<table>
<thead>
<tr>
<th>Title</th>
<th>Polynomial representations associated with symmetric bounded domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takeuchi, Masaru</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1973, 10(3), p. 441-475</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12204</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive: OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
POLYNOMIAL REPRESENTATIONS ASSOCIATED WITH
SYMMETRIC BOUNDED DOMAINS

MASARU TAKEUCHI

(Received November 1, 1972)

Introduction. In this note we want to construct a complete orthonormal system of the Hilbert space $H^2(D)$ of square integrable holomorphic functions on an irreducible symmetric bounded domain D. A symmetric bounded domain D is canonically realizable as a circular starlike bounded domain with the center 0 in a complex cartesian space by means of Harish-Chandra’s imbedding (Harish-Chandra [3]), which is constructed as follows. The largest connected group G of holomorphic automorphisms of D is a connected semi-simple Lie group without center, which is transitive on D. Thus denoting the stablizer in G of a point $o \in D$ by K, D is identified with the quotient space G/K. Let \mathfrak{g} (resp. \mathfrak{k}) be the Lie algebra of G (resp. K) and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ the Cartan decomposition of \mathfrak{g} with respect to \mathfrak{k}. Then there exists uniquely an element H of the center of \mathfrak{k} such that $\text{ad}H$ restricted to \mathfrak{p} coincides with the complex structure tensor on the tangent space $T_o(D)$ at the origin o, identifying as usual \mathfrak{p} with $T_o(D)$. Let \mathfrak{g}^c be the Lie algebra of the complexification G^c of G and put $Z=\sqrt{-1}H \in \mathfrak{g}^c$. Let $(\mathfrak{p}^c)^\pm$ be the (± 1)-eigenspace in \mathfrak{g}^c of $\text{ad}Z$. Then they are invariant under the adjoint action of K and the complexification \mathfrak{p}^c of \mathfrak{p} is the direct sum of $(\mathfrak{p}^c)^+$ and $(\mathfrak{p}^c)^-$. Let U^c denote the normalizer of $(\mathfrak{p}^c)^+$ in G^c. Then $D=G/K$ is holomorphically imbedded as an open submanifold into the quotient space G^c/U^c in the natural way. For any point $z \in D$, there exists uniquely a vector $X \in (\mathfrak{p}^c)^-$ such that

$$\exp X \mod U^c = z.$$

The map $z \mapsto X$ of D into $(\mathfrak{p}^c)^-$ is the desired imbedding. Note that the natural action of K on D can be extended to the adjoint action of K on the ambient space $(\mathfrak{p}^c)^-$.

Henceforth we assume that D is a bounded domain in $(\mathfrak{p}^c)^-$ realized in the above manner. Let \langle , \rangle denote the Killing form of \mathfrak{g}^c and τ the complex conjugation of \mathfrak{g}^c with respect to the compact real form $\mathfrak{k}+\sqrt{-1}\mathfrak{p}$ of \mathfrak{g}^c. We define a K-invariant hermitian inner product \langle , \rangle, on \mathfrak{g}^c by

$$\langle X, Y \rangle = -(X, \tau Y) \quad \text{for} \quad X, Y \in \mathfrak{g}^c.$$
This defines a K-invariant Euclidean measure $d\mu(X)$ on $(\mathfrak{p}\mathfrak{c})^-$. Let $H^2(D)$ denote the Hilbert space of holomorphic functions on D, which are square integrable with respect to the measure $d\mu(X)$. The inner product of $H^2(D)$ will be denoted by $\langle \, , \rangle$. K acts on $H^2(D)$ as unitary operators by
\[(kf)(X) = f(k^{-1}X) \quad \text{for} \quad k \in K, \, X \in D.\]

Let $S^*((\mathfrak{p}\mathfrak{c})^-)$ denote the graded space of polynomial functions on $(\mathfrak{p}\mathfrak{c})^-$. It has the natural hermitian inner product $(\, , \rangle_\tau$, induced from the inner product $(\, , \rangle$, on $(\mathfrak{p}\mathfrak{c})^-$. K acts on $S^*((\mathfrak{p}\mathfrak{c})^-)$ as unitary operators by
\[(kf)(X) = f(\text{Ad} \, k^{-1}X) \quad \text{for} \quad k \in K, \, X \in (\mathfrak{p}\mathfrak{c})^- .\]

Now let S denote the Shilov boundary of D. It is known (Korányi-Wolf [7]) that K acts transitively on S. Thus denoting by L the stabilizer in K of a point $X_0 \in S$, S is identified with the quotient space K/L. Let dx denote the K-invariant measure on S induced from the normalized Haar measure of K and $L^2(S)$ the Hilbert space of square integrable functions on S with respect to the measure dx. The inner product of $L^2(S)$ will be denoted by $\langle \, , \rangle$. K acts on $L^2(S)$ as unitary operators by
\[(kf)(X) = f(\text{Ad} \, k^{-1}X) \quad \text{for} \quad k \in K, \, X \in S.\]

The space $C^\omega(S)$ of C-valued C^ω-functions on S is a K-submodule of $L^2(S)$. The restrictions $S^*((\mathfrak{p}\mathfrak{c})^-) \rightarrow H^2(D)$ and $S^*((\mathfrak{p}\mathfrak{c})^-) \rightarrow L^2(S)$ are both K-equivariant monomorphisms. Their images will be denoted by $S^*(D)$ and $S^*(S)$, respectively. They have natural gradings induced from that of $S^*((\mathfrak{p}\mathfrak{c})^-)$. Then the “restriction” $S^*(D) \rightarrow S^*(S)$ is defined in the natural manner and it is a K-equivariant isomorphism. Since D is a circular starlike bounded domain, a theorem of H. Cartan [2] yields that the subspace $S^*(D)$ of $H^2(D)$ is dense in $H^2(D)$ (cf. 1).

We decompose first the K-module $S^*(D)$ into irreducible components. We take a maximal abelian subalgebra \mathfrak{t} of \mathfrak{k} and identify the real part $\sqrt{-1} \mathfrak{t}$ of the complexification \mathfrak{t}^c of \mathfrak{t} with its dual space by means of Killing form of \mathfrak{g}^c. Let $\sum_{\alpha \in \sqrt{-1} \mathfrak{t}}$ denote the set of roots of \mathfrak{g}^c with respect to \mathfrak{t}^c. We choose root vectors $X_\alpha \in \mathfrak{g}^c$ for $\alpha \in \sum_{\alpha}$ such that
\[[X_\alpha, X_{-\alpha}] = -\frac{2}{(\alpha, \alpha)} \alpha, \quad \tau X_\alpha = X_{-\alpha}.\]

A root is called compact if it is also a root of the complexification \mathfrak{t}^c of \mathfrak{t}, otherwise it is called non-compact. \sum_{c} (resp. \sum_{p}) denotes the set of compact roots (resp. of non-compact roots). We choose and fix once for all a linear order $>$ on $\sqrt{-1} \mathfrak{t}$ such that $(\mathfrak{p}\mathfrak{c})^+$ is spanned by the root spaces for non-compact positive
POLYNOMIAL REPRESENTATIONS

443

roots \(\Sigma^+_p \). Two roots \(\alpha, \beta \in \Sigma \) are called strongly orthogonal if \(\alpha \pm \beta \) is not a root. We define a maximal strongly orthogonal subsystem

\[
\Delta = \{ \gamma_1, \ldots, \gamma_p \}, \quad \gamma_1 > \gamma_2 > \cdots > \gamma_p > 0, \quad p = \text{rank } D
\]
of \(\Sigma^+_p \) as follows (cf. Harish-Chandra [3]). Let \(\gamma_i \) be the highest root of \(\Sigma \) and for each \(j \), \(\gamma_{j+1} \) be the highest positive non-compact root that is strongly orthogonal to \(\gamma_1, \ldots, \gamma_j \). We put

\[
X_0 = -\sum_{\gamma \in \Delta} X_\gamma.
\]

Then it is known (Körányi-Wolf [7]) that \(X_0 \) is on the Shilov boundary \(S \) of \(D \). Henceforth we shall take the above point \(X_0 \) as the origin of \(S \). We put for \(\nu \in \mathbb{Z}, \nu \geq 0 \)

\[
S'(K, L) = \{ \sum_{i=1}^{p} n_i \gamma_i; \ n_i \in \mathbb{Z}, \ n_1 \geq n_2 \geq \cdots \geq n_p \geq 0, \ \sum_{i=1}^{p} n_i = \nu \},
\]
and

\[
S^*(K, L) = \sum_{\nu \geq 0} S'(K, L).
\]

We shall prove the following

Theorem A. Any irreducible \(K \)-submodule of \(S^*(D) \) is contained exactly once in \(S^*(D) \). The set \(S'(D) \) of highest weights (with respect to \(t^c \) of irreducible \(K \)-submodules contained in \(S'(D) \) coincides with \(S'(K, L) \). Denoting by \(S^*_*(D) \) (resp. \(S^*_*(S) \)) the irreducible \(K \)-submodule of \(S^*(D) \) (resp. of \(S^*(S) \)) with the highest weight \(\lambda \in S^*(K, L) \),

\[
S^*(D) = \sum_{\lambda \in S^*(K, L)} \bigoplus S^*_*(D)
\]

and

\[
S^*(S) = \sum_{\lambda \in S^*(K, L)} \bigoplus S^*_*(S)
\]

are the orthogonal sum relative to the inner product \(\langle , \rangle \) and \(< , > \), respectively. The restriction \(f \mapsto f' \) of \(S^*_*(D) \rightarrow S^*_*(S) \) is a similitude for each \(\lambda \in S^*(K, L) \), i.e. there exists a constant \(h_\lambda > 0 \) such that

\[
\langle f, g \rangle = h_\lambda \langle f', g' \rangle \quad \text{for any } f, g \in S^*_*(D).
\]

Thus, if

\[
\{ f_{\lambda, i}; 1 \leq i \leq d_\lambda \}, \quad \lambda \in S^*(K, L)
\]
is an orthonormal basis of \(S^*_*(S) \), then

\[
\{ \sqrt{h_\lambda^{-1}} f_{\lambda, i}; \lambda \in S^*(K, L), 1 \leq i \leq d_\lambda \}
\]
is a complete orthonormal system of \(H^2(D) \).
A basis \(\{ f_{\lambda,i}; 1 \leq i \leq d_{\lambda} \} \) is, for instance, constructed as follows. Take an irreducible \(K \)-module \((\rho, V)\) with the highest weight \(\lambda \), carrying a \(K \)-invariant hermitian inner product \((\ , \)\). Choose an orthonormal basis \(\{ u_i; 1 \leq i \leq d_{\lambda} \} \) of \(V \) such that the first vector \(u_i \) is \(L \)-invariant. This can be done in view of Frobenius’ reciprocity since the \(K \)-module \(V \) is \(K \)-isomorphic with a \(K \)-submodule of \(C^\infty(S) \). Then the functions \(f_{\lambda,i}(1 \leq i \leq d_{\lambda}) \) defined by

\[
 f_{\lambda,i}(kX_u) = \sqrt{d_{\lambda}}(u_i, \rho(k)u_i) \quad \text{for} \quad k \in K
\]

form an orthonormal basis of \(S^*_\lambda(S) \) (cf. 2).

We compute next the normalizing factor \(h_{\lambda} \). Let

\[
 a = \{ \sqrt{-1}\Delta \}_{\mathcal{R}}
\]

be the \(\mathcal{R} \)-span of \(\sqrt{-1}\Delta \) in \(t \) and

\[
 \varpi: \sqrt{-1}t \to \sqrt{-1}a
\]

denote the orthogonal projection of \(\sqrt{-1}t \) onto \(\sqrt{-1}a \). For \(\gamma \in \varpi \sum - \{0\} \), the number of roots \(\alpha \in \Sigma \) such that \(\varpi \alpha = \gamma \) is called the multiplicity of \(\gamma \). Let \(r \) (resp. 2s) be the multiplicity of \(\frac{1}{2}(\gamma_1 - \gamma_2) \) (resp. of \(\frac{1}{2}\gamma_1 \)). If follows from Theorem A and Frobenius’ reciprocity that for each \(\lambda \in S^*(K, L) \) there exists uniquely an \(L \)-invariant polynomial \(\Omega_{\lambda} \) in \(S^*_\Lambda((\mathfrak{p}^0)^-)) \) such that \(\Omega_{\lambda}(X_\alpha) = 1 \), where \(S^*_\Lambda((\mathfrak{p}^0)^-) \) denotes the irreducible \(K \)-submodule of \(S^*(\mathfrak{p}^0)^-)) \) with the highest weight \(\lambda \). The polynomial \(\Omega_{\lambda} \) is called the zonal spherical polynomial for \(D \) belonging to \(\lambda \). Let

\[
 (a^-)^{\mathcal{C}} = \{ X_{-\gamma}; \gamma \in \Delta \}_{\mathcal{C}}
\]

be the \(\mathcal{C} \)-span of \(\{ X_{-\gamma}; \gamma \in \Delta \} \) in \((\mathfrak{p}^0)^-\). It is identified with the complex cartesian space \(\mathcal{C}^p \) by the map

\[
 - \sum_{i=1}^p z_i X_{-\gamma_i} \mapsto \left(\begin{array}{c} z_1 \\ \vdots \\ z_p \end{array} \right).
\]

Thus the zonal spherical polynomial \(\Omega_{\lambda} \) restricted to \((a^-)^{\mathcal{C}} \) is a polynomial \(\Omega_{\lambda}(Y_1, \cdots, Y_p) \) in \(\mathfrak{p} \)-variables. Let \(\mu(D) \) denote the volume of \(D \) with respect to the measure \(d\mu(X) \). We shall prove the following

Theorem B. For \(\lambda \in S^*(K, L) \), the normalizing factor \(h_{\lambda} \) is given by

\[
 h_{\lambda} = c(D) \int_{0 < y_i < 1 \ (1 \leq i \leq p)} \Omega_{\lambda}(y_1, \cdots, y_p) \prod_{1 \leq i < j \leq p} (y_i - y_j)^r \prod_{i=1}^p y_i^s \, dy_1 \cdots dy_p
\]

where

\[
 c(D) = \mu(D) \left(\int_{0 < y_i < 1 \ (1 \leq i \leq p)} \prod_{1 \leq i < j \leq p} (y_i - y_j)^r \prod_{i=1}^p y_i^s \, dy_1 \cdots dy_p \right)^{-1}.
\]
Hua [6] proved Theorem A for classical domains by decomposing the character of the K-module $S^*((\mathfrak{p}^c)^{-})$ into the sum of irreducible characters of K, while Schmid [11] proved it for general domain D. Schmid proved

(a) \[S^v(D) \subseteq S^v(K, L) \]

by seeing the character of the K-module $S^*((\mathfrak{p}^c)^{-})$ and by making use of E. Cartan's theory on spherical representations of a compact symmetric pair. But his proof of

(b) \[S^v(K, L) \subseteq S^v(D) \]

is complicated and was done after nine successive lemmas. In this note we give another proof of (a) by means of a lemma of Murakami and Cartan's theory, and give a relatively short proof of (b) by means of a theorem of Harish-Chandra on invariant polynomials for a symmetric pair.

Hua [6] computed the factors h_λ for certain classical domains by integrating certain polynomials. Our integral formula in Theorem B will clarify the meaning of integrals of Hua.

1. Circular domains

A domain $D \subset \mathbb{C}^n$ containing the origin 0 is said to be a circular domain with the center 0 if together with any point $z \in D$ the point $e^{\sqrt{-1} \theta} z$ is in D for any real $\theta \in \mathbb{R}$. D is said to be a starlike domain with the center 0 if together with any point $z \in D$ the point rz is in D for any real $r \in \mathbb{R}$ with $0 < r < 1$.

Theorem 1.1. (H. Cartan [2]) Let $D \subset \mathbb{C}^n$ be a circular domain with the center 0. Then any holomorphic function f on D can be developed in the sum of homogeneous polynomials P_ν in n-variables with degree ν ($\nu=0, 1, 2, \cdots$):

\[f(z) = \sum_{\nu=0} P_\nu(z) \quad \text{for} \quad z \in D. \]

The sum converges uniformly on any compact subset of D. The homogeneous polynomials P_ν are uniquely determined for f.

Let D be a bounded domain in \mathbb{C}^n, $d\mu(z)$ the Euclidean measure on \mathbb{C}^n, induced from the standard hermitian inner product of \mathbb{C}^n. Let $H^s(D)$ denote the Hilbert space of holomorphic functions on D, which are square integrable with respect to the measure $d\mu(z)$. The inner product of $H^s(D)$ will be denoted by \langle , \rangle. Let $S^*(\mathbb{C}^n)$ be the graded space of polynomials in n-variables and $S^*(D)$ the subspace of $H^s(D)$ consisting of all functions on D obtained by the restriction of polynomials in $S^*(\mathbb{C}^n)$. Then Theorem 1.1 yields the following

Corollary. Let $D \subset \mathbb{C}^n$ be a circular starlike bounded domain with the center 0. Then the subspace $S^*(D)$ of $H^s(D)$ is dense in $H^s(D)$.
Proof. If suffices to show that if \(f \in H'(D) \) with \(\langle f, S^*(D) \rangle = \{0\} \), then \(f = 0 \). Theorem 1.1 implies that \(f \) can be developed as

\[
f = \sum_{\nu_0} P_{\nu} \quad P_{\nu} \in S^v(D),
\]

uniformly convergent on any compact subset of \(D \). Choose an orthonormal basis \(\{P_{\nu,j}\} \) of \(S^v(D) \) with respect to \(\langle \cdot, \cdot \rangle \) for each \(\nu \). Then we have

\[
\langle P_{\nu,j}, P_{\mu,i} \rangle = \delta_{\nu\mu} \delta_{ji}.
\]

In fact, since \(d\mu(e^{\sqrt{-1}\theta z}) = d\mu(z) \) for any \(\theta \in \mathbb{R} \), we have \(\langle P_{\nu,j}, P_{\nu,i} \rangle = e^{\sqrt{-1}\theta \mu} \langle P_{\nu,j}, P_{\mu, i} \rangle \) for any \(\theta \in \mathbb{R} \). Then \(f \) can be developed as

\[
f = \sum_{\nu,j} a_{\nu,j} P_{\nu,j} \quad \text{with } a_{\nu,j} \in C,
\]

uniformly convergent on any compact subset of \(D \). Since \(D \) is a starlike domain, the closure \(\overline{rD} \) of \(rD \) is a compact subset of \(D \) for any \(r \in \mathbb{R} \) with \(0 < r < 1 \), so that the above series converges uniformly on \(\overline{rD} \). Therefore for any \(P_{\mu,i} \) we have

\[
\int_{\overline{rD}} f(z) \overline{P_{\mu,i}(z)} d\mu(z) = \sum_{\nu,j} a_{\nu,j} \int_{\overline{rD}} P_{\nu,j}(z) \overline{P_{\mu,i}(z)} d\mu(z).
\]

If we put

\[
z' = \frac{1}{r} z \quad \text{for } z \in rD,
\]

then \(z = rz' \), \(d\mu(z) = r^2 d\mu(z') \) so that

\[
\int_{rD} P_{\nu,j}(z) \overline{P_{\mu,i}(z)} d\mu(z) = r^{2n+\nu+\mu} \int_{D} P_{\nu,j}(z') \overline{P_{\mu,i}(z')} d\mu(z')
\]

\[
= r^{2n+\nu+\mu} \langle P_{\nu,j}, P_{\mu,i} \rangle = r^{2n+2\mu} \delta_{\nu\mu} \delta_{ji}.
\]

Hence we have

\[
\int_{rD} f(z) \overline{P_{\mu,i}(z)} d\mu(z) = a_{\mu,i} r^{2n+2\mu}
\]

and

\[
a_{\mu,i} = \lim_{r \to 1} a_{\mu,i} r^{2n+2\mu} = \lim_{r \to 1} \int_{rD} f(z) \overline{P_{\mu,i}(z)} d\mu(z)
\]

\[
= \langle f, P_{\mu,i} \rangle = 0 \quad (\text{from the assumption}).
\]

This implies that \(f = 0 \). q.e.d.
2. Spherical representations of a compact symmetric pair

Let K be a compact connected Lie group, L a closed subgroup of K and S be the quotient space K/L. The space of C-valued C^∞-functions on S will be denoted by $C^\infty(S)$. We shall often identify $C^\infty(S)$ with the space of C^∞-functions f on K such that

$$ f(kl) = f(k) \quad \text{for any} \quad k \in K, \ l \in L. $$

Let dx denote the K-invariant measure on S induced from the normalized Haar measure on K and $L^2(S)$ the Hilbert space of square integrable functions on S with respect to the measure dx. The inner product of $L^2(S)$ will be denoted by $\langle \ , \rangle$. K acts on $L^2(S)$ as unitary operators by

$$ (kf)(x) = f(k^{-1}x) \quad \text{for} \quad k \in K, \ x \in S. $$

Then $C^\infty(S)$ is a K-submodule of $L^2(S)$. A (continuous finite dimensional complex) representation

$$ \rho: K \to \text{GL}(V) $$

of K is said to be spherical relative to L if the K-module V is equivalent to a K-submodule of $C^\infty(S)$, which amounts to the same from Frobenius' reciprocity that the K-module V has a non-zero L-invariant vector. We denote by $\mathcal{D}(K, L)$ the set of equivalence classes of irreducible spherical representations of K relative to L. The totality of $f \in C^\infty(S)$ contained in a finite dimensional K-submodule of $C^\infty(S)$, which will be denoted by $\mathfrak{o}(K, L)$, is a K-submodule of $C^\infty(S)$. A function in $\mathfrak{o}(K, L)$ is called a spherical function for the pair (K, L). For $\rho \in \mathcal{D}(K, L)$, the totality of $f \in \mathfrak{o}(K, L)$ that transforms according to ρ, which will be denoted by $\mathfrak{o}_\rho(K, L)$, is a finite dimensional K-submodule of $\mathfrak{o}(K, L)$. Then

$$ \mathfrak{o}(K, L) = \sum_{\rho \in \mathcal{D}(K, L)} \oplus \mathfrak{o}_\rho(K, L) $$

is the orthogonal sum with respect to the inner product $\langle \ , \rangle$. Peter-Weyl approximation theorem implies that the subspace $\mathfrak{o}(K, L)$ of $L^2(S)$ is dense in $L^2(S)$. We assume furthermore that the pair (K, L) satisfies the condition

$$(*) \quad \text{any} \ \rho \in \mathcal{D}(K, L) \ \text{is contained exactly once in} \ \mathfrak{o}(K, L),$$

which is by Frobenius' reciprocity equivalent to that for any spherical representation

$$ \rho: K \to \text{GL}(V) $$

of K relative to L, an L-invariant vector of V is unique up to scalar multiplication. Then for each $\rho \in \mathcal{D}(K, L)$, there exists uniquely an L-invariant function $\omega_\rho \in \mathfrak{o}_\rho(K, L)$ such that $\omega_\rho(\varepsilon) = 1$. ω_ρ is called the zonal spherical function for (K, L) belonging to ρ. Let

$$ \rho: K \to \text{GL}(V) $$
be a spherical representation of K relative to L. Choose a K-invariant hermitian inner product $(\ ,\)$ on V. The equivalence class containing ρ will be denoted by the same letter ρ. Choose an orthonormal basis $\{u_i; 1 \leq i \leq d_\rho\}$ of V such that u_i is L-invariant. Define $\varphi_i \in C^\infty(S)$ $(1 \leq i \leq d_\rho)$ by

$$\varphi_i(k) = (u_i, \rho(k)u_i) \quad \text{for} \quad k \in K.$$

We know that they are linearly independent, in view of orthogonality relations of matrix elements $(u_i, \rho(k)u_j)$. For any $k' \in K$ we have

$$\varphi_i(k'^{-1}k) = (u_i, \rho(k'^{-1}k)u_i) = (\rho(k')u_i, \rho(k)u_i)$$

$$= \sum_j (\rho(k')u_i, u_j)(u_j, \rho(k)u_i)$$

$$= \sum_j (\rho(k')u_i, u_j) \varphi_j(k),$$

i.e.

$$k'\varphi_i = \sum_j (\rho(k')u_i, u_j)\varphi_j \quad (1 \leq i \leq d_\rho).$$

In particular

$$l\varphi_i = \varphi_1 \quad \text{for any} \quad l \in L,$$

and

$$\varphi_i(e) = 1.$$

Therefore the system $\{\varphi_i; 1 \leq i \leq d_\rho\}$ forms a basis of $\mathfrak{o}_\rho(K, L)$ and the zonal spherical function ω_ρ is given by

$$\omega_\rho(k) = (u_i, \rho(k)u_i) \quad \text{for} \quad k \in K.$$

Furthermore orthogonality relations implies that the system

$$\{\sqrt{d_\rho}\varphi_i; 1 \leq i \leq d_\rho\}$$

forms an orthonormal basis of $\mathfrak{o}_\rho(K, L)$ and that

$$\langle\omega_\rho, \omega_\rho'\rangle = \delta_{\rho\rho'} \frac{1}{d_\rho}.$$

Henceforth we assume that the pair (K, L) is a symmetric pair, i.e. there exists an involutive automorphism θ of K such that if we put

$$K_\theta = \{k \in K; \theta(k) = k\},$$

L lies between K_θ and the connected component K_θ^0 of K_θ. Then the pair (K, L) satisfies the condition (\ast) (E. Cartan [1]). For example, a compact connected Lie group S admits a symmetric pair (K, L) such that $S = K/L$. In fact,

$$K = S \times S,$$

$$L = \{(x, x); x \in S\}.$$
and
\[\theta: (x, y) \mapsto (y, x) \quad \text{for} \quad x, y \in S \]

have desired properties.

In the following we summarize some known facts on a symmetric pair (cf. Helgason [4]).

Let \(\mathfrak{f} \) (resp. \(\mathfrak{l} \)) be the Lie algebra of \(K \) (resp. of \(L \)). The involutive automorphism of \(\mathfrak{f} \) obtained by differentiating the automorphism \(\theta \) of \(K \) will be also denoted by the same letter \(\theta \).

Choose and fix once for all a \(\mathbb{C} \)-bilinear symmetric form \((\ , \) \) on the complexification \(\mathfrak{f}^\mathbb{C} \) of \(\mathfrak{f} \), which is invariant under both the \(\mathbb{C} \)-linear extension to \(\mathfrak{f}^\mathbb{C} \) of \(\theta \) and the adjoint action of \(\mathfrak{f}^\mathbb{C} \) and furthermore is negative definite on \(\mathfrak{f} \times \mathfrak{f} \). Then \(S \) is a Riemannian symmetric space with respect to the \(K \)-invariant Riemannian metric on \(S \) defined by \(- (\ , \) \). We put
\[\mathfrak{s} = \{ X \in \mathfrak{f}; \theta X = -X \} = \{ X \in \mathfrak{f}; (X, I) = \{0\} \} . \]

Then we have orthogonal decompositions
\[\mathfrak{f} = \mathfrak{l} + \mathfrak{s} = \mathfrak{c} \oplus \mathfrak{f}' , \]
where \(\mathfrak{c} \) is the center of \(\mathfrak{f} \) and \(\mathfrak{f}' \) is the derived algebra \([\mathfrak{f}, \mathfrak{f}] \) of \(\mathfrak{f} \). We choose a maximal abelian subalgebra \(\mathfrak{a} \) in \(\mathfrak{s} \). Such \(\mathfrak{a} \) are mutually conjugate under the adjoint action of \(L \). \(\dim \mathfrak{a} \) is the rank of the symmetric pair \((K, L)\). Extend \(\mathfrak{a} \) to a maximal abelian subalgebra \(\mathfrak{t} \) of \(\mathfrak{f} \) containing \(\mathfrak{a} \). Then we have the decomposition
\[\mathfrak{t} = \mathfrak{b} \oplus \mathfrak{a} \quad \text{where} \quad \mathfrak{b} = \mathfrak{t} \cap \mathfrak{l} . \]

Let \(\mathfrak{t}' = \mathfrak{t} \cap \mathfrak{l}' \) and \(\mathfrak{a}' = \mathfrak{a} \cap \mathfrak{l}' \). The real vector space \(\sqrt{-1} \mathfrak{t} \) has the natural inner product \((\ , \) \) induced from the bilinear form \((\ , \) \) on \(\mathfrak{f}^\mathbb{C} \). We shall identify \(\sqrt{-1} \mathfrak{t} \) with the dual space of \(\sqrt{-1} \mathfrak{t} \) by means of the inner product \((\ , \) \). We have the orthogonal decomposition
\[\sqrt{-1} \mathfrak{t} = \sqrt{-1} \mathfrak{b} \oplus \sqrt{-1} \mathfrak{a} . \]

Let \(\sigma \) be the orthogonal transformation on \(\sqrt{-1} \mathfrak{t} \) defined by
\[\sigma|\sqrt{-1} \mathfrak{b} = -1 \quad \text{and} \quad \sigma|\sqrt{-1} \mathfrak{a} = 1 \]
and
\[\varpi = \frac{1}{2}(1+\sigma): \sqrt{-1} \mathfrak{t} \to \sqrt{-1} \mathfrak{a} \]
be the orthogonal projection of \(\sqrt{-1} \mathfrak{t} \) onto \(\sqrt{-1} \mathfrak{a} \). Let \(\Sigma^\mathfrak{t} \) denote the set of roots of \(\mathfrak{f}^\mathbb{C} \) with respect to the complexification \(\mathfrak{t}^\mathbb{C} \) of \(\mathfrak{t} \). Let \(W_\mathfrak{t} = N_K(T)/T \) be the Weyl group of \(\mathfrak{t} \), where \(T \) is the connected subgroup of \(K \) generated by \(\mathfrak{t} \) and \(N_K(T) \) is the normalizer of \(T \) in \(K \). \(\Sigma^\mathfrak{t} \) is a \(\sigma \)-invariant reduced root system in
\[\sqrt{-1} t'. \] As a group of orthogonal transformations of \(\sqrt{-1} t \), \(W_t \) is generated by reflections with respect to roots in \(\Sigma_t \). Put

\[
\Sigma^0_t = \Sigma_t \cap \sqrt{-1} b = \{ \alpha \in \Sigma_t; \sigma \alpha = 0 \},
\]
\[
\Sigma_s = \{ \sigma \alpha; \alpha \in \Sigma_t - \Sigma^0_t \} = \sigma \Sigma_t - \{0\},
\]
\[
W_s = N_L(A)/Z_L(A),
\]
where \(A \) is the connected subgroup of \(K \) generated by \(a \) and \(N_L(A) \) (resp. \(Z_L(A) \)) the normalizer (resp. the centralizer) of \(A \) in \(L \). An element of \(\Sigma_s \) is a restricted root of the symmetric space \(S \) and \(W_s \) is the Weyl group of \(S \). \(\Sigma_s \) is a (not necessarily reduced) root system in \(\sqrt{-1} a' \). As a group of orthogonal transformations of \(\sqrt{-1} a \), \(W_s \) is generated by reflections with respect to roots in \(\Sigma_s \). A linear order \(\sigma \) on \(\sqrt{-1} t \) is said to be compatible for \(\Sigma_t \) with respect to \(\sigma \) (or with respect to the orthogonal decomposition \(\sqrt{-1} t = \sqrt{-1} b \oplus \sqrt{-1} a \)) if \(\alpha \in \Sigma_t \), \(\alpha > 0 \) and \(\sigma \alpha = -\alpha \) imply \(\sigma \alpha > 0 \). Take a compatible order \(\sigma \) on \(\sqrt{-1} t \) and fix it once and for all. Let

\[
\Pi_t = \{ \alpha_1, \ldots, \alpha_t \}
\]
be the fundamental root system of \(\Sigma_t \) with respect to the order \(\sigma \) and put

\[
\Pi^0_t = \Pi_t \cap \Sigma^0_t.
\]
\(W_t \) is also generated by reflections with respect to roots in \(\Pi_t \). We have the decomposition

\[
\sigma = sp \quad \text{where} \quad s \in W_t, \quad p \Pi_t = \Pi_t
\]
of \(\sigma \) in such a way that \(p^2 = 1 \), \(p(\Pi_t - \Pi^0_t) = \Pi_t - \Pi^0_t \) and \(\sigma \alpha_i \equiv p \alpha_i \mod \{ \Pi^0_t \} \) for any \(\alpha_i \in \Pi_t - \Pi^0_t \) (Satake [10]). We put

\[
\Pi_s = \{ \sigma \alpha_i; \alpha_i \in \Pi_t - \Pi^0_t \} = \sigma \Pi_t - \{0\}.
\]
We may assume that \(\Pi_s = \{ \gamma_1, \ldots, \gamma_p \} \) with \(\sigma \alpha_i = \gamma_i \) (1 \leq i \leq p), changing indices of the \(\alpha_i \)'s if necessary. \(\Pi_s \) is the fundamental root system of \(\Sigma_s \) with respect to the order \(\sigma \). We put

\[
\Sigma^*_s = \{ \gamma \in \Sigma_s; 2 \gamma \in \Sigma_s \}.
\]
Then \(\Sigma^*_s \) is a reduced root system in \(\sqrt{-1} a' \). The fundamental root system \(\Pi^*_s \) of \(\Sigma^*_s \) with respect to the order \(\sigma \) is given by

\[
\Pi^*_s = \{ \beta_1, \ldots, \beta_p \}
\]
where

\[
\beta_i = \begin{cases} \gamma_i & \text{if} \quad 2 \gamma_i \in \Sigma_s, \\ 2 \gamma_i & \text{if} \quad 2 \gamma_i \in \Sigma_s. \end{cases}
\]
\(W_s \) is also generated by reflections with respect to roots of \(\Pi_s \) or of \(\Pi^*_s \). Let
\(\Sigma^*_t \) (resp. \(\Sigma^*_s, (\Sigma^*_s)^* \)) denote the set of positive roots in \(\Sigma_t \) (resp. \(\Sigma_s, \Sigma^*_s \)). Then

\[
\Sigma^*_s = \omega (\Sigma^*_t - \Sigma^*_p) = \omega \Sigma^*_t - \{0\}.
\]

For \(\lambda \in \sqrt{-1} \mathbb{R} \), \(\lambda \neq 0 \), we define

\[
\lambda^* = \frac{2}{\langle \lambda, \lambda \rangle} \lambda.
\]

Theorem 2.1. (E. Cartan) Assume that \(K \) is simply connected. Then
1) \(K_\gamma \) is connected.
2) The kernel of \(\exp: \mathfrak{a} \rightarrow K \) is the subgroup of \(\mathfrak{a} \) generated by \(\{2\pi \sqrt{-1} \gamma^*; \gamma \in \Sigma_s\} \).

Theorem 2.2. (Harish-Chandra) Let \(S^*_L(\mathfrak{g}) \) (resp. \(S^*_W(\mathfrak{a}) \)) be the space of polynomial functions on \(\mathfrak{g} \) (resp. on \(\mathfrak{a} \)), which are invariant under the adjoint actions of \(L \) (resp. of \(W_s \)). Then the restriction map

\[
S^*_L(\mathfrak{g}) \rightarrow S^*_W(\mathfrak{a})
\]

is an isomorphism.

Now we shall consider \(W_s \)-invariant characters of a maximal torus of \(S \). Put

\[
\Gamma = \Gamma(K, L) = \{ H \in \mathfrak{a}; \exp H \in L \}
\]

and

\[
\Gamma_c = \Gamma \cap \mathfrak{c}_a \text{ where } \mathfrak{c}_a = \mathfrak{c} \cap \mathfrak{a}.
\]

Then \(\Gamma \) is a \(W_s \)-invariant lattice in \(\mathfrak{a} \) and \(\Gamma_c \) is a lattice in \(\mathfrak{c}_a \). Let \(\mathcal{C}_a \) be the connected subgroup of \(K \) generated by \(\mathfrak{c}_a \). Then the \(A \)-orbit \(\hat{A} \) in \(S \) through the origin \(x_o \) of \(S \) and the \(C_a \)-orbit \(\hat{C}_a \) in \(S \) through the origin have identifications

\[
\hat{A} = \mathfrak{a}/\Gamma
\]

and

\[
\hat{C}_a = \mathfrak{c}_a/\Gamma_c.
\]

Hence both \(\hat{A} \) and \(\hat{C}_a \) have structures of toral groups. The toral group \(\hat{A} \) is said to be a maximal torus of the symmetric space \(S \). The adjoint action of \(W_s \) on \(A \) induces the action of \(W_s \) on \(A \). This action is compatible with the natural action of \(W_s \) on \(\mathfrak{a}/\Gamma \) relative to the identification: \(\hat{A} = \mathfrak{a}/\Gamma \). Put

\[
Z = Z(K, L) = \{ \lambda \in \sqrt{-1} \mathbb{R}; (\lambda, H) \in 2\pi \sqrt{-1} Z \text{ for any } H \in \mathfrak{a} \}.
\]

\(Z \) is isomorphic with the group \(\mathcal{D}(\hat{A}) \) of characters of \(\hat{A} \) by the correspondence \(\lambda \mapsto \varepsilon^\lambda \), where \(\varepsilon^\lambda \in \mathcal{D}(\hat{A}) \) is defined by \(\varepsilon^\lambda((\exp H)x_o) = \exp (\lambda, H) \) for \(H \in \mathfrak{a} \). Put
\[D = D(K, L) = \{ \lambda \in Z; (\lambda, \gamma_i) \geq 0 \text{ for any } \gamma_i \in \Pi \} \]
\[= \{ \lambda \in Z; (\lambda, \gamma) \geq 0 \text{ for any } \gamma \in \sum \} \]

Then we have
\[D = \{ \lambda \in Z; s\lambda \leq \lambda \text{ for any } s \in W_s \} \]

An element of \(D \) is called a \textit{dominant integral form} on \(\alpha \). We define a lattice \(\Gamma' \) in \(\alpha' \) to be the subgroup of \(\alpha' \) generated by \(\{ 2\pi \sqrt{-1} (\frac{1}{2} \gamma \ast); \gamma \in \sum \} \). We define a lattice \(\Gamma_0 \) in \(\alpha \) and a toral group \(\hat{A}_0 \) by
\[\Gamma_0 = \Gamma \oplus \Gamma' \]
and
\[\hat{A}_0 = \alpha/\Gamma_0 \]

Put
\[Z_0 = \{ \lambda \in \sqrt{-1} \alpha; (\lambda, H) \in 2\pi \sqrt{-1} Z \text{ for any } H \in \Gamma_0 \} \]
and
\[D_0 = D \cap Z_0 \]

\(Z_0 \) is isomorphic with the group \(\mathcal{O}(\hat{A}_0) \) of characters of \(\hat{A}_0 \). Put furthermore
\[Z'_0 = Z_0 \cap \sqrt{-1} \alpha' = \{ \lambda \in \sqrt{-1} \alpha'; 2(\lambda, \gamma) \in \sum \text{ for any } \gamma \in \sum \} \]
and
\[D'_0 = D_0 \cap \sqrt{-1} \alpha' = D \cap Z'_0 \]

\textbf{Lemma 1.} If \(L=K_0 \), then
\[\Gamma = \{ \frac{1}{2} H; H \in \alpha, \exp H = e \} \]

Proof. For \(H \in \alpha, \exp H = e \Leftrightarrow \exp \frac{H}{2} \exp \frac{H}{2} = e \Leftrightarrow \exp \frac{H}{2} = \left(\exp \frac{H}{2} \right)^{-1} \Leftrightarrow \]
\[\exp \frac{H}{2} = \theta \left(\exp \frac{H}{2} \right) \Leftrightarrow \exp \frac{H}{2} \in K_0, \text{ which yields Lemma 1.} \]

\textbf{Lemma 2.} 1) \(\Gamma'_0 = 2\pi \sqrt{-1} \sum \beta_i \in \sum \) \(\mathcal{O}(\frac{1}{2} \beta \ast) \)

and it is \(W_s \)-invariant. Therefore \(\Gamma_0 \) is \(W_s \)-invariant.

2) \(\Gamma_0 \subseteq \Gamma \). Therefore \(Z_0 \supseteq Z \) and \(D_0 \supset D \).

3) If \(S \) is simply connected, then \(\Gamma = \Gamma_0 = \Gamma'_0 \) (thus \(Z = Z_0 = Z'_0, D = D_0 = D'_0 \)) and \(\hat{A}_0 \) can be identified with \(\hat{A} \).

Proof. 1) Denoting the reflection of \(\sqrt{-1} \alpha \) with respect to \(\beta_i \in \Pi \) by \(s_i \in W_s \), we have
It follows that Γ_0' is W_S-invariant. Since we have

$$s_1\gamma^* = (s_1\gamma)^* = \gamma^* \frac{2(\beta, \gamma)}{(\gamma, \gamma)} \beta^*$$

for $\gamma \in \Sigma_S$.

Γ_0' is the subgroup of α' generated by $2\pi \sqrt{-1}(\frac{1}{2} \gamma^*)$ for $\gamma \in \Sigma_S^*$. Thus it suffices to show that

$$\gamma^* \in \sum_{i=1}^{\ell} \mathbb{Z} \beta_i^*$$

for any $\gamma \in \Sigma_S^*$.

But this follows from the first equality since there exist $\beta_{i_1}, \ldots, \beta_{i_\ell} \in \Pi_S^*$ such that $s_1 \cdots s_{i_\ell} \gamma \in \Pi_S^*$.

2) Since $\Gamma \subset \Gamma'$, it suffices to show that $\Gamma_0' \subset \Gamma'$ for $\Gamma' = \Gamma \cap \alpha'$. Let K' be the connected subgroup of K generated by Γ' and $L' = K' \cap L$. Then (K', L') is also a symmetric pair with respect to θ and $S' = K'/L'$ can be identified with the K'-orbit in S through the origin x_0 of S. Let

$$\pi': K_0' \to K'$$

be the covering homomorphism of the universal covering group K_0' of K' and put

$$L_0' = \{k \in K_0'; \theta_0(k) = k\},$$

where θ_0 is the involutive automorphism of K_0' covering the involutive automorphism θ of K. K_0' is compact since K' is semi-simple. S' can be identified with $K_0'/\pi'^{-1}(L')$. It follows from Theorem 2.1 and Lemma 1 that L_0' is connected and

$$\Gamma_0' = \{H \in \alpha'; \exp_{K_0'} H \in L_0'\}.$$

Let A' (resp. A_0') be the connected subgroup of K' (resp. of K_0') generated by α' and \hat{A}' (resp. \hat{A}_0') be the A'-orbit in S' (resp. the A_0'-orbit in $S_0' = K_0'/L_0'$) through the origin. Then we have identifications

$$\hat{A}' = \alpha'//\Gamma'$$

and

$$\hat{A}_0' = \alpha'/\Gamma_0'.$$

On the other hand, since $\pi'^{-1}(L') \supset L_0'$, the covering homomorphism π' induces the commutative diagram

$$\begin{array}{ccc}
S_0' & \xrightarrow{\pi'} & S' \\
\cup & & \cup \\
\hat{A}_0' & \xrightarrow{\pi'} & \hat{A}'.
\end{array}$$
It follows that
\[\Gamma'_0 \subseteq \Gamma'. \]

3) Under the notation in 2), we have a covering map
\[\hat{\mathcal{C}}_a \times S' \to S. \]

It follows from the assumption that \(\hat{\mathcal{C}}_a = \{ e \} \) and \(S' \) is simply connected. Thus the covering map \(\pi' \) is trivial and \(\Gamma' = \Gamma'_0 \). Moreover \(c_0 = \{ 0 \} \) implies that \(\Gamma = \Gamma' \) and \(\Gamma_0 = \Gamma'_0 \). q.e.d.

REMARK. Define \(\Lambda_1 \in \sqrt{-1} \alpha' \) \((1 \leq i \leq l)\) by
\[(\Lambda_i, \alpha_i^\ast) = \delta_{ij} \quad (1 \leq i, j \leq l). \]

Then define \(M_i \) \((1 \leq i \leq p)\) by
\[M_i = \begin{cases} \Lambda_i & \text{if } p\alpha_i = \alpha_i \text{ and } (\alpha_i, \Pi_i^\ast) = \{ 0 \} \\ 2\Lambda_i & \text{if } p\alpha_i = \alpha_i \text{ and } (\alpha_i, \Pi_i^\ast) \neq \{ 0 \} \\ \Lambda_i + \Lambda_i & \text{if } p\alpha_i = \alpha_i \neq \alpha_i. \end{cases} \]

Then it can be verified (cf. Sugiura [12]) that \(M_i \in \sqrt{-1} \alpha' \) \((1 \leq i \leq p)\) and
\[(M_i, \frac{1}{2} \beta_i^\ast) = \delta_{ij} \quad (1 \leq i, j \leq p). \]

It follows that
\[Z_0' = \sum_{i=1}^p ZM_i \]

and
\[D_0' = \{ \sum_{i=1}^p m_i M_i; \ m_i \in \mathbb{Z}, \ m_i \geq 0 \ (1 \leq i \leq p) \}. \]

It follows from Lemma 2,1) that \(W_S \) acts on \(\hat{A}_s = \alpha _\Gamma_0 \) and from Lemma 2,2) that we have a \(W_S \)-equivariant homomorphism
\[\pi_0 : \hat{A}_s \to \hat{A}. \]

Let \(\mathcal{R} (\hat{A}) \) denote the character ring of \(\hat{A} \). Then \(W_S \) acts on \(\mathcal{R} (\hat{A}) \) (or more generally on the space \(C^\infty (\hat{A}) \) of \(C \)-valued \(C^\infty \)-functions on \(\hat{A} \)) by
\[(s \chi)(\hat{a}) = \chi(s^{-1} \hat{a}) \quad \text{for } s \in W_S, \ \hat{a} \in \hat{A}. \]

This action coincides on \(Z = \mathcal{D} (\hat{A}) \subseteq \mathcal{R} (\hat{A}) \) with the adjoint action of \(W_S \) on \(Z \). Let \(\mathcal{R}_{W_S} (\hat{A}) \) be the subring of \(W_S \)-invariant characters of \(\hat{A} \) and \(\mathcal{R}_{W_S} (\hat{A})^c \) the \(C \)-span of \(\mathcal{R}_{W_S} (\hat{A}) \) in \(C^\infty (\hat{A}) \). Let \(\mathcal{R} (\hat{A}_k) \), \(\mathcal{R}_{W_S} (\hat{A}_k) \), and \(\mathcal{R}_{W_S} (\hat{A}_k)^c \) denote the same objects for \(\hat{A}_k \). Then \(\pi_0 \) induces a \(W_S \)-equivariant monomorphism
\[\pi_0^* : \mathcal{R} (\hat{A}) \to \mathcal{R} (\hat{A}_0). \]
and monomorphisms
\[\pi^\#: \mathcal{R}_{\mathbb{W}_s}(\hat{A}) \to \mathcal{R}_{\mathbb{W}_s}(\hat{A}_0), \]
\[\pi^\#: \mathcal{R}_{\mathbb{W}_s}(\hat{A}^c) \to \mathcal{R}_{\mathbb{W}_s}(\hat{A}_0^c). \]

Henceforth we shall identify \(\mathcal{R}_{\mathbb{W}_s}(\hat{A}) \) with a subring of \(\mathcal{R}_{\mathbb{W}_s}(\hat{A}_0) \) and \(\mathcal{R}_{\mathbb{W}_s}(\hat{A})^c \) with a subalgebra of \(\mathcal{R}_{\mathbb{W}_s}(\hat{A}_0)^c \) by means of these monomorphisms \(\pi^\# \).

For \(\lambda \in \sqrt{-1} \alpha \), we shall denote by \(\lambda_c \) the \(\sqrt{-1} e_0 \)-component of \(\lambda \) with respect to the orthogonal decomposition
\[\sqrt{-1} \alpha = \sqrt{-1} e_0 \bigoplus \sqrt{-1} \alpha'. \]

The following facts can be proved in the same way as the classical results for a compact connected Lie group \(S \), so the proofs are omitted.

We define an element \(\delta \) in \(Z_\alpha \) by
\[\delta = \sum_{\gamma \in \langle Z_\alpha \rangle^\vee} \gamma. \]
For \(\lambda \in Z_\alpha \), we define \(\xi_\lambda \in \mathcal{R}(\hat{A}_0) \) by
\[\xi_\lambda = \sum_{\alpha \in \mathbb{W}_s} (\det z) e^{\alpha \lambda}. \]
For \(\lambda \in Z \), \(\xi_\lambda \) is divisible by \(\xi_\delta \) in the ring \(\mathcal{R}(\hat{A}_0) \) and
\[\chi_\lambda = \frac{\xi_{\lambda+\delta}}{\xi_\delta} \]
is in \(\mathcal{R}_{\mathbb{W}_s}(\hat{A}) \). If \(\chi_\lambda \) has the expression
\[\chi_\lambda = \sum m_\mu e^\mu \quad \text{with} \quad \mu \in Z, \ m_\mu \in Z, \ m_\mu \neq 0, \]
then \(m_\mu \) are the same for any \(\mu \). In particular, if \(\lambda \in D \), then the highest component in the above expression of \(\chi_\lambda \) is \(e^\lambda \) with \(m_\lambda = 1 \). Any \(W_\mathbb{S} \)-invariant character \(\chi \in \mathcal{R}_{\mathbb{W}_s}(\hat{A}) \) of \(\hat{A} \) has an expression
\[\chi = \sum m_\lambda \chi_\lambda \quad \text{with} \quad \lambda \in D, \ m_\lambda \in Z. \]
The expression is unique for \(\chi \). In particular, the system \(\{ \chi_\lambda; \lambda \in D \} \) forms a basis of the space \(\mathcal{R}_{\mathbb{W}_s}(\hat{A})^c \).

Now we come back to spherical representations of a symmetric pair \((K, L)\).

Theorem 2.3. (E. Cartan [1]) Let \(\rho \in \mathcal{D}(K, L) \) have the highest weight \(\lambda \in \sqrt{-1} t \) and \(\omega_\lambda \) be the zonal spherical function for \((K, L)\) belonging to \(\rho \). Then
1) \(\lambda \in D \),
2) \(\omega_\lambda \) restricted to \(\hat{A} \) is in \(\mathcal{R}_{\mathbb{W}_s}(\hat{A})^c \) and has an expression
\[\omega_\lambda = \sum a_\mu e^{-\mu} \quad \text{with} \quad \mu \in Z, \ a_\mu \in \mathbb{R}, \ a_\mu > 0, \ \sum a_\mu = 1, \]
with the lowest component \(a \lambda e^{-\lambda} \).

Proof. Proof of E. Cartan [1] was done in the case where \(K \) is semi-simple and \(L = K_\alpha \). His proof can be applied for our case without difficulties. But his proof of \(\lambda \in \sqrt{-1} a \) is not complete. A correct proof is seen, for example, in Schmid [11]. q.e.d.

Lemma 3. For any \(\lambda \in D \), there exists an irreducible representation \(\rho \) of \(K \) such that the highest weight of \(\rho \) on \(\mathfrak{t}^c \) is \(\lambda \).

Proof. Let \(H \in \mathfrak{t} \) with \(\exp H = e \). Decompose \(H \) as

\[
H = H' + H'' \quad \text{with} \quad H' \in \mathfrak{b}, \ H'' \in \mathfrak{a}.
\]

Then \(\exp H'' = (\exp H')^{-1} \in L \), i.e. \(H'' \in \Gamma \). It follows from \(\lambda \in Z \subset \sqrt{-1} a \) that \((\lambda, H) = (\lambda, H') + (\lambda, H'') = (\lambda, H'') \in 2\pi \sqrt{-1} Z \). Moreover \((\lambda, \alpha_i) = (\lambda, \sqrt{2} \alpha_i) \geq 0 \) for any \(\alpha_i \in \Pi \), since \(\lambda \in D \). Thus \(e^\lambda \) is a dominant character of the maximal torus \(T \) of \(K \). Then the classical representation theory of compact connected Lie groups assures the existence of \(\rho \). q.e.d.

Lemma 4. Let \(Z_L(A) \) be the centralizer in \(L \) of \(A \) and \(Z_L(A)^0 \) the connected component of \(Z_L(A) \). Then

\[
Z_L(A) = Z_L(A)^0 \exp \Gamma.
\]

Proof. The centralizer \(\mathfrak{z}_L(A) \) in \(L \) of \(A \) has the decomposition

\[
\mathfrak{z}_L(A) = \mathfrak{z}_L(A)^0 \oplus A,
\]

where \(\mathfrak{z}_L(A) \) is the centralizer in \(L \) of \(A \). Since the centralizer \(Z_K(A) \) in the compact connected Lie group \(K \) of the torus \(A \) is connected, we have the decomposition

\[
Z_K(A) = Z_L(A)^0 A.
\]

It follows that any element \(m \in Z_L(A) \) can be written as

\[
m = m'a \quad \text{with} \quad m' \in Z_L(A)^0, \ a \in A.
\]

Then \(a = m'^{-1} m \in L \) so that \(a \in \exp \Gamma \). Thus \(m \in Z_L(A)^0 \exp \Gamma \), which proves Lemma 4. q.e.d.

Lemma 5. Let \(K^c \) denote the Chevalley complexification of \(K \). Put

\[
K^* = L \exp \sqrt{-1} \mathfrak{s}
\]

and

\[
(K^*)_0 = L^0 \exp \sqrt{-1} \mathfrak{s},
\]

where \(L^0 \) denotes the connected component of \(L \). Then \((K^*)_0 \) is a closed subgroup of
K^c normalized by K^* and

$$K^* = (K^*)^\circ \exp \Gamma.$$

Therefore K^* is a closed subgroup of K^c with the connected component $(K^*)^\circ$.

Proof. The first statement is clear. Take any element $l \in L$. From the conjugteness of maximal abelian subalgebras in \mathfrak{s} under the adjoint action of L°, there exists $l_i \in L^i$ such that $l,l \in N_L(A)$. Since

$$N_L(A)/Z_L(A) = N_L^\circ(A)/Z_L^\circ(A) = W_S,$$

we can choose $l_z \in L^z$ such that $l_z l_i l \in Z_L(A)$. It follows from Lemma 4 that there exist $l_z \in Z_L(A)^\circ$ and $a \in \exp \Gamma$ such that $l_z l_i l = l_z a$. Therefore $l = l_z^{-1} l_z^{-1} l_z \in L^o \subset (K^*)^\circ$, i.e. $l \in (K^*)^\circ \exp \Gamma$. This completes the proof of Lemma 5. q.e.d.

Now we can prove the following

Theorem 2.4. (E. Cartan [1], Sugiura [12], Helgason [5]) For any $\lambda \in D$, there exists an irreducible spherical representation ρ of K relative to L such that the highest weight of ρ on t^c is λ.

Together with Theorem 2.3 we have the following

Corollary. For $\rho \in D(K, L)$, let $\lambda(\rho)$ denote the highest weight of ρ on t^c. Then the correspondence $\rho \mapsto \lambda(\rho)$ gives a bijection:

$$D(K, L) \rightarrow D(K, L).$$

Proof of Theorem 2.4. This theorem for the case where K is semi-simple and $L=K_s$ was stated in E. Cartan [1] but its proof is not complete. It was stated for simply connected K without proof in Sugiura [12]. It was proved in Helgason [5] for the case where K is semi-simple and L is connected. Helgason's proof can be applied for our case without difficulties, so we shall confine ourselves to point out necessary modifications.

Let

$$\rho: K \rightarrow GL(V)$$

be the irreducible representation of K with the highest weight λ (Lemma 3). By extending ρ to the Chevalley complexification K^c of K and restricting it to the closed subgroup K^* of K^c (Lemma 5), we have an irreducible representation of K^*, which will be denoted by the same letter ρ. It suffices to show that ρ has a non-zero L-invariant. Let N be the connected subgroup of K^* generated by the subalgebra

$$n = \mathfrak{t}^* \cap \sum_{a \in \Sigma^+_t} \mathfrak{t}^*_a.$$
where \(\mathfrak{k}^* \) is the Lie algebra of \(K^* \) and \(\mathfrak{k}_a^* \) is the root space of \(\mathfrak{k}^* \) for \(\alpha \). We shall first prove that the representation \(\rho \) of \(K^* \) is a conical representation of \(K^* \) in the sense of Helgason [5], i.e. if \(v_\lambda \in V, v_\lambda \neq 0 \), is a highest weight vector for \(\rho \) with respect to \(\mathfrak{k}^* \), we have
\[
\rho(mn) v_\lambda = v_\lambda \quad \text{for any } m \in Z_L(A), n \in N.
\]
Denoting the infinitesimal action of \(\mathfrak{k}^* \) on \(V \) by the same letter \(\rho \), we have
\[
\rho(n) v_\lambda = \rho(\delta_\lambda(a)) v_\lambda = \{0\}.
\]
In fact, \(\rho(n) v_\lambda = \{0\} \) since \(n \subseteq \sum_{\alpha \in \Sigma^0} \mathfrak{k}_a^* \). \(\rho(\mathfrak{b}^*) v_\lambda = \{0\} \) for the complexification \(\mathfrak{b}^c \) of \(\mathfrak{b} \) since \((\sqrt{-1} \mathfrak{b}, \lambda) = \{0\} \). \(\rho(\mathfrak{t}_a^*) v_\lambda = \{0\} \) for \(\alpha \in \Sigma^0, \alpha > 0 \). It follows from \((\alpha, \lambda) \in (\sqrt{-1} \mathfrak{b}, \lambda) = \{0\} \) for \(\alpha \in \Sigma_0^0 \) that \(\lambda - \alpha \) is not a weight of \(\rho \) for \(\alpha \in \Sigma_0^0, \alpha > 0 \). Since the complexification of \(\delta_\lambda(a) \) is spanned by \(\mathfrak{b}^c \) and the \(\mathfrak{t}_a^* \)'s for \(\alpha \in \Sigma_0^0 \), we have \(\rho(\delta_\lambda(a)) v_\lambda = \{0\} \). Therefore it suffices from Lemma 4 to show that
\[
\rho(\exp H) v_\lambda = v_\lambda \quad \text{for any } H \in \Gamma.
\]
But it is clear since \(\lambda \in Z \), i.e. \((\lambda, H) \in 2\pi \sqrt{-1} Z \) for any \(H \in \Gamma \).

Thus we can prove in the same way as Helgason [5] that \(V \) has a non-zero \(L \)-invariant vector, by constructing a \(K^* \)-submodule \(V' \) of the \(K^* \)-module \(C^\omega(K^*) \) of \(C^\omega \)-functions on \(K^* \), having a non-zero \(L \)-invariant, and by constructing a \(K^* \)-equivariant isomorphism of \(V \) onto \(V' \).

Next we shall describe zonal spherical functions in terms of the basis \(\{x_\lambda; \lambda \in D\} \) of \(\mathcal{R}_{W_S}(\hat{A})^c \).

For \(\hat{a} = (\exp H)x_\lambda \in \hat{A}, H \in a \), we put
\[
D(\hat{a}) = \left| \prod_{\alpha \in \Sigma^0 - \Sigma^0_0} 2 \sin(\alpha, \sqrt{-1} H) \right|.
\]
Let \(d\hat{a} \) denote the normalized Haar measure of \(\hat{A} \) and \(|W_S| \) the order of the Weyl group \(W_S \). For \(W_S \)-invariant functions \(\chi, \chi' \) on \(\hat{A} \), we define
\[
\langle \chi, \chi' \rangle = \frac{c}{|W_S|} \int_{\hat{A}} \chi(\hat{a}) \overline{\chi'(\hat{a})} D(\hat{a}) d\hat{a},
\]
where
\[
c = \left(\frac{1}{|W_S|} \int_{\hat{A}} D(\hat{a}) d\hat{a} \right)^{-1}.
\]
\(c = 1 \) in the case where \(S \) is a compact connected Lie group. In particular, if \(\chi \) and \(\chi' \) can be extended to \(L \)-invariant functions \(f \) and \(f' \) on \(S \), then \(\langle \chi, \chi' \rangle \) coincides with the inner product \(\langle f, f' \rangle \) in \(L^2(S) \) (cf. Helgason [4]).

Fix a dominant integral form \(\lambda \in D \). We define a finite subset \(D_\lambda \) of \(D \) by
\[D_\lambda = \{ \mu \in D; \mu_c = \lambda_c, \mu \preceq \lambda \} . \]

Since the system \(\{ X_\mu; \mu \in D \} \) forms a basis of \(\mathcal{R}_{W_\lambda}(\hat{A})^c \), the matrix
\[\langle \langle X_\mu, X_\nu \rangle \rangle_{\mu, \nu \in D_\lambda} \]

is a positive definite hermitian matrix. Let
\[(b^{\mu \nu})_{\mu, \nu \in D_\lambda} \]
be the inverse matrix of the above matrix. In particular \(b^{\lambda \lambda} > 0 \). For any \(\mu \in D_\lambda \), we put
\[c^\mu_\lambda = \frac{b^{\lambda \mu}}{\sqrt{d_\lambda b^{\lambda \lambda}}} , \]
where \(d_\lambda \) is the degree of an irreducible representation of \(K \) with the highest weight \(\lambda \). Then we have

Theorem 2.5. Let \(\lambda \in D \) and \(\omega_\lambda \) be the zonal spherical function belonging to the class of an irreducible representation of \(K \) with the highest weight \(\lambda \). Then \(\omega_\lambda \) restricted to \(\hat{A} \) is given by
\[\omega_\lambda = \sum_{\mu \in D_\lambda} c^\mu_\lambda X_\mu . \]

Proof. The idea of the following proof owes to Hua [6]. Let \(\mu \in D_\lambda \). Then \(\omega_\mu \) restricted to \(\hat{A} \) is in \(\mathcal{R}_{W_\lambda}(\hat{A})^c \) by Theorem 2.3. It follows by Theorem 2.3 and Corollary of Theorem 2.4 that \(\omega_\mu \) has an expression
\[\omega_\mu = \sum_{\nu \in D_\lambda} c^\nu_\mu X_\nu \quad \text{with } c^\nu_\mu \in R, c^\nu_\mu > 0, c^\nu_\mu = 0 \text{ if } \nu > \mu . \]

We define an upper triangular matrix \(C' \) by
\[C' = (c^\nu_\mu)_{\mu, \nu \in D_\lambda} . \]
Then we have
\[\langle \langle \omega_\mu, \omega_\nu \rangle \rangle_{\mu, \nu \in D_\lambda} = 'C'(\langle X_\mu, X_\nu \rangle)_{\mu, \nu \in D_\lambda} C' . \]

Since \(\langle \omega_\mu, \omega_\nu \rangle = d_\mu^{-1} \delta_{\mu \nu} \), we have
\[(d_\mu \delta_{\mu \nu})_{\mu, \nu \in D_\lambda} = C'^{-1} B'^{-1} C'^{-1} , \]
where
\[B' = (b^{\mu \nu})_{\mu, \nu \in D_\lambda} = (\langle X_\mu, X_\nu \rangle)_{\mu, \nu \in D_\lambda}^{-1} . \]
It follows that
\[C'(d_\mu \delta_{\mu \nu})_{\mu, \nu \in D_\lambda} 'C' = B' . \]
Comparing \((\mu, \lambda) \)-components of both sides, we have
In particular

\[(c_\lambda^\mu)^2 d_\lambda = b^{\mu\lambda}, \quad \text{i.e.} \quad c_\lambda = \sqrt{\frac{b^{\mu\lambda}}{d_\lambda}},\]

hence

\[c_\lambda^{\mu\rho} = \frac{b^{\mu\lambda}}{d_\lambda c_\lambda^\rho} = \frac{b^{\rho\lambda}}{d_\lambda b^{\mu\lambda}}.\]

Since \(b^{\mu\nu} = b^{\nu\mu}\), we have

\[c_\lambda^{\mu\rho} = \frac{b^{\rho\mu}}{\sqrt{d_\lambda b^{\mu\lambda}}} = c_\lambda^{\rho\mu}. \quad \text{q.e.d.}\]

Example. If \(S\) is a compact connected Lie group and \((K, L)\) the symmetric pair with \(K/L = S\) as mentioned before, then the set \(\mathcal{D}(S)\) of equivalence classes of irreducible representations of \(S\) is in the bijective correspondence with \(\mathcal{D}(K, L)\) by the assignment \(\rho \mapsto \rho \otimes \rho^*\), where \(\rho^*\) denotes the contragredient representation of \(\rho\). \(\hat{A}\) is a maximal torus of the compact Lie group \(S\). Let \(\chi_{\rho}\) be the invariant character of \(\hat{A}\) for the dominant integral form in \(D(K, L)\) corresponding to \(\rho \otimes \rho^*\) by the bijection in Corollary of Theorem 2.4. Then it is nothing but the character of \(\rho\). It follows from orthogonality relations of irreducible characters that the matrix \((b^{\mu\nu})\) is the identity matrix. Thus the zonal spherical function \(\omega_{\rho \otimes \rho^*}\) belonging to \(\rho \otimes \rho^*\) is given by

\[\omega_{\rho \otimes \rho^*} = \frac{1}{d_\rho} \chi_{\rho},\]

where \(d_\rho\) is the degree of \(\rho\).

3. **Polynomial representations associated with symmetric bounded domains**

Let \(D\) be an irreducible symmetric bounded domain with rank \(p\) realized in \((p^c)^-\) as in Introduction. We shall use the same notation as in Introduction.

Let

\[\Pi = \{\alpha_1, \ldots, \alpha_t\}\]

be the fundamental root system of \(\sum\) with respect to the order \(>\) and let \(\Pi_f = \Pi \cap \sum_f\). It is known that \(\Pi_f\) is the fundamental root system of \(\sum_f\), \(\Pi - \Pi_f\) consists of one element, say \(\alpha_1\), which is the lowest root in \(\sum_f^+\), and for any \(\alpha = \sum \lambda_i \alpha_i \in \sum_f^+, \lambda_i = 1\). Let \(\sum_f^+\) denote the set of positive compact roots. Put

\[b = \{H \in a; (\sqrt{-1} H, \Delta) = \{0\}\}.\]
Then we have the orthogonal decomposition

$$\sqrt{-1}t = \sqrt{-1}b \oplus \sqrt{-1}a$$

with respect to \((\ , \)\). We define an orthogonal transformation \(\sigma\) on \(\sqrt{-1}t\) by \(\sigma|b = -1\) and \(\sigma|\sqrt{-1}a = 1\). Let

$$\varpi = \frac{1}{2}(1+\sigma)\colon \sqrt{-1}t \to \sqrt{-1}a$$

be the orthogonal projection of \(\sqrt{-1}t\) onto \(\sqrt{-1}a\). Let \(\kappa\) be the unique involutive element of the Weyl group \(W_1\) of \(K\) such that \(\kappa \Pi_t = -\Pi_t\). Since \(\Sigma_p^+\) is the set of weights on \(t^c\) of the irreducible \(K\)-module \((p^c)^+\), we have \(\kappa \Sigma_p^+ = \Sigma_p^+\) and \(\kappa \gamma_i = \gamma_i\). Put

$$\Delta' = \kappa \Delta = \{\gamma_1', \ldots, \gamma_p'\}, \quad \gamma_i' = \kappa \gamma_i \ (1 \leq i \leq p), \quad \gamma_i' = \alpha_i.$$

It is the original maximal strongly orthogonal subsystem of \(\Sigma_p^+\) of Harish-Chandra [3]. For the system \(\Delta',\) the orthogonal projection

$$\varpi'\colon \sqrt{-1}t \to \sqrt{-1}a'$$

onto the \(R\)-span \(\sqrt{-1}a'\) of \(\Delta'\) is defined in the same way as for \(\Delta\). Put

$$P_1' = \{\alpha \in \Sigma_1^+; \varpi'(\alpha) = \frac{1}{2}(\gamma_i' + \gamma_j') \text{ for some } 1 \leq i \leq j \leq p\},$$

$$P_i' = \{\alpha \in \Sigma_i^+; \varpi'(\alpha) = \frac{1}{2} \gamma_i' \text{ for some } 1 \leq i \leq p\},$$

$$K_i' = \{\alpha \in \Sigma_i^+; \varpi'(\alpha) = \frac{1}{2} \gamma_i' \text{ for some } 1 \leq i \leq p\}.$$

Then (Harish-Chandra [3]) \(\Sigma\) is the disjoint union of \(P_1', -P_1', P_i', -P_i', K_i', -K_i'\) and we have

$$\varpi'P_i' = \{\frac{1}{2}(\gamma_i' + \gamma_j'); 1 \leq i \leq j \leq p\},$$

$$\varpi'P_i' = \{\frac{1}{2} \gamma_i'; 1 \leq i \leq p\} \quad \text{if } P_i' \neq \phi,$$

$$\varpi'K_i' - \{0\} = \{\pm \frac{1}{2}(\gamma_i' - \gamma_j'); 1 \leq i \leq j \leq p\},$$

$$\varpi'K_i' = \{\frac{1}{2} \gamma_i'; 1 \leq i \leq p\} \quad \text{if } P_i' \neq \phi.$$

Furthermore the multiplicity (with respect to \(\varpi'\)) of any \(\gamma_i'\) is 1 and that of any \(\frac{1}{2} \gamma_i'\) is even. It follows that

$$\varpi'\Sigma - \{0\} = \begin{cases}
\{\pm \frac{1}{2}(\gamma_i' \pm \gamma_j'); 1 \leq i \leq j \leq p, \pm \gamma_i; 1 \leq i \leq p\} & \text{if } P_i' = \phi \\
\{\pm \frac{1}{2}(\gamma_i' \pm \gamma_j'); 1 \leq i \leq j \leq p, \pm \gamma_i', \pm \frac{1}{2} \gamma_i', 1 \leq i \leq p\} & \text{if } P_i' \neq \phi.
\end{cases}$$

Moreover we have (Moore [8])

$$\varpi'\Pi - \{0\} = \begin{cases}
\{\gamma_1', \frac{1}{2}(\gamma_2' - \gamma_1'), \ldots, \frac{1}{2}(\gamma_p' - \gamma_{p-1}')\} & \text{if } P_i' = \phi \\
\{\gamma_1', \frac{1}{2}(\gamma_2' - \gamma_1'), \ldots, \frac{1}{2}(\gamma_p' - \gamma_{p-1}'), -\frac{1}{2} \gamma_p'\} & \text{if } P_i' \neq \phi.
\end{cases}$$
\[\omega' \Pi - \{0\} = \begin{cases} \{ \frac{1}{2}(\gamma_i - \gamma'_{i-1}), \ldots, \frac{1}{2}(\gamma_p - \gamma'_{p-1}) \} & \text{if } P'_1 = \phi \\ \{ \frac{1}{2}(\gamma_i - \gamma'_{i-1}), \ldots, \frac{1}{2}(\gamma_p - \gamma'_{p-1}), -\frac{1}{2} \gamma'_{p} \} & \text{if } P'_1 = \phi \end{cases} \]

Lemma 1.

1) \[\omega' \alpha_i = \begin{cases} \gamma_p & \text{if } P'_1 = \phi \\ \gamma_p & \text{if } P'_1 = \phi \end{cases} \]

2) (Schmid [11]) If \(P'_1 = \phi \) and

\[\sum_{\beta \in \beta_1} m_{\beta} \beta \quad \text{with } m_{\beta} \geq 0 \]

is in the \(\mathbb{R} \)-span \(\{ P'_1 \}_\mathbb{R} \) of \(P'_1 \), then \(m_{\beta} = 0 \) for any \(\beta \).

Proof. For any \(\alpha \in \sum_{\mathbb{R}}^+ = P'_1 \cup P'_1 \), \(\omega' \alpha \) can be written as

\[
\omega' \alpha = \frac{1}{2} m_1 (\gamma_2 - \gamma'_1) + \frac{1}{2} m_2 (\gamma_3 - \gamma'_2) + \cdots + \frac{1}{2} m_{p-1} (\gamma_p - \gamma'_{p-1}) - \frac{1}{2} m_p \gamma'_p + m_{p+1} \gamma'_1
\]

\[
\frac{1}{2} (2m_{p+1} - m_i) \gamma'_1 + \frac{1}{2} (m_i - m_{p+1}) \gamma'_2 + \cdots + \frac{1}{2} (m_{p-2} - m_{p-1}) \gamma'_p
\]

where \(m_i \in \mathbb{Z} \), \(m_i \geq 0 \), \(m_{p+1} = 1 \). Since \(\omega' \alpha = \frac{1}{2} (\gamma_i' + \gamma'_j) \) or \(\frac{1}{2} \gamma'_i \) for some \(i, j \), we have

\[
2 \geq m_1 \geq m_2 \geq \cdots \geq m_{p-1} \geq m_p \geq 0
\]

Furthermore \(\alpha \in P'_1 \) (resp. \(\alpha \in P'_1 \)) if and only if \(m_p = 0 \) (resp. \(m_p = 1 \)).

1) If \(P'_1 = \phi \), then \(\gamma'_1 \in P'_1 \). For \(\alpha = \gamma'_1 \), the coefficients in the above expression are \(m_1 = \cdots = m_{p-1} = 2 \), \(m_p = 0 \) and \(\omega' \gamma'_1 = \gamma'_1 \). If \(P'_1 = \phi \), then for \(\alpha = \gamma'_1 \), the coefficients are \(m_1 = \cdots = m_{p-1} = 2 \), \(m_p = 1 \) and \(\omega' \gamma'_1 = \frac{1}{2} \gamma'_p \). Now the assertion 1) follows from \(\omega' \alpha_i = \kappa^{-1} \omega' \kappa \alpha_i = \kappa^{-1} \omega' \gamma'_1 \).

