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0. Introduction

Let U, be the bordism ring of weakly complex manifolds and let G be a
compact Lie group. Denote by SF(G), an ideal in Uy of those bordism classes
represented by a weakly complex manifold on which the group G acts smoothly
without stationary points and the action preserves a weakly complex structure.

For a compact abelian Lie group G the ideal SF(G) was computed by tom
Dieck [8]. Such ideals are similarly defined in the bordism ring Q. of oriented
manifolds and those were computed for certain abelian groups by Floyd [3] and
Stong [7]. But it seems that there is no useful method to compute the ideal
SF(G) for a non-abelian Lie group G.

First we give an upper bound and a lower bound of SF(G) for any compact
Lie group G. To state our result precisely we introduce some notations as
follows. Denote by I(G), a set of positive integers such that = I(G) if and only
if there is an zn-dimensional complex G-vector space without G-invariant one-
dimensional subspaces, by m(G) the maximum dimension of proper closed sub-
groups of G, and put

n(G) = dim G—m(G) .
It is known that the bordism ring Uy=>1U,, is generated by a set of bordism
classes -
{[PAC)), [H,,(C)]; 20, p>¢>0}

as aring. Now we define ideals L(G), M(G) in Uy as follows. Let L(G) be
an ideal in Uy generated by a set

{[PAO)], [Hminn(C)]; n+1<1(G), m>0}

and let
M(G)= 2 Uy.

2k2n(6)
Then we have following results,
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Theorem 0.1. For any compact Lie group G,
L(G)c SF(G)c M(G) .
Corollary. SF(SU(2))=SF(U(2))=>]U,,.
n>0

For each positive integer n, P,(C) admits a linear SU(2)-action without
stationary points, but for example P,(C) does not admit a linear SU(3)-action
without stationary points. Thus we next consider SU(3)-actions on P,(C) and
we have a following result. Denote by AP,(C), a compact smooth 6-dimensional
manifold homotopy equivalent to P,(C).

Theorem 0.2. (a) Any smooth SU(3)-action on hP,C) has at least one
stationary point. (b) Any non-trivial smooth SU(3)-action on hPy(C) is
equivariantly diffeomorphic to a linear SU(3)-action on Py(C).

1. Weakly complex G-manifolds without stationary points

Let G be a Lie group and V be an n-dimensional complex G-vector space.
Denote by P(V') the complex projective space P,_,(C) with an induced G-action.
We call such a G-action on P,_,(C) a linear G-action. Then P(V) is a weakly
complex G-manifold in the sense of Conner-Floyd [1]. Denote by [¢] a point
of P(V) represented by a non-zero vector v of V. Then

Lemma 1.1. 4 point [v] of G-manifold P(V) is a stationary point if and
only if the vector v spans a G-invariant one-dimensional subspace of V.

Lemma 1.2. Any smooth G-action on a manifold M is trivial, if dim
M<n(G)=dim G—m(G). Here m(G) is the maximum dimension of proper closed
subgroups of G.

Proof. If x=M is not a stationary point, then the isotropy subgroup G,
at x is a proper closed subgroup of G, the orbit G.x is a submanifold of M,
and G -x is diffeomorphic to the homogeneous space G/G,. Then

dim M >dim (G -x) = dim G—dim G,>dim G—m(G) .

Remark. The integer m(G) was calculated by Mann [5] for compact
connected simple Lie groups G, by making use of Dynkin’s work [2].

Proof of Theorem 0.1. Let ¥ be an n-dimensional complex G-vector
space and W be an m-dimensional complex G-vector space. The canonical
G-action on the dual space V*=Hom(V, C) is defined by

(g-u)(v) =u(g*-v); =G, ucsV* vel .
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Define
HVaeW, V) = {([v+w], [u]))e P(VEW)X P(V*): u(v)=0},

then H(V @ W,V'*) is a manifold H,,,,_, ,-,(C) with a weakly complex G-action.
If V has no G-invariant one-dimensional subspaces, then the G-action on
H(V @ W,V*) has no stationary points by Lemma 1.1. Therefore the inclusion
L(G)c SF(G) is proved. Next the inclusion SF(G)cM(G) follows from
Lemma 1.2. This completes the proof of Theorem 0.1.

