since \(\overline{\tau} = \tau \), with \(s = 0 \) we get \(b_1b_4e^{-1} = b_1b_4e^{-1} \) and \(b_2b_3e^{-1} = b_2b_3e^{-1} \). Thus \(b_1b_4e^{-1} \) and \(b_2b_3e^{-1} \) are in \(GF(q) \).

Thus in either case (ii) follows. The case when \(a \neq 0 \) and \(b = 0 \) is handled similarly.

Lemma 8. Let \(f \in \Omega(\mathbb{F}) \) and assume that \(\mathcal{D} \) is not a Knuth four-type semifield. If either \(\pi_\tau \) or \(\pi^*_\tau \) is isomorphic to \(\pi(\mathcal{D}) \), then \(f(v) = cv^\psi \) for some nonsquare \(c \) in \(\mathbb{F} \) and \(\psi \in \text{Aut}(\mathbb{F}) \), \(\psi \neq \tau \).

Proof. Assume that \(\pi_\tau \approx \pi(\mathcal{D}) \). Then from Lemmas 1 (i) and 6 (i) we have that \(\mathbb{F} \cong \mathcal{P}_l(\mathcal{D}_l) \cong \mathcal{P}_l(\mathcal{D}) \); this implies that \(u^s = u \) for all \(u \in \mathbb{F} \). Hence \(\alpha = 1 \) and 3.6 becomes \((x, y) \cdot (r, s) = (x, y) \begin{pmatrix} r \\ s \end{pmatrix} \). Let \(Q(r, s) = \begin{pmatrix} r \\ s \end{pmatrix} \begin{pmatrix} \sigma \omega \\ \omega \sigma \end{pmatrix} \).

Then \(\{Q(r, s): r, s \in \mathbb{F}\} \) is a matrix spread set for \(\pi(\mathcal{D}) \). Suppose now that \(\pi^*_\tau \approx \pi(\mathcal{D}) \). Then \(\pi_\tau \approx \pi(\mathcal{D}^*) \) and \(\mathbb{F} \cong \mathcal{P}_l(\mathcal{D}_l) \cong \mathcal{P}_l(\mathcal{D}^*) \), so \(\mathcal{D}^* \) is a 2-dimensional vector space over \(\mathcal{P}_l(\mathcal{D}^*) \). Since \(\mathcal{P}_l(\mathcal{D}^*) = \mathcal{P}_l(\mathcal{D}) \), from Lemma 6 (iii) we get that \(\sigma \beta = 1 \). Let \(\mathcal{X} \subset \mathcal{D}^* \) and let \((u, v) \) be the coordinates of \(x \) with respect to the basis \((0, 1), (1, 0) \) of \(\mathcal{D}^* \) over \(\mathcal{P}_l(\mathcal{D}^*) \), i.e. \((u, v) = (u, 0)* (1, 0) + (v, 0)* (0, 1) \) where \(* \) is the product in \(\mathcal{D}^* \). Then \((u, v) = (u, v^\sigma \omega) \), \((u, v^\sigma) = (u, v^\sigma \omega) \), \((r, s) = (r, s)^* \), \((r, s)^* = (x + y^\sigma \omega, x^\sigma + y^\sigma s^\sigma \omega) \), \((x + y^\sigma \omega, x^\sigma + y^\sigma s^\sigma \omega) = (x + y^\sigma \omega, x^\sigma + y^\sigma s^\sigma \omega) \).

Hence, \(\{Q(x, y): x, y \in \mathbb{F}\} \) is a matrix spread set for \(\pi(\mathcal{D}^*) \). Therefore in either case \((\pi_\tau \approx \pi(\mathcal{D}) \) or \(\pi^*_\tau \approx \pi(\mathcal{D}^*) \) we may apply Lemma 7. Since \(\mathcal{D} \) (and therefore \(\mathcal{D}^* \)) is not a Knuth four-type semifield, by Lemmas 2 and 4, case (i) of Lemma 7 does not occur; therefore the proof is complete.

We can now state our main results; their proofs follow from the lemmas.

Theorem 3.1. Let \(f \in \Omega(\mathbb{F}) - \Lambda(\mathbb{F}) \). Then neither \(\pi_\tau \) nor \(\pi^*_\tau \) is isomorphic to a semifield plane coordinatized by a semifield belonging to any one of the classes (i)-(vii).
Theorem 3.2. Let $f \in \Lambda(\mathcal{F})$. Then

(i) $f(v) = av$ for some $a \in \mathcal{F} - GF(q)$ if and only if π_f or π_f^* is isomorphic to a semifield plane coordinatized by a Knuth four-type semifield.

(ii) $f(v) = av^\theta$ for some nonsquare $a \in \mathcal{F}$ and $\theta \in \text{Aut}(\mathcal{F})$, $\theta \neq \tau$ if and only if π_f or π_f^θ is isomorphic to a semifield plane coordinatized by a generalized Dickson semifield.

References

[7] M. Cordero and R. Figueroa: *On semifield planes of order q^n that admit a collineation whose order is a p-primitive divisor of $q^n - 1$*, submitted.