2) Let \[\alpha = \sum_{i=1}^I n_i \alpha_i \quad \text{with } n_i \in \mathbb{Z}, n_i \geq 0 \]

be in \(\sum_{\mathbb{R}}^+ \). It follows from the first argument that

(a) if \(\alpha \in P'_1 \), \(\omega' \alpha_i = -\frac{1}{2} \gamma'_p \), then \(n_i = 0 \),
(b) if \(\alpha \in P'_1 \), then there exists \(\alpha_i \in \Pi_1 \) such that \(n_i > 0 \) and \(\omega' \alpha_i = -\frac{1}{2} \gamma'_p \).

This implies the assertion 2). q.e.d.
Now P_1, P_1, K_i and K_1 are defined for Δ in the same way as for Δ'. Then κ transforms P_1 (resp. P_1, K_1, K_1) onto P_1' (resp. P_1', K_1', K_1'). It follows that the above mentioned properties due to Harish-Chandra are also satisfied by our objects for Δ. But Moore's results should be modified as follows.

$$\sigma \Pi - \{0\} = \begin{cases} \{ \frac{1}{2} (\gamma_1 - \gamma_2), \cdots, \frac{1}{2} (\gamma_{p-1} - \gamma_p), \gamma_p \} & \text{if } P_1 = \phi \\ \{ \frac{1}{2} (\gamma_1 - \gamma_2), \cdots, \frac{1}{2} (\gamma_{p-1} - \gamma_p), \frac{1}{2} \gamma_p \} & \text{if } P_1 \neq \phi. \end{cases}$$

$$\sigma \Pi_1 - \{0\} = \begin{cases} \{ \frac{1}{2} (\gamma_1 - \gamma_2), \cdots, \frac{1}{2} (\gamma_{p-1} - \gamma_p) \} & \text{if } P_1 = \phi \\ \{ \frac{1}{2} (\gamma_1 - \gamma_2), \cdots, \frac{1}{2} (\gamma_{p-1} - \gamma_p), \frac{1}{2} \gamma_p \} & \text{if } P_1 \neq \phi. \end{cases}$$

They follow from Lemma 1, 1) and

$$\sigma \Pi_t = \kappa^{-1} \sigma' \kappa \Pi_t = -\kappa^{-1} \sigma' \Pi_t.$$

Note that $K_1 \subset \Sigma_t^+$ while $K_1' \subset -\Sigma_t^+.$

Lemma 2. 1) The order $>$ is a compatible order for Σ with respect to σ in the sense of 2.

2) $\sigma K_0 - \{0\}$ is a root system with the fundamental root system

$$\{ \frac{1}{2} (\gamma_1 - \gamma_2), \cdots, \frac{1}{2} (\gamma_{p-1} - \gamma_p) \}$$

with respect to the order $>.$

3) If $P_1 \neq \phi$ and

$$\sum_{\beta \in P_1} m_\beta \beta \text{ with } m_\beta \geq 0$$

is in the R-span $\{P_1\}_R$ of P_1, then $m_\beta = 0$ for any β.

Proof. 1) is clear from the form of $\sigma \Pi - \{0\}$ above.

2) is clear since

$$\sigma K_0 - \{0\} = \{ \pm \frac{1}{2} (\gamma_i - \gamma_j); 1 \leq i < j \leq p \} .$$

3) follows from Lemma 1, 2) and $\kappa P_1 = P_1', \kappa P_1 = P_1'. q.e.d.$

For $\lambda \in \sqrt{-1}$, $\lambda \neq 0$, we define as in 2

$$\lambda^* = \frac{2}{(\lambda, \lambda)} \lambda.$$
and put

\[Z_0 = \frac{1}{2} \sum_{\gamma \in \Delta} \gamma^*. \]

Since \((\frac{1}{2} \gamma_i, \gamma_j^*) = \delta_{ij}\) for \(1 \leq i, j \leq p\), we have

\[
\begin{align*}
P_+ &= \{ \alpha \in \Gamma_p; (\alpha, Z_0) = 1 \}, \\
P_- &= \{ \alpha \in \Gamma_p; (\alpha, Z_0) = \frac{1}{2} \}, \\
K_0 &= \{ \alpha \in \Gamma^c; (\alpha, Z_0) = 0 \}, \\
K_+ &= \{ \alpha \in \Gamma^c; (\alpha, Z_0) = \frac{1}{2} \}.
\end{align*}
\]

Hence eigenvalues of \(\text{ad} \ Z_0\) are \(\pm 1, \pm \frac{1}{2}\) on \(\mathfrak{p}^c, 0, \pm \frac{1}{2}\) on \(\mathfrak{p}^c\). Let \(\mathfrak{p}^c_\pm, \mathfrak{p}^c_0, \mathfrak{k}^c_0, \mathfrak{k}^c_\pm\) denote the corresponding eigenspaces. Note that the origin \(X_0\) of the Shilov boundary \(S\) is in \(\mathfrak{p}^c\).

The following results are due to Korányi-Wolf [7]. We define an element \(c\) of \(G^c\), which is called Cayley transform, by

\[c = \exp \left(-\frac{\pi}{4} \sum_{\gamma \in \Delta} (X_\gamma + X_{-\gamma}) \right) \]

and define an automorphism of \(G^c\) by

\[\theta(x) = c^2 x c^{-2} \quad \text{for} \quad x \in G^c. \]

The automorphism \(\text{Ad } c^2\) of \(\mathfrak{g}^c\) obtained by differentiating \(\theta\) will be also denoted by the same letter \(\theta\). Then \(\theta' = 1\) and on \(\sqrt{-1} \mathfrak{t}\) it coincides with \(-\sigma\). Put

\[
\begin{align*}
g_0 &= \{ X \in \mathfrak{g}; \theta^* X = X \}, \\
\mathfrak{k}_0 &= \mathfrak{g}_0 \cap \mathfrak{k},
\end{align*}
\]

and

\[\mathfrak{p}_0 = \mathfrak{g}_0 \cap \mathfrak{p}. \]

Then \(\mathfrak{k}_0\) is \(\theta\)-invariant and

\[\mathfrak{k}_0 = \{ X \in \mathfrak{k}; [Z_0, X] = 0 \}. \]

Hence \(\mathfrak{k}_0\) is a real form of \(\mathfrak{k}_0^c\) containing \(\mathfrak{t}\) as a maximal abelian subalgebra. \(K_0\) is nothing but the set of roots of \(\mathfrak{k}_0^c\) with respect to \(\mathfrak{t}^c\). The complexification \(\mathfrak{p}_0^c\) of \(\mathfrak{p}_0\) is the direct sum of \(\mathfrak{p}^c_+\) and \(\mathfrak{p}^c_-\). \(g_0\) is a reductive subalgebra of \(\mathfrak{g}\) with a Cartan decomposition

\[g_0 = \mathfrak{k}_0 + \mathfrak{p}_0. \]
Let G_0 (resp. K_0) be the connected subgroup of G generated by g_0 (resp. by k_0) and let

$$L_0 = \{ k \in K_0; \text{Ad} k X_0 = X_0 \} = K_0 \cap L.$$

Put

$$D_0 = D \cap \mathfrak{p}_{c_1}$$

and

$$S_0 = S \cap \mathfrak{p}_{c_1}.$$

Then G_0 acts on D_0 transitively and $K \cap G_0$ coincides with K_0, so that D_0 is identified with the quotient space G_0/K_0. Furthermore K_0 acts on S_0 transitively so that S_0 is identified with K_0/L_0. D_0 is totally geodesic in D with respect to Bergmann metric of D and it is also an irreducible symmetric bounded domain with the same rank as D. S_0 is the Shilov boundary of D_0. The complex structure of D_0 is given at the origin by $\text{ad} H_0$ with $\sqrt{-1} H_0 = Z_0$. We have

$$\text{ad} Z = Z_0.$$

The inclusion $D_0 \subset \mathfrak{p}_{c_1}$ is nothing but the Harish-Chandra's imbedding of $D_0 = G_0/K_0$. (K_0, L_0) is a symmetric pair with respect to θ, having the same rank as D. Hence

$$\mathfrak{l}_0 = \{ X \in \mathfrak{l}_0; \theta X = X \}$$

is the Lie algebra of L_0 and \mathfrak{a} is a maximal abelian subalgebra of

$$\mathfrak{g}_0 = \{ X \in \mathfrak{l}_0; \theta X = -X \}.$$

We can define a semi-linear transformation $X \mapsto \bar{X}$ of \mathfrak{p}_{c_1} by

$$\bar{X} = \tau \theta X = \theta \tau X \quad \text{for} \quad X \in \mathfrak{p}_{c_1}.$$

Put

$$\mathfrak{p}_{-1} = \{ X \in \mathfrak{p}_{c_1}; \bar{X} = X \}.$$

It is a real form of \mathfrak{p}_{c_1} and is invariant under the adjoint action of L_0 on \mathfrak{p}_{c_1}. The correspondence $X \mapsto [X, X]$ gives an isomorphism

$$\psi: \sqrt{-1} \mathfrak{g}_0 \rightarrow \mathfrak{p}_{-1},$$

which is equivariant with respect to the adjoint actions of L_0.

Now we shall consider the polynomial representation $S^*((\mathfrak{p}_{c})^*)$ of K. Let $S_*((\mathfrak{p}_{c})^*)$ be the symmetric algebra over $(\mathfrak{p}_{c})^*$. K acts on $S_*((\mathfrak{p}_{c})^*)$ by the natural extension Ad of the adjoint action of K on $(\mathfrak{p}_{c})^*$. On the other hand, the non-degenerate pairing

$$(\mathfrak{p}_{c})^* \times (\mathfrak{p}_{c})^* \rightarrow \mathbb{C}$$
by means of the Killing form (\cdot, \cdot) induces the identification

$$S_\bullet((\mathfrak{g}^c)^+) = S^*((\mathfrak{g}^c)^-).$$

This identification is compatible with the actions of K, since the Killing form is invariant under the adjoint action of K. In the same way we have a K_o-equivariant identification

$$S_\bullet(\mathfrak{g}_1^c) = S^*(\mathfrak{g}_1^c).$$

$S_\bullet(\mathfrak{g}_1^c)$ can be considered as a K_o-submodule of $S_\bullet((\mathfrak{g}^c)^+)$ by means of the natural monomorphism $S_\bullet(\mathfrak{g}_1^c) \rightarrow S_\bullet((\mathfrak{g}^c)^+)$ induced from the inclusion $\mathfrak{g}_1^c \subseteq (\mathfrak{g}^c)^+$.

Theorem 3.1. (i) Any irreducible K-submodule of $S_\bullet((\mathfrak{g}^c)^+)$ (resp. K_o-submodule of $S_\bullet(\mathfrak{g}_1^c)$) is contained exactly once in $S_\bullet((\mathfrak{g}^c)^+)$ (resp. in $S_\bullet(\mathfrak{g}_1^c)$).

(ii) For an irreducible K-submodule V of $S_\bullet((\mathfrak{g}^c)^+)$, we put

$$V_0 = V \cap S_\bullet(\mathfrak{g}_1^c).$$

Then $V \rightarrow V_0$ is the one to one correspondence between the set of irreducible K-submodules of $S_\bullet((\mathfrak{g}^c)^+)$ and the set of irreducible K_o-submodules of $S_\bullet(\mathfrak{g}_1^c)$ in such a way that

1) The highest weights on \mathfrak{g}^c of V and V_0 are the same.

2) The subspace of L-invariants in V is 1-dimensional and contained in V_0.

(iii) The highest weight λ of an irreducible K-submodule V of $S_\bullet((\mathfrak{g}^c)^+)$ is of the form

$$\lambda = \sum n_i \gamma_i, \quad n_i \in \mathbb{Z}, \quad n_1 \geq n_2 \geq \cdots \geq n_\rho \geq 0.$$

If $\sum n_i = \nu$, then V is contained in $S_\nu((\mathfrak{g}^c)^+)$. i.e. $S^\nu(D) \subseteq S^\nu(K, L)$ under the notation in Introduction.

For the proof of the theorem, we need the following

Lemma 3. (Murakami [9]) Let \mathfrak{g} be a Lie algebra over \mathbb{R} and \mathfrak{g}^c the complexification of \mathfrak{g}. Assume that there exists $Y \in \sqrt{-1} \mathfrak{g} \subset \mathfrak{g}^c$ such that \mathfrak{g}^c is the direct sum of 0-eigenspace \mathfrak{g}_0^c, $(+1)$-eigenspace \mathfrak{g}_1^c and (-1)-eigenspace \mathfrak{g}_-^c of $\text{ad} Y$, respectively. Let (ρ, V) be a complex irreducible \mathfrak{g}-module with \mathfrak{g}-invariant hermitian inner product. Denoting the extension to \mathfrak{g}^c of ρ by the same letter ρ, let $a_1 > a_2 > \cdots > a_m (a_i \in \mathbb{R})$ be eigenvalues of $\rho(Y)$, and S_t be a_t-eigenspace of $\rho(Y)$ ($1 \leq t \leq m$). Put $\mathfrak{g}_0 = \bigcap \mathfrak{g}_i$ (which is a real form of \mathfrak{g}_0^c). Then

1) $a_t = a_{t-1} + 1 \ (1 \leq t \leq m)$.

2) Each S_t is a \mathfrak{g}_c-submodule of V and

$$V = S_1 + \cdots + S_m$$

is the orthogonal direct sum.
3) \(S_i \) and \(S_m \) are irreducible \(\mathfrak{t}_e \)-submodules of \(V \) and characterized by

\[
S_i = \{ v \in V ; \rho(X)v = 0 \text{ for any } X \in \mathfrak{t}_e \}, \]
\[
S_m = \{ v \in V ; \rho(X)v = 0 \text{ for any } X \in \mathfrak{t}_e \}.
\]

Proof of Theorem 3.1. The infinitesimal action of \(\mathfrak{t}_e \) on \(S_*(\mathfrak{p}_e^c)^+ \) induced from the adjoint action \(\text{Ad} \) of \(K \) will be denoted by \(\text{ad} \).