Next we consider the case for G=SU(n), the special unitary group. Let
I(G) be the set of positive integers defined in the introduction. Then by
definition

(1.3) n,, n,& I(G) implies n,+n,= I(G) .

Lemma 1.4. Any binomial coefficient <”+’,:_ 1) is contained in I(SU(n))
forn=2and k>1.

Proof. Denote by V, the complex vector space C* with the standard
SU(n)-action. Then the k-th symmetric product S,(V,) is irreducible as a
complex SU(n)-vector space for each k>1 and

. k—1
dim oSy(V,) = (”+ . > .
Corollary 1.5. SF(SU(2))=SF(U(2))=>U,,.
#>0
Proof. Since I(SU(2))=I(U(2)) consists all positive integers n>2 by

Lemma 1.4,

L(SU@)) = L(U2)) = 23 Vs -

On the other hand,
M(SU(2)) = M(U(2)) = ; Uss

by the connectivity of SU(2) and U(2).

2. SU(3)-actions on P,(C)

Let us first recall some basic facts in differentiable transformation groups.

(1) Let G be a compact Lie group acting on a manifold M. Then by
averaging an arbitrary given Riemannian metric on M, we may have a G-invariant
Riemannian metric on M.

(ii) Let xM, then the isotropy subgroup G, acts on a normal vector
space N, of the orbit G -x at x orthogonally; we call it the normal representation
of G, at x and denote by p,.
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(iii) (The differentiable slice theorem) Let E(v) be the normal bundle of
the orbit G-¥=G/G,. Then
E(v) = GX¢, N,

where G, acts on N,, via p,. We note that G acts naturally on E(») as bundle
mappings and we may choose small positive real number & such that the
exponential mapping gives an equivariant diffeomorphism of the &-disk bundle
of E(v) onto an invariant tubular neighborhood of G-x. ([6], Lemma 3.1)

(iv) Let HCG be a closed subgroup. Denote by (H), the set of all
subgroups of G which are conjugate to H in G. We introduce the following
partial ordering relation “<”” by defining (H,)<<(H,) if and only if there exist
H,=(H,) and H,e (H,) such that H,c H,. If M is connected, then there exists
an absolute minimal (H) among the conjugate classes in {G, |[x& M }, moreover
the set

My, ={xeM|G.=(H)}

is a dense open submanifold. The conjugate class (H) is called the type of
principal isotropy subgroups. ([6], (2.2) and (2.4))
Combining (iii) and (iv), we have a following lemma.

Lemma 2.1. If M is connected, then the normal representation of G, at
xe= M is trivial if and only if G, is a principal isotropy subgroup.

Now we consider SU(3)-actions. Let H be a closed subgroup of SU(3).
Denote by N(H) the normalizer of H in SU(3).

Lemma 2.2. (a) Let H be a closed connected proper subgroup of SU(3) with
dim H >3, then H is conjugate to SU(2), SO(3) or N(SU(2)). (b) There are
isomorphisms, N(SU(2))/SU(2)=S", the circle group; N(SO(3))/SO(3)=Z,, the
cyclic group of order 3; N(N(SU(2)))=N(SU(2)), as the subgroups of SU(3). (c)
N(SU(2)) does not contain any subgroup which is conjugate to SO(3).

Proof. (a)is proved by considering the structure of Lie algebra of SU(3)
and the 3-dimensional unitary representations of SU(2). (b)is proved by direct
calculation. (c) is true since N(SU(2))c SU(3) is not irreducible but SO3)c
SU(3) is irreducible.

Remark.  dim SU(3)=8 and dim SU(2)=dim SO(3)=3.

Lemma 2.3. Let M be an orientable connected 6-dimensional manifold with
smooth SU(3)-action. If an isotropy subgroup SU(3), is of 3-dimensional, then
SU(3), is a principal isