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Abstract

This dissertation is an integration of several studies on the hydrogen-graphite and
hydrogen-platinum systems, which are standards for reactions relevant in realizing
the vision of practical hydrogen fuel systems. The studies | discuss here are carried
out ab initio, meaning no empirical parameters are employed in the theoretical
treatment of the condensed matter systems. Electronic structure calculations here are
based on density functional theory, an exact theory for many-body problems which
has greatly accelerated not only the understanding of physical/chemical processes at
the atomic level, but also the search for new materials and the systematic design of
new devices and chemical processes. Total energy calculations parametric in nuclear
coordinates were then used as the potential energy term for discussing hydrogen
atomic reactions of concern in these studies, in accordance with the Born-
Oppenheimer picture.

More specifically, in this dissertation | discuss results on the following: (1)
Hydrogen atomic adsorption & clustering on graphene: Among the most stable
groups of two/three H atoms, the adsorption per H atom is found stronger as
compared with the adsorption of isolated H atoms on graphene, and so favorable
cluster formation of H on the graphene surface is ascertained. Results also show that
the H-graphene system is an excellent example of substrate effects being much more
important, compared with direct adsorbate interaction, in determining the nature of
grouping/ordering of adsorbed species on a surface; (2) Effects of adsorbed hydrogen
on the electronic states of graphene: The adsorption of hydrogen disrupts the =
bonding network of graphene in an extended range — an event that affects the
material’s reactivity to subsequent hydrogen, and hence promotes cluster formation.
A hydrogen atom on graphene is also shown to be easily identified and distinguished
from pairs at a very local level through its effects on graphene electronic states near
the Fermi level; (3) Graphene two-face hydrogenation and saturation: Calculations
for the closest pairing using both faces of graphene suggest not only stronger
adsorption, but also barrierless entries for the second as well as all subsequent
incoming hydrogen atoms. The ensuing fully hydrogenated material is stable, and
has a structure greatly distinct from graphene; (4) H-Pt(111) revisited: Calculated
hydrogen states on Pt(111) within three different numerical treatments are discussed.



The ground state of atomic H on Pt(111) was found to have a localized character,
physically independent of the PES construction used. All calculations support the
low barrier to surface diffusion, as delocalization states start just 32 meV above the
ground state for atomic H adsorption, and subsequent delocalized states are not much
higher in energy. Results are discussed with relevant experimental data available; (5)
The role of lattice defects — vacancies: Application to a hypothetical rough Pt surface
is also discussed — a benchmark for understanding the role of vacancies on actual
surfaces, which should lie between the two extremes for the Pt surface presented here.
The edges of vacancies trap adsorbed H strongly, a factor that leads to increased
difficulty of hydrogen diffusion as compared to that on the ideal surface. The
hydrogen atom is however still more unlikely to reside at or enter a surface vacancy
itself, much more the subsurface; (6) Coadsorbed H and CO interaction on platinum:
A clear nonattractive interaction of hydrogen with CO is confirmed, most notably
with oxygen, which retains its strong H-repulsive traits in the Pt-bound CO case.
Inhibiting effects of CO greater than what is expected from simple adsorption site
exclusion are discussed with regard to adsorption/desorption and mobility on

platinum, as well as possibilities of surface-bound COH and HCO formation.
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mediated interactions, surface and interface chemistry, quantum effects,
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initio/first principles quantum chemical methods and calculations, density functional
theory, variation method, hydrogen motion wave functions, saturation, reactivity,
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1 Introduction

The biggest scientific challenge of our time is addressing the global climate crisis,
and expected to play a crucial role in its solutions is hydrogen. While fossil fuels are
expected to be around for some time, the reality of its limited supply and
scientifically proven role in climate change are real, current concerns. Considering
all available options for replacing oil, the prevalent answer is not unexpected,
considering its known advantages: clean, renewable, and potentially a much more
efficient source of energy. Hydrogen is the most abundant element in the universe.
On our planet, it exists in great quantity as a component of water and organic
compounds. It is the simplest, the lightest of all the chemical elements, and it has the
unique chemical property of being both an alkali and a halogen. But most
importantly, hydrogen is viewed as the major energy source for mobile applications
of the future.

The so-called hydrogen economy is a state in which society’s everyday energy
needs come from that stored through hydrogen, produced for example through the
breakdown of water by solar or nuclear power. However, serious hurdles are still
present along the road to achieving this vision, as breakthroughs are needed in all key
areas of achieving everyday hydrogen-based energy systems: production, storage,
and practical utilization of hydrogen fuel. I do not plan to enlighten the reader with
solutions by the end of this work, but rather contribute to fundamental knowledge on
specific systems that are highly relevant to the theme that is being discussed here.

This dissertation is primarily an integration of several studies of mine on the
hydrogen-graphite and hydrogen-platinum systems, which are standards for reactions
essential in realizing the vision of practical hydrogen systems, and serve as
benchmarks for materials design, for example in the pursuit of alternatives. More
precisely, the hydrogenation of graphitic carbon has been seen as a possible storage
solution, while platinum and its alloys are currently still the best catalysts for fuel
cell related chemical reactions.

As will be discussed in more detail in the proceeding chapters, this area of research
isn’t what I can consider as groundbreaking as the reader may already be aware that
studies concerning the hydrogenation of solid surfaces dates back decades, mostly

comprised of experimental work in vacuum environments. However, despite this



long and colorful history of hydrogen-surface interactions, I believe a lot of details
are still left unclear, and continuing developments in the field offer more questions
that require theoretical work in finding answers. In the case of the physical systems I
am focusing on for example, the clustering of hydrogen on graphene and its
subsequent saturation has not yet been fully understood, which is why in the past five
years this has been a very active topic of research for several materials research
groups across the globe. On the side of transition metals, detailed examinations of
the hydrogenation of surface vacancies and coadsorbed interaction of H with CO
from the theoretical side are surprisingly very much lacking, considering that these
are two very fundamental topics in understanding real situations for catalytic
reactions on Pt. Along with their significance beyond academic understanding, these
topics have hence been natural choices for me to tackle in my graduate school
research.

The initial motivation for the works that I discuss is in line with hydrogen-based
energy technology. However, I would like to emphasize that the applications
covered by this research are numerous. Hydrogen in amorphous and diamond-like
carbon has for example been studied for the tribological properties of the system, and
studies on hydrogenation-dehydrogenation processes on graphitic surfaces have been
fueled by the need to understand reactions in interstellar media. Also, the inherent
lightness and reported high hydrogen uptake of carbon materials have led to much
interest in using this class of materials in hydrogen-powered vehicles, and the recent
attention given to graphene for novel carbon-based nanoscale devices has revived
interest in the chemical modification of this carbon material. Furthermore, on a more
academic perspective, hydrogenation of graphene is one direct bridge that links
concepts in organic chemistry with the possibilities in solid state engineering.
Platinum on the other hand, while not as hot a topic as today’s two dimensional
carbon sheets, it is still one of most recognized components of catalysts for processes
involving hydrocarbons and water, and so I expect that valuable insights should be
obtained from the more fundamental investigations discussed here. In short the
availability of a considerable amount of experimental data and exciting, ongoing
developments in these areas make these materials fertile ground for further
theoretical surface science work.

This dissertation is organized as follows. In Chapter 2, a brief write-up on the

background of the computational methods and approximations used in this study is
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presented. The studies heavily involve electronic structure calculations based on
density functional theory, from the determination of stable structures, to the analyses
of surfaces states, to the creation of potential energy surfaces needed for further work
on a more detailed description of adsorbate motion. In Chapter 3, I try to answer the
question of how the steps to graphene saturation with hydrogen look like. I discuss
physical mechanisms that lead toward the conversion of graphene into its fully-
hydrogenated counterpart — a material which possesses properties closer to that of
diamond than graphene. I firstly discuss stability trends in small clusters of adsorbed
hydrogen, as well as surface structure and concurrent reactivity changes for graphene
one-face and two-face hydrogenation. Effects of adsorbed hydrogen on graphene
electronic states, which are essential to adsorbed hydrogen structure discrimination,
are also discussed.

In a markedly distinct yet related focus, in Chapter 4, I discuss some open topics
regarding the role of defects (vacancies) and unwanted coadsorbates (CO poisoning)
on platinum surface-bound hydrogen atoms, topics which provide a more general
picture of processes valuable to many catalytic reactions. Quantum states describing
hydrogen motion were determined from wave functions expressed as a linear
combination of a uniformly distributed set of Gaussian-type orbitals spanning the
space within the vicinity of the topmost layer of Pt atoms, using an independent
hydrogen approximation in an external periodic potential brought about by the frozen
solid surface. Revisiting the clean, ideal surface was done not only to provide the
standard to which I compare in my results regarding the effects of defects and
coadsorption, but also as a tool to discuss previously reported data on this topic. Key

findings are summarized at the end.



2 Theoretical background

2.1. Many-body systems and the adiabatic approximation

The purpose of this chapter is to provide the reader of this work with some brief
explanations on (1) the theoretical concepts in which the calculations in this
dissertation are based on, and (2) the approximations that are usually made in the
implementation of the theory in order to minimize computational costs without
sacrificing physical accuracy. Investigating the dynamics of chemical reactions, or
determining the electronic structure of atomic, molecular, or large condensed matter
systems ab initio (i.e., solely from fundamental physical principles, without
empirical data) entails solving the many-body Schrodinger equation

HD =ED 2.1
where the wave function @ is a function of real space coordinates of the individual
particles comprising the physical system:

®(r,..r,;R.R,) (2.2)
Here, the atomic nuclei are located in positions denoted by R, , while the positions
of the electrons are given by r, in a system with 3(N+M) degrees of freedom. The

many-body Hamiltonian is given by
I:I — fNuc + 7:3[ + I}Nuchuc + I/"Nucfel + I;elfel (23)

where the individual terms, expressed in Gaussian units for notation simplicity, are

given by
TN = (2.4)
Zzﬂl
R h2 N
T9=——>V: (2.5)
A Z,Z, e’ Z,7Z, e’
VNuc—Nuc — 26
;R -R,| 2;|R -R,| (2:6)

Nuc el (27)
SRS
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Here, capital letter indices are labels for atomic nuclei, while small letters are for

electrons. Also, v? represents the Laplacian with respect to nucleus / whose mass is
4, while v? is the Laplacian with respect to the electron i, whose mass is m.

The main problem with this approach in studying a system of atoms is that in
almost all cases, with the exceptions being the simplest, obtaining exact solutions of
the Schrodinger equation is not possible. In this view, reasonable approximations
have to be implemented. The Born-Oppenheimer approximation springs from the
fact that the atomic nuclei are much heavier, and slower, than the electrons. This
allows us to say that the nuclei are nearly fixed with respect to electron motion.
Reactions in which this approximation is valid are commonly referred to as
electronically adiabatic. This situation then provides logical bases to separate the
electronic degrees of freedom for any given fixed configuration of atomic nuclei,
giving Eq. (2.9) which shows the case in which the electronic wave function is

solved parametrically on the nuclear coordinates R, :

A ({R,})¥(r.(R,})=E ({R,})¥(r.{R,}) 2.9)
]:Iel ({Rl}) — fvel +I}li7\juc—Nuc +I}li\juc—el +I}el—el (210)

Next, according to the Born-Oppenheimer method E¢ (R,) is used as a potential

energy function to examine the nuclear motion. That is, we set up a Schrodinger

equation of the form
|7+ B (R,) |£(R,) = E™&(R,) @.11)
In this dissertation, the term E“(R,) in (2.11) is called the potential energy

surface (PES), which is very useful, for example, in determining activation barriers
and finding optimum reaction paths in chemical reactions. While called a ‘surface’,
the PES obviously is not limited to a dependence of only two variables (for a one-
dimensional dependence on nuclear motion, the term potential energy curve is
frequently used). One specific way of investigating atomic motion by solving (2.11)
is discussed in Chapter 4.

While separately treating the electronic from the nuclear degrees of freedom has
been shown to be a very convenient tool in a lot condensed matter systems, there is
still the hurdle of obtaining the eigenvalues and wave functions of the electronic

system in (2.9), for any frozen configuration of the nuclear coordinates R,. Even



with this simplification, the many-body problem remains an arduous task. While
obtaining the Schrédinger wave functions for a system of few electrons using
traditional wave function methods is tractable [1], the exponential increase in
computational expenses renders dealing with more complex systems impractical
considering the computational costs involved. It is in this light that alternative
treatments for studying condensed matter systems have been sought even long after
the onset of wave mechanics. One alternative which showed early promise (but did
not gain popularity until a series of developments to the theory) revolved on a simple
premise: that knowledge of the ground-state density for an electronic system

uniquely determines the system.

2.2. Total energy calculations for many-electron systems

The topics that are discussed in this dissertation are theoretical/computational in
nature, being largely rooted on density functional theory (DFT) [2, 3], a concept
whose mathematical formalism was established in the 1960s and has greatly
accelerated not only the understanding of ground state properties of many body
systems and physical/chemical processes at an atomic level, but also the search for
new materials and the systematic design of new devices and desired chemical

processes. Under this theory, a many-electron problem uses the electronic density

n(r) (i.e., the number of electrons per unit volume) as its fundamental variable,

instead of the wave function. In my studies, stable physical structures,
electronic/magnetic properties, and multidimensional reaction energetics are some of
the key results which I have obtained based on density functional theory. Aside from
the topics covered in this thesis, some of my work which have used density
functional theory include investigations on physical properties of systems involving
carbon nanotubes [4-8], analyses of chemical interactions at materials interfaces [9-
14], computational materials design for energy and spintronics applications [15-17],
as well as the dynamics of transition metal surface abstraction/etching reactions [18-
23].

In a nutshell, density functional theory states that if the ground state charge density

is known for any given system of atoms, the external potential and the number of

electrons can be known, and hence the full Hamiltonian H . The density n(r) thus

implicitly determines all properties derivable from H through the solution of the



time-independent or time-dependent Schrodinger equation. This conclusion arises

from the straightforward proof of Hohenberg and Kohn [2] that the external potential

V(r) is uniquely determined, within a trivial additive constant, by n(r). The same

paper also established an analogous variational principle: the variational principle in
quantum mechanics states that for any normalized trial wave function, the
expectation value of the Hamiltonian for this wave function must be greater than or

equal to the actual ground state energy. It was shown that the energy functional

assumes its minimum value for the correct n(r) Hence, combining this with the

fact that the total energy of an electron gas, including exchange and correlation, is a

unique functional of the electron density, we then have

tot

EY [n] = (iI)l E[n] = rn(lgl (T[n]+ V., [n]+ v, [n]+ E. [n]) (2.12)
or more explicitly,

Eg [n]=T[n]+[drv,, (Qdﬂﬁd@dﬂ%wyW +E [n] (2.13)

The total energy of an electron gas, including exchange and correlation Ey. as defined
in Eq. (2.13), is a unique functional of the electron density. Kohn and Sham in a
subsequent paper showed how it is possible, formally, to replace the many-electron
problem by an exactly equivalent set of self-consistent one-electron equations by

extracting the Hartree equations [24] from the variational principle for the energy

functional:
n(r) =Z_;\V/J~ (r) 2.14)
no_,
[—%V +Veﬂ‘(r)i|l:”j (r)=¢w,(r) (2.15)
Vepr (r) = Veu (r) + j |l: (_rl’.? ¢ dr'+ 5E§n[n] (r) (2.16)

where the integral in (2.16) is the Hartree energy v, (r) and the final term is the
exchange-correlation potential v (r) While the Pauli exclusion principle is an

integral part of the method, the problem with Hartree theory is that it treats
noninteracting electrons moving in the external potential v, i.e., neglecting
quantum statistics. Not only do the Kohn-Sham equations (2.14) to (2.16) show a

more general picture from Hartree theory, but the set also presents a tractable tool for
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an exact theory, since knowledge of the exact E [n], in principle, includes a/l

many-body effects. This term takes into account the exchange energy, which is the
reduction in the energy of the electronic system due to the antisymmetry of the wave
function, and the correlation energy, which is defined as the remaining difference
with the exact many-body energy of the system (i.e., all other contributions beyond
Hartree-Fock), brought about by electronic correlations not yet taken into account by
the inclusion of the exchange term, like that due to spatially separated electrons of
opposite spins. [ must add that in some definitions the correlation energy is
comprised of both the exchange energy defined above and the remaining error in
energy (i.e., all other energy terms beyond the Hartree model).

As mentioned earlier from the discussion on the Hohenberg-Kohn variational
principle, the immediate goal is finding the ground state electron density.
Computationally, this can be achieved by simply iterating the Kohn-Sham equations
until self-consistency is achieved — a process more clearly explained through the
flowchart shown in Fig. 2.1.

In contrast to the Hartree and Hartree-Fock approximation, the ground-state energy

(2.13) is exact. However, for an arbitrary n(r), one can give no simple exact
expression for £ _[n], and so the reliability of any practical implementation of

density functional theory crucially depends on the accuracy of the expression for the
exchange-correlation functional. What is exactly calculable is the exchange-

correlation energy for the spatially homogeneous electron gas, i.e., for the case in

which n(r) is the same at all r. This is exactly what is done in the simplest

representation for £ [n]: the so-called local density approximation (LDA),

EX[n]= J‘g)fCDA (n(r)) n(r)dr (2.17)
where at any point r, the local exchange-correlation energy of the homogeneous
electron gas is used for the corresponding electron density, ignoring the general
nonlocality of the true exchange-correlation energy. This crude approximation not
surprisingly leads to significant differences of predicted values when compared with
experimental data, a common example being the known overbinding flaw of LDA.

The next significant attempt to improve E,_[n] comes from the generalized gradient
approximations (GGA) [25-27], implemented in light of knowing that any real

system has a spatially varying density 7(r), and so it would clearly be useful to also
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Initial guess for charge density:

\

Calculate Vg;;‘)) (r)

\

odi i i izi i i i+l i+l
Solve Schrodinger equations by diagonalizing the Hamiltonian > gb([’k ), ,/,ﬁ.k ) <
Determine the new charge density 7 (+!) (r) using the calculated wave functions ,/,(_";1)
J»
Determine the new effective potential V(;f“) (r) from 5+ (r)

v

Convergence test: Do

(i) (i+1)
_—> )
Veir (l‘) and Veiy (l‘) Ves Vg;;l) (l‘)

Generate new
differ significantly?

+No

Compute total energy

Fig. 2.1. Flowchart for the self-consistent calculation of the ground state electron
density using the Kohn-Sham equations.

include information on the rate of this variation. Here, the value of the exchange
correlation potential at a point r depends not only on the value of the density at r, but
also on its variation close to r, taken into account through systematic gradient

expansions:
EXGCGA [n] = jgﬁ,GA (n(r),

In general, GGA improves on LDA in terms of predicting binding energies and

Vn(r)|)n(r)dr' (2.18)

structure geometries. GGA was particularly found to be better than LDA in
hydrocarbon systems and in transition metals in general, hence my choice of GGA
for the exchange-correlation energies in the computations in this work. However,
failures of both the LDA and current available GGA implementations in predicting
some band gaps for example, especially in strongly correlated electron systems, are

the reasons why improving the term E_ [n]is still an active area of research in

condensed matter theory as of the time of writing of this paper. This is however

beyond the scope of this thesis. In the next section, some specific points in the



practical implementation of density functional theory for studying crystalline systems

are discussed.

2.3. Implementing density functional theory in condensed matter

systems

Over popular cluster implementations which commonly use a basis set of Gaussian
orbitals [28], I have chosen to use supercell implementations of Fig. 2.1 for the
studies that are discussed in the proceeding chapters. In the calculations, one of the
main concerns of anyone using density functional theory is how to minimize
computational cost (i.e., minimizing the amount of hardware and time used) without
compromising the accuracy of the calculated physical properties of the system being
studied. There are many other tools that are useful in implementing density
functional theory in periodic systems, but in this section I only deal with the most
important methods that are currently being used by theoretical surface scientists.

Since a supercell implementation is periodic in three dimensions, the only way to
get around this for modeling surfaces (which are two-dimensional) is to use infinitely
repeating, periodic slabs of atoms with vacuum layers separating the slabs large
enough in order to avoid significant interaction between slab images. Of course, the
slabs should also be thick enough (for example, five or more atomic layers for
transition metal surfaces) to accurately represent a material’s surface. In general, the
asymmetry in surface-adsorbate systems creates a net dipole moment in the direction
of the surface normal, and causes the energy to converge slowly with respect to the
size of the super cell. This is where the use of dipole corrections [29, 30] is
beneficial. Moving away from the surface normal, caution must also be exercised in
choosing the unit cell size along lateral directions in order to avoid unwanted
interactions between adsorbate images, for example, or even longer-ranging
substrate-mediated interactions. Of course the disadvantage for surface unit cells
would be the increase in atoms, hence much more hardware-demanding and time-
consuming calculations. Finally, I would like to point out that for consistency, the
surface normal direction is always oriented along the z direction for the studies
discussed in this dissertation.

An alternate statement of Bloch’s theorem asserts that for an electron in a periodic

potential (which is an intrinsic property of the supercell approach to DFT), the
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electronic wave functions at each k point can be expanded in terms of a discrete

plane-wave basis set, as in
V(1) = 2™ (2.19)
G

where G is a reciprocal lattice vector and K is set to lie within the first Brillouin zone,
noting that any given wave vector q in all of the reciprocal space can be represented
by an appropriate k differing by a reciprocal lattice vector. Substituting (2.19) into
Eq. (2.15) and taking the inner product, the Kohn-Sham eigenvalue equation in the
plane-wave representation becomes
2
2 ’

; [ﬁ“‘ +G[ Fee +vy (GG )}C./JHG’ = &€k (2.20)

In principle, an infinite plane-wave basis set is required in expanding the electronic

wave functions. However, the coefficients ¢, . for the plane waves with small

kinetic energy (hz /2m)|k +G|2 are more important than those with large kinetic

energy. Knowing this, the size of the matrix can be reduced, up to a certain kinetic
energy cutoff for the plane waves which defines the size of the matrix to be setup for
diagonalization. Numerical convergence for the basis set often refers to the point in
which physical properties such as the binding energy of a system does not change
significantly (say, to within 0.01 eV) even if the plane wave cutoff is increased.
However, an extremely large plane wave basis set would still be required to
perform an all-electron calculation, especially in order to accurately take into account
the tightly-bound core orbitals. In order to be able to further reduce computational
expenses, pseudopotentials have been introduced. The concept of pseudopotentials
is simply based on the well-known observation that the physical/chemical properties
of solids are dependent on the valence electrons to a much greater extent than on the
core electrons. The pseudopotential approximation exploits this fact by removing the
core electrons and by replacing them and the strong ionic potential with a weaker

pseudopotential v that acts on a set of pseudo wave functions y”* rather than the

true valence wave functions ", giving

hz A} A 4 S
[—EVZJH)" (r)}l//ﬁk (r)=&wh (r) (2.21)

Asymptotically, a pseudopotential should be able to correctly reproduce the long-

range interaction of the core. Outside the core region of radius r.,, a good
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pseudopotential should exactly match the all-electron ionic potential, and w* should

coincide with the full wave function. Smooth, weakly oscillating pseudopotentials
are ideal since these would require less Fourier coefficients, and consequently a
lower cutoff energy. This property of a pseudopotential is often referred to its
softness, and very soft (“ultrasoft”) pseudopotentials [31] can be created that enable a
dramatic reduction in size of the basis set.

Under the Born-von Karman boundary conditions for any given bulk crystal, the
density of allowed k points is proportional to the volume of the crystal. For infinite
periodic systems, the infinite number of k points thus ideally requires integration
over the first Brillouin zone, over all occupied energy bands, in determining the total
energy of a crystal. Some ways have been devised in order to avoid calculating
electronic states at too many (infinite!) k points, based on the fact that the electronic
wave functions at k points that are very close together are almost identical. Thus
only a finite number of these “special” k points are required, belonging to sets more
concretely defined in Refs. [32, 33], and have been shown to approximate the full
integration rather accurately. Numerical convergence with respect to k point
sampling refers to the point where physical properties such as the binding energy of a
system do not change significantly even if the number of k points is increased.

There is still a number of details and related topics that can be added into the
present discussion, but what I have just briefly gone through should already cover
most of the underlying theory for the portions in the proceeding chapters related to

electronic structure calculations.
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3 Hydrogen on graphitic carbon

3.1. Background

Graphene is an atom-thin sheet of sp>-bonded carbon atoms. Its most basic unit
cell has a basis of two carbon atoms, with lattice constants of length 2.462 A
separated by a 60° angle, creating what’s usually known as a two-dimensional
honeycomb structure of atoms since the bonding network resembles the structure
which honey bees build. Considered the limit for large aromatic molecules,
graphene has recently gained a lot of attention for its unique physical properties,
being one of the best two-dimensional materials that physicists can use to test
theories. In relation to other carbon allotropes, carbon nanotubes are simply rolled
graphene sheets, while the stable material that is formed by an ordered stacking of
these sheets is graphite. As shown in Fig. 3.1, the most stable three-dimensional

structure is a Van der Waals-bonded alternating stacking of graphene sheets, which

PO ST
A
PP

Ala. sublattice

B/ sublattice

1.42 A
5> — 9
6.70 A j/l—yj’ Pt ro—¢ o9

N 4 N N \ J
S~ 5\%7—— 9 9

I

Fig. 3.1. (a) sublattices in graphite sheets. (b) ABAB stacking of graphene sheets in
the bulk graphite structure. A primitive cell is drawn in the center panel of (a).
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top bridge
hollow

Fig. 3.2. High-symmetry sites on graphene

Fig. 3.3. Contour maps describing adsorbed H-induced graphene reconstruction.
(a) displacement of C atoms from the original graphene plane, and (b) local planar
distortion.  For (b), dashed (solid) contours indicate downward (upward) local
planar distortion. Contours are separated by 0.02 A. Positions of H atoms are
marked by the white triangles.

inevitably leads to physical differences between the two sublattices of graphene (here
noting once again the basis of two carbon atoms).

My primary motivation in investigating hydrogen in carbon systems is realizing
high hydrogen uptakes on surfaces for practical hydrogen storage in solid-state
materials. In order to achieve this, it is always beneficial to know how the road to
adsorption saturation on the surface looks like in terms of the physical mechanisms
involved, and how one can control required reactions given this knowledge. Much

theoretical and experimental work has been done globally in this area in the past
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decade, and in this study I revisit some key concepts that I have reported in the past
few years. This study discusses systems involving hydrogen in chemisorbed states
on graphene, which have been studied with density functional theory. I outline my
recent findings crucial to understanding graphene defects brought about by hydrogen,
which serves as a benchmark for covalently-adsorbed species on the carbon surface.
Emphasis is given to the underlying mechanisms related to the growth of defect

structures, which have been shown to drastically change the properties of graphene.

3.2. Hydrogen atom adsorption & clustering on graphene

Investigations on the physical/chemical modification of graphene by the addition of
adsorbed species on one or both faces of graphene have been carried out for a wide
range of reasons. Reactions with NO and NHj3, for example, have been studied for
sensing applications, while studies involving adsorbed metals have been carried out
in light of addressing the demands of post-silicon electronics. On the latter, recent
studies [34-37] have predicted the tendency of metal atoms to attach onto graphene
through the hexagonal C ring centers (i.e., the hollow sites, Fig. 3.2), with binding
energies ranging from about 0.1 to 2.0 eV. It was shown that strong changes in the
carbon sheet’s properties can indeed be induced by such attachments to graphene, the
extent dependent on the bonding mechanisms involved.

In the case of hydrogen, an atom approaching graphene preferentially ends up at
top sites, i.e., H prefers single-coordination, and given appropriate time to relax, it
reaches a very stable chemisorbed state, albeit having to go through a barrier of about
0.2 eV [38]. This barrier arises from the need to disrupt C-C bonds (which raises the
system energy) in the process of creating a stable C-H bond (which lowers the
system energy). Reported H atom adsorption energies vary slightly across
computational studies (roughly in the range of —0.6 to —0.8 eV, the negative sign
denoting adsorption exothermicity), the values primarily depending on how isolated
the H atom is treated on graphene. Bridge-site adsorption is endothermic (~0.1 eV),
while the hollow-site is not a local energy minimum for the H atom on graphene. The
chemisorption is associated with the receiving carbon atom being pulled out by about
0.33 A from the initial planar geometry of graphene. Reconstruction due to the
adsorption of a single H atom is however not limited to the receiving C atom, as
clearly described in Fig. 3.3(a), which plots the displacement of C atoms from the

original graphene plane along z, taken to be the direction normal to the graphene
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plane. Local planar distortion, which is the distance a C atom moves out of the plane
determined by its three nearest neighboring C atoms, is shown in Fig. 3.3(b). It
becomes apparent that C-C bonds within a certain range of the adsite are strained ou