Let \(V \) be an irreducible \(K \)-submodule of \(S_*(\mathfrak{p}_e^c)^+ \). Since \(Z \) is in the center of \(\mathfrak{k}_e \), it follows from Schur's lemma that \(V \) is contained in an eigenspace of \(\text{ad} \) \(Z \) in \(S_*(\mathfrak{p}_e^c)^+ \). But since \(\text{ad} \) \(Z \) is the scalar operator \(\nu \) on \(S_*(\mathfrak{p}_e^c)^+ \), \(V \) is contained in \(S_*(\mathfrak{p}_e^c)^+ \) for some \(\nu \). Let \(\lambda \in \sqrt{-1} \mathfrak{t} \) be the highest weight of \(V \). Put \(Y = 2Z \in \sqrt{-1} \mathfrak{t} \subset \mathfrak{t}_e \). Then the decomposition

\[
\mathfrak{t}_e = \mathfrak{t}_e^0 + \mathfrak{t}_e^1 + \mathfrak{t}_e^{-1}
\]

satisfies the assumption in Lemma 3. So we have a decomposition

\[
V = S_1 + \ldots + S_m
\]

into \(K_e \)-submodules, where \(S_i \) is an irreducible \(K_e \)-submodule and is the eigenspace for the maximum eigenvalue of \(\text{ad} \) \(Y \) in \(V \). It is characterized by

\[
S_i = \{ v \in V ; \text{ad} (X)v = 0 \text{ for any } X \in \mathfrak{t}_e \}.
\]

Thus a highest weight vector \(v_\lambda \) of the \(K \)-module \(V \) is contained in \(S_i \) because of \(K_i \subset \sum \mathfrak{t}^+ \). It follows that putting \(V_0 = S_1 \), \(V_0 \) is an irreducible \(K_e \)-submodule of \(S_*(\mathfrak{p}_e^c)^+ \) with the highest weight \(\lambda \).

We shall show that \(V_0 = V \cap S_*(\mathfrak{p}_e^c)^+ \). We have the decomposition

\[
S_*(\mathfrak{p}_e^c)^+ = \sum_{r, s} S_r(\mathfrak{p}_e^c) \otimes S_s(\mathfrak{p}_e^c)
\]

as \(K_e \)-modules. \(\text{ad} \) \(Z \) is the scalar operator \(r + \frac{1}{2}s = \frac{1}{2}(r + s) \) on \(S_r(\mathfrak{p}_e^c) \otimes S_s(\mathfrak{p}_e^c) \). In the same way as the first argument, we can get the decomposition

\[
V = V_1 + \ldots + V_h
\]

into irreducible \(K_e \)-submodules such that any \(V_i \) is contained in \(S_r(\mathfrak{p}_e^c) \otimes S_s(\mathfrak{p}_e^c) \) for some \((r, s) \). Since \(S^*(\mathfrak{p}_e^c)^- \) is \(K \)-isomorphic with \(S^*(S) \subset C^*(S) \), \(V \) has an \(L \)-invariant \(w \neq 0 \). Decompose \(w \) as

\[
w = w_1 + \ldots + w_h, \quad w_i \in V_i \quad (1 \leq i \leq k).
\]

At least one of the \(w_i \)'s, say \(w_1 \), is not zero. Let \(\lambda_1 \in \sqrt{-1} \mathfrak{t} \) be the highest weight of the irreducible \(K_o \)-module \(V_1 \). Since \(w_1 \) is a non-zero \(L_o \)-invariant of \(V_1 \), \(V_1 \) is a spherical \(K_o \)-module relative to \(L_o \). \((K_o, L_o) \) is a symmetric pair, \(\alpha \) is a maximal abelian subalgebra of \(\mathfrak{a}_o \) and the order \(> \) on \(\sqrt{-1} \mathfrak{t} \) is a compatible order for \(K_o \) with respect to \(\sigma \) by Lemma 1, 1), so we shall use the notations
\[\Gamma(K_0, L_0), Z(K_0, L_0), D(K_0, L_0) \) in 2. Then it follows from Theorem 2.3 that
\[\lambda_i \in D(K_0, L_0). \]
On the other hand, if \(V_1 \subset S_\alpha(p^f) \otimes S_\lambda(p^e) \), \(\lambda_i \) is of the form

\[\lambda_i = \sum_{\alpha \in P_1} m_\alpha \alpha + \sum_{\beta \in P_2} m_\beta \beta, \quad m_\alpha, m_\beta \in Z, \quad m_\alpha \geq 0, \quad m_\beta \geq 0 \]

with \(\sum m_\alpha = r, \sum m_\beta = s. \) Since \(D(K_0, L_0) \subset \sqrt{-1} \Delta R \subset \{ P_1 \}_R \), we have

\[\sum_{\beta \in P_2} m_\beta \beta \in \{ P_1 \}_R. \]

It follows from Lemma 2.3) that \(r = \nu, s = 0 \), i.e. \(V_1 \subset V \cap S_\lambda(p^e). \) On the other hand, \(\nabla S_\alpha(p^f) \subset V_0 \) since the possible maximum eigenvalue of \(\text{ad} Y \) on \(V \) is \(2\nu. \) Thus we have that \(V_0 = V_1 = V \cap S_\lambda(p^e). \)

The above argument shows also that any \(L \)-invariant in \(V \) is contained in \(V_0. \) It is unique up to scalar since \((K_0, L_0) \) is a symmetric pair.

Conversely, let \(V_0 \) be an irreducible \(K_0 \)-submodule of \(S_\lambda(p^e) \) with the highest weight \(\lambda \in \sqrt{-1} t. \) In the same way as the first argument, we know that \(V_0 \) is contained in \(S_\alpha(p^f) \) for some \(\nu. \) Let \(v_0 \in V_0 \) be a highest weight vector. Then \(\text{ad} t_i v_0 = 0 \) because of \([t_i, p^f] = 0. \) Hence \(\text{ad} X_\alpha v_0 = 0 \) for any \(\alpha \in \sum \lambda. \) We define \(V \) to be the \(C \)-span of \(\{ \text{ad} k v_0; k \in K \} \) in \(S_\alpha(p^e). \) Then \(V \) is an irreducible \(K \)-submodule of \(S_\lambda(p^e) \) with the highest weight \(\lambda \in \sqrt{-1} t. \)

It is easy to see that each of the above correspondences \(V \mapsto V_0 \) and \(V_0 \mapsto V \) is the inverse of the other. This proves assertions (i) and (ii).

(iii) We have \([\frac{1}{2} \gamma^f, X_{-\gamma_i}] = -\delta_{ij} X_{-\gamma_j} \) \((1 \leq i, j \leq p)\) because of \((\frac{1}{2} \gamma^f, \gamma_i) = \delta_{ij} \) \((1 \leq i, j \leq p). \) It follows that for \(H = 2\pi \sqrt{-1} \sum_{i=1}^p x_i (\frac{1}{2} \gamma^f) \in \alpha \) we have

\[\text{Ad}(\exp H)X_{-\gamma_i} = -\sum_{i=1}^p \exp(-2\pi \sqrt{-1} x_i) X_{-\gamma_i}. \]

Thus we have

\[\Gamma(K_0, L_0) = 2\pi \sqrt{-1} \sum_{i=1}^p Z(\frac{1}{2} \gamma^f) \]

and

\[Z(K_0, L_0) = \sum_{i=1}^p Z \gamma_i. \]

It follows from Lemma 2.2) that

\[D(K_0, L_0) = \{ \sum_{i=1}^p n_i \gamma_i; n_i \in Z, n_1 \geq n_2 \geq \cdots \geq n_p \}. \]

Therefore \(\lambda \) is of the form

\[\lambda = \sum_{i=1}^p n_i \gamma_i \quad \text{with} \quad n_i \in Z, \quad n_1 \geq \cdots \geq n_p. \]

On the other hand, \(\lambda \) is of the form
\[\lambda = \sum_{\alpha \in \mathcal{P}} m_\alpha \alpha \quad \text{with } m_\alpha \in \mathbb{Z}, m_\alpha \geq 0, \]

which implies that \(n_1 \geq \cdots \geq n_p \geq 0 \). If \(V \subset S_i((\mathfrak{p}^\mathfrak{c})^+) \), then \(V_0 \subset S_i(\mathfrak{p}^\mathfrak{c}_1) \) and \(\text{ad } Z_0 \)
is the scalar operator \(\nu \) on \(V_0 \), which equals \((\lambda, Z_0) = \sum_{i=1}^p n_i. \) q.e.d.

Remark. In terms of polynomial functions \(S^*((\mathfrak{p}^\mathfrak{c})^-) \), for an irreducible \(K \)-submodule \(V \) of \(S^*((p^\mathfrak{c})^-) \), \(V_0 \) is obtained by restriction to \(\mathfrak{p}^\mathfrak{c}_1 \) of functions in \(V \).

Proof of Theorem A. Orthogonality relations for the \(S^*_A(D)'s \) (resp. for the \(S^*_K(S)'s \) and the assertion that the restriction \(S^*_A(D) \rightarrow S^*_K(S) \) is a similitude follow from Schur's lemma. So it suffices to show that the cardinalities of \(S^*(D) \) and \(S^*(K, L) \) are the same.

From the first argument in the proof of Theorem 3.1 (iii), we see that \(\psi(\frac{1}{2} \gamma^*) = X_{\gamma} (\gamma \in \Delta) \) for the \(L_0 \)-equivariant isomorphism \(\psi: \sqrt{-1} \mathfrak{g}_0 \rightarrow \mathfrak{p}_-. \)

We put

\[\alpha^- = \psi(\sqrt{-1} \alpha) = \{ X_{\gamma}; \gamma \in \Delta \} \subset \mathfrak{p}_-. \]

Since the Weyl group \(W_0 \) of \(S_0 \) is isomorphic with the group of permutations of \(\Delta \) by Lemma 2,2), the "Weyl group" \(W_0 = N_{L_0}(\alpha^-)/Z_{L_0}(\alpha^-) \), where \(N_{L_0}(\alpha^-) \) (resp. \(Z_{L_0}(\alpha^-) \)) is the normalized (resp. centralizer) of \(\alpha^- \) in \(L_0 \), is isomorphic with the group of permutations of \(\{ X_{\gamma}; \gamma \in \Delta \} \). On the other hand, since \(S^*_A(\mathfrak{g}_0) \) is isomorphic with \(S^*_K(\alpha) \) by Theorem 2.2, \(S^*_A(\mathfrak{p}_-) \) is isomorphic with \(S^*_W(\alpha^-) \). Hence \(S^*_W(\alpha) \) is isomorphic with \(S^*_W(\mathfrak{g}_0)((\alpha^-)^c) \). It follows from Theorem 3.1, (ii), 2) that the cardinality of \(S^*(D) \) is equal to \(\dim S^*_A(\mathfrak{p}_-) = \dim S^*_W(\alpha^-)^c = \text{the number of linearly independent symmetric polynomials in } p\text{-variables with degree } \nu \), which is known to be the cardinality of \(S^*(K, L) \).

q.e.d.

4. Normalizing factor \(h_\lambda \)

Let \(\hat{A} = \text{Ad}(A(X_0)) \), denoting by \(A \) the connected subgroup of \(K_0 \) generated by \(\alpha \). \(\hat{A} \) has a natural group structure induced from that of \(\alpha \). Let

\[T = \{ t \in \mathbb{C}^*; |t| = 1 \} \]

be the 1-dimensional torus. Under the identification in Introduction of \((\alpha^-)^c \) with \(\mathbb{C}^p \), \(\alpha^- \) is identified with \(R^p \) and \(\hat{A} \) with \(T^p \). We see that the latter identification is compatible with group structures and complex conjugations, in view of the expression of \(\text{Ad}(\exp H)X_0 \) in the proof of Theorem 3.1, (iii). Moreover, under the same identification we have (Moore [8])

\[D \cap \alpha^- = \{ x \in \mathbb{R}^p; |x_i| < 1 \ (1 \leq i \leq p) \}, \]

denoting by \(z_i \ (1 \leq i \leq p) \) the \(i \)-th component of \(z \in \mathbb{C}^p \). By means of this
identification we define a measure on α^- by
$$dH = dx_1 \cdots dx_p$$
and a function $D(H)$ on α^- by
$$D(H) = \prod_{i=1}^p (2\pi i x_i)^{2s_i} \prod_{1 \leq i < j \leq p} ((x_i + x_j)(x_i - x_j))^{r_{ij}} \text{ for } H \in \alpha^-,$$
where r, $2s$ are multiplicities defined in Introduction. Then we have the following

Lemma 1. There exists a constant $c' > 0$ such that
$$\int_{D} f(X) d\mu(X) = c' \int_{D \cap \alpha^-} f(H) |D(H)| dH$$
for any integrable K-invariant function f on D.

Proof. It is easy to see that $\text{Ad } cH = H$ for any $H \in \mathfrak{b}$ and $\text{Ad } c\gamma^* = X_\gamma - X_{-\gamma} \in \mathfrak{p}$ for any $\gamma \in \Delta$. Put
$$\alpha^0 = \text{Ad } c(\sqrt{-1}\alpha) = \{X_\gamma - X_{-\gamma}; \gamma \in \Delta\}_R,$$
$$\mathfrak{h} = \text{Ad } c(\mathfrak{b} \oplus \sqrt{-1}\alpha) = \mathfrak{b} \oplus \alpha^0$$
and
$$\mathfrak{h}_R = \sqrt{-1}\mathfrak{b} \oplus \alpha^0.$$Then α^0 is a maximal abelian subalgebra of \mathfrak{p}, \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} containing α^0 and \mathfrak{h}_R is the real part of the complexification \mathfrak{h}^c of \mathfrak{h}. We define linear forms h_i ($1 \leq i \leq p$) on α^0 by
$$h_i(X_\gamma - X_{-\gamma}) = \delta_{ij} \quad (1 \leq i, j \leq p).$$
If h_i is identified with an element of α^0 by means of the Killing form, we have $\text{Ad } c(\frac{1}{2} \gamma_i) = h_i$ ($1 \leq i \leq p$). The linear order on \mathfrak{h}_R induced by $\text{Ad } c$ from the order $>$ on $\sqrt{-1}t$ is a compatible order for $\text{Ad } c \sum$ with respect to the decomposition $\mathfrak{h}_R = \sqrt{-1}\mathfrak{b} \oplus \alpha^0$. This follows from 3, Lemma 2,1). Thus positive restricted roots on α^0 of the symmetric space $D = G/K$ are
$$\{h_i \pm h_j; 1 \leq i < j \leq p, 2h_i; 1 \leq i \leq p\} \quad \text{ if } P_1 = \phi,$$
$$\{h_i \pm h_j; 1 \leq i < j \leq p, 2h_i, h_i; 1 \leq i \leq p\} \quad \text{ if } P_1 \neq \phi.$$The multiplicity of $h_i \pm h_j$ ($1 \leq i < j \leq p$), i.e. the number of roots in $\text{Ad } c \sum$ projecting to $h_i \pm h_j$, is the same as that of $\frac{1}{2}(\gamma_i \pm \gamma_j)$. Since the Weyl group W_D on α^0 of $D = G/K$ is generated by reflections with respect to $h_i - h_j$, \cdots, $h_{p-1} - h_p, h_p$, hence transitive on the set $\{\pm h_i \pm h_j; 1 \leq i < j \leq p\}$, it follows that
POLYNOMIAL REPRESENTATIONS

multiplicities of these roots are the same \(r \). By the same reason, multiplicities of \(h_i \) \((1 \leq i \leq p)\) are the same \(2r \), which is even from the results of Harish-Chandra mentioned in 3. In the same way we know that multiplicities of \(2h_i \) \((1 \leq i \leq p)\) are 1. Thus the product \(D^\circ \) of positive restricted roots (multiplicity counted) is given by

\[
D^\circ (H^\circ) = \prod_{i=1}^{p} 2h_i (H^\circ) h_i (H^\circ)^r \prod_{1 \leq i < j \leq p} ((h_i + h_j) (H^\circ) (h_i - h_j) (H^\circ))^r \quad \text{for } H^\circ \in \alpha^\circ.
\]

Let \(dX \) (resp. \(dH^\circ \)) denote the Euclidean measure of \(\mathfrak{p} \) (resp. of \(\alpha^\circ \)) induced from the Killing form \((\ , \)\), and \(dk \) the normalized Haar measure of \(K \). Then (cf. Helgason [4]) under the surjective map \(K \times \alpha^\circ \to \mathfrak{p} \) defined by \((k, H^\circ) \mapsto \text{Ad } kH^\circ\), these measures are related as follows:

\[
dX = c'' \vert D^\circ (H^\circ) \vert dk dH^\circ \quad \text{with some constant } \ c'' > 0.
\]

Now we define a \(K \)-equivariant \(\mathcal{R} \)-isomorphism \(j: \mathfrak{p} \to (\mathfrak{p}^\circ)^- \) by

\[
j(X) = \frac{1}{2} (X - [Z, X]) \quad \text{for } X \in \mathfrak{p}.
\]

It is easy to see that \(j(X - X_{-\gamma}) = -X_{-\gamma} \) for any \(\gamma \in \Delta \), hence \(j\alpha^\circ = \alpha^- \). Since \(K \) acts irreducibly on \(\mathfrak{p} \), the map \(j \) is a similitude with respect to inner products \((\ , \)\) and the real part of \((\ , \)\). Therefore under the surjective map \(K \times \alpha^\circ \to (\mathfrak{p}^\circ)^- \) defined by \((k, H) \mapsto \text{Ad } kH\), we have

\[
d\mu(X) = c' \vert D(H) \vert dk dH \quad \text{with some constant } \ c'>0.
\]

Seeing \(\text{Ad } K(D \cap \alpha^-) = D \), we get the proof of Lemma 1. q.e.d.

Take a form \(\lambda \in S^* (K, L) \). Choose an orthonormal basis \(\{u_i; 1 \leq i \leq d_\lambda\} \) of \(S^*_\circ((\mathfrak{p}^\circ)^-\) with respect to \((\ , \)\), such that \(\{u_i; 1 \leq i \leq d_{\lambda, 0}\} \) spans \(S^*_\circ((\mathfrak{p}^\circ)^-) \cap S^* (\mathfrak{p}^\circ)\) and \(u_i \) is \(L \)-invariant. Put

\[
\rho_j^\circ (k) = (\text{Ad } k u_j, u_i), \quad \text{for } k \in K \quad (1 \leq i, j \leq d_\lambda),
\]

\[
\varphi^\circ_i (k) = \rho_i^j (k), \quad \text{for } k \in K \quad (1 \leq i \leq d_\lambda),
\]

\[
f_i = \sqrt{d_\lambda} \varphi^\circ_i \quad (1 \leq i \leq d_\lambda).
\]

The arguments in 2 show that \(\{f_i; 1 \leq i \leq d_\lambda\} \) form an orthonormal basis of \(S^*_\circ (S) \) with respect to \(\langle \ , \rangle \) and \(\varphi^\circ_i \) is the zonal spherical function \(\omega^\circ \) for \((K, L) \) belonging to \(\lambda \), identifying \(C^\circ (S) \) with the space of right \(L \)-invariant \(C^\circ \)-functions on \(K \). The zonal spherical polynomial \(\Omega_\lambda \) for \(D \) belonging to \(\lambda \) defined in Introduction is characterized by that its restriction to \(S \) coincides with \(\omega^\circ_\lambda \). \(\Omega_\lambda \) restricted to \(\mathfrak{p} \) is the zonal spherical polynomial for \(D^\circ \) belonging to \(\lambda \) and \(\omega^\circ_\lambda \) restricted to \(S_0 \) is the zonal spherical function for \((K_0, L_0) \) belonging to \(\lambda \). \(\Omega_\lambda \)
restricted to \((\alpha^-)^c\) is a symmetric polynomial since it is \(W_{\tilde{\alpha}}\)-invariant. Let \(f_i \in S^k((p^c)^-)(1 \leq i \leq d_\lambda)\) be the unique polynomial such that its restriction to \(S\) is \(f_i\). Then \(\{f_i; 1 \leq i \leq d_\lambda\}\) form an orthogonal basis of \(S^k((p^c)^-)(p^c)^{-}\). They satisfy relations

\[f_i(\text{Ad} k^{-1} X) = \sum_{j=1}^{d_\lambda} \rho_1(k) f_j(X) \quad \text{for} \quad k \in \mathcal{K}, X \in (p^c)^{-} \quad (1 \leq i \leq d_\lambda). \]

We put

\[\Phi_\lambda(X) = \frac{1}{d_\lambda} \sum_{i=1}^{d_\lambda} |f_i(X)|^2 \quad \text{for} \quad X \in (p^c)^-. \]

Then for any \(k \in \mathcal{K}\) we have

\[\Phi_\lambda(\text{Ad} k^{-1} X) = \frac{1}{d_\lambda} \sum_{i=1}^{d_\lambda} \left(\sum_j \rho_1(k) f_j(X) \right) \left(\sum_i \rho_1(k) f_i(X) \right) \]

\[= \frac{1}{d_\lambda} \sum_{i=1}^{d_\lambda} \left(\sum_j \rho_1(k) \rho_1(k) f_j(X) f_i(X) \right) \]

\[= \frac{1}{d_\lambda} \sum_{i=1}^{d_\lambda} \delta_{ij} f_j(X) \overline{f_i(X)} = \Phi_\lambda(X) \quad \text{for} \quad X \in (p^c)^-, \]

i.e. \(\Phi_\lambda\) is a \(K\)-invariant \(C^\infty\)-function on \((p^c)^-\). Note that

\[\Phi_\lambda(X) = \frac{1}{d_\lambda} \sum_{a=1}^{d_\lambda} |f_a(X)|^2 \quad \text{for} \quad X \in \mathfrak{p}_{c_1}. \]

Lemma 2.

\[h_\lambda = c' \int_{\mathfrak{p}^\lambda} \Phi_\lambda(H) |D(H)| dH \]

Proof.

\[\int_\mathfrak{p} \Phi_\lambda(X) d\mu(X) = \frac{1}{d_\lambda} \sum_{i=1}^{d_\lambda} \left< f_i, f_i \right> = \frac{1}{d_\lambda} \sum_{a=1}^{d_\lambda} h_\lambda \left< f_i, f_i' \right> = h_\lambda. \]

On the other hand, by Lemma 1 we have

\[\int_\mathfrak{p} \Phi_\lambda(X) d\mu(X) = c' \int_{\mathfrak{p}^\lambda} \Phi_\lambda(H) |D(H)| dH. \]

q.e.d.

Proof of Theorem B. Making use of the complex conjugation \(X \mapsto \overline{X}\) of \(\mathfrak{p}_{c_1}\) defined in 3, we define \(\Phi_\lambda \in S^*(\mathfrak{p}_{c_1})\) by

\[\Phi_\lambda(X) = \frac{1}{d_\lambda} \sum_{a=1}^{d_\lambda} f_a(X) \overline{f_a(X)} \quad \text{for} \quad X \in \mathfrak{p}_{c_1}. \]

Then \(\Phi_\lambda = \Phi_\lambda\) on \(\mathfrak{p}_{-1}\) and we have for any \(k \in K_0\)
\[\Phi_\lambda(\text{Ad } k X_0) = \frac{1}{d_\lambda} \sum_{a} f_\sigma(\text{Ad } k X_0) f_\sigma(\text{Ad } \theta(k) X_0) \]
\[= \frac{1}{d_\lambda} \sum_{a} f_\sigma(\text{Ad } k X_0) f_\sigma(\text{Ad } \theta(k) X_0) \]
\[= \frac{1}{d_\lambda} \sum_{a} f_\sigma'(k) f_\sigma'(\theta(k)) = \sum_{a} \varphi_\sigma'(k) \varphi_\sigma'(\theta(k)) \]
\[= \sum_{a} \rho_\sigma^2(k) \rho_\sigma^2(\theta(k)) = \sum_{a} \rho_\sigma^2(k) \rho_\sigma^2(\theta(k)^{-1}) \]
\[= \rho_\sigma^2(\theta(k)^{-1} k) = \omega_\lambda(\theta(k)^{-1} k). \]

In particular for any \(a \in A \)
\[\Phi_\lambda(\text{Ad } a X_0) = \omega_\lambda(a^2), \]
i.e. for any \(a \in \hat{A} \)
\[\Phi_\lambda(a) = \omega_\lambda(a^2) = \Omega_\lambda(a^2). \]

Since \(\hat{A} = T^p \) is a compact real form of \(C^*p \) and \(C^*p \) is open in \(C^p = (a^-)c \), we have
\[\Phi_\lambda(z_1, \ldots, z_p) = \Omega_\lambda(z_1^2, \ldots, z_p^2) \quad \text{for any } z \in C^p = (a^-)c. \]

By Lemma 2 we have
\[h_\lambda = c' \int_{D \cap a^-} \Phi_\lambda(H) |D(H)| dH \]
\[= c' \int_{\langle \theta \rangle < \langle \omega \rangle} \Omega_\lambda(x_1^2, \ldots, x_p^2) \prod_{i<j} ((x_i-x_j)(x_i-x_j))^{r} dx_1 \cdots dx_p \]
\[= c(D) \int_{\langle \theta \rangle < \langle \omega \rangle} \Omega_\lambda(y_1, \ldots, y_p) \prod_{i<j} (y_i-y_j)^{r} dy_1 \cdots dy_p \]
for some constant \(c(D) > 0 \), which does not depend on \(\lambda \). In particular, for \(\lambda = 0 \)
\[\mu(D) = h_0 = c(D) \int_{\langle \omega \rangle} \prod_{i<j} (y_i-y_j)^{r} dy_1 \cdots dy_p, \]
since \(\Omega_0 \equiv 1 \). This completes the proof of Theorem B. q.e.d.

Remark. It can be proved that \(\Phi_\lambda \) is an \(L_\omega \)-invariant polynomial on \(F_x \).

The multiplicities \(r, s \) are given as follows.

<table>
<thead>
<tr>
<th>(D)</th>
<th>rank (D)</th>
<th>(r)</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I) (p, s(p \leq q))</td>
<td>(p)</td>
<td>2</td>
<td>(q-p)</td>
</tr>
<tr>
<td>(II) ([n/2])</td>
<td>4</td>
<td>(2) if (n) odd({0) if (n) even</td>
<td></td>
</tr>
<tr>
<td>(III) (n)</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(IV) (n \geq 3)</td>
<td>2</td>
<td>(n-2)</td>
<td>0</td>
</tr>
<tr>
<td>(EIII)</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>(EVII)</td>
<td>3</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>
The zonal spherical polynomial Ω_λ is given as follows.

For integers n_1, \ldots, n_p we define the Schur function $\{n_1, \ldots, n_p\}$ on the p-dimensional torus T^p by

$$\{n_1, \ldots, n_p\}(t) = \frac{\det(t_1^{n_1+i_1+p-1} \cdots t_p^{n_p+i_p})}{\det(t_1^{i_1+p-1} \cdots t_p^{i_p+p-1})} \quad \text{for} \quad t = \begin{bmatrix} t_1 \\ \vdots \\ t_p \end{bmatrix} \in T^p \subset \mathbb{C}^p.$$

$\{n_1, \ldots, n_p\}$ is symmetric in variables t_1, \ldots, t_p and it is a polynomial in t_1, \ldots, t_p if and only if $n_i \geq 0$ $(1 \leq i \leq p)$. For an element $\lambda = \sum \gamma_i = \sum \gamma_i = Z(K_o, L_o)$, the i-th coefficient n_i will be denoted by $n_i(\lambda)$.

Then we have

Theorem 4.1. The zonal spherical polynomial Ω_λ for D belonging to $\lambda \in S^* (K, L)$ is determined on $(\alpha^-)^c$ by the relation

$$\Omega_\lambda(t) = \sum_{\mu \in B_\lambda} c^\mu \{n_1(\mu), \ldots, n_p(\mu)\}(t) \quad \text{for any} \quad t \in T^p = \hat{A} \subset (\alpha^-)^c,$$

where the c^μs are coefficients in Theorem 2.5 for the symmetric pair (K_o, L_o).

Proof. As we have seen in the proof of Theorem B, Ω_λ is determined on $(\alpha^-)^c$ by

$$\Omega_\lambda(t) = \omega_\lambda(t) \quad \text{for any} \quad t \in T^p = \hat{A}.$$

By Theorem 2.5, ω_λ has an expression

$$\omega_\lambda(t) = \sum_{\mu \in B_\lambda} c^\mu \chi_\mu(t) \quad \text{for} \quad t \in T^p = \hat{A}.$$

Since the Weyl group W_{S_0} acts on $Z(K_o, L_o)$ by the group of permutations of $\gamma_1, \ldots, \gamma_p$, W_{S_0}-invariant characters χ_λ of \hat{A} are nothing but Schur functions.

As we have seen in the proof of Theorem 3.1, (iii), the i-th component of $\text{Ad}(\exp H)X_\mu \in T^p = \hat{A}$ is $\exp (-\langle \gamma_i, H \rangle)$ for any $H \in \mathfrak{a}$. It follows that

$$\chi_\mu(t) = \{n_1(\mu), \ldots, n_p(\mu)\}(t) \quad \text{for} \quad t \in T^p = \hat{A}.$$

Hence we have

$$\Omega_\lambda(t) = \sum_{\mu \in B_\lambda} c^\mu \{n_1(\mu), \ldots, n_p(\mu)\}(t) \quad \text{for} \quad t \in T^p = \hat{A}.$$

q.e.d.

In the case of the domain D of type $(I)_{p, q} (p \leq q)$, S_o is the unitary group $U(p)$ of degree p. We have in view of Example in 2 that

$$\Omega_\lambda(t) = \frac{1}{d_\lambda} \{n_1(\lambda), \ldots, n_p(\lambda)\}(t) \quad \text{for} \quad t \in T^p = \hat{A},$$
where d_λ is the degree of the irreducible representation of $U(p)$ with the signature $(n_1(\lambda), \ldots, n_p(\lambda))$. In the case of the domain D of type (IV)$_r$, S_0 is the Lie sphere and Ω_λ can be described in terms of Gegenbauer polynomials, which are zonal spherical functions for the sphere. So our integral formula in Theorem B clarifies the meaning of integrals of Hua [6].

OSAKA UNIVERSITY

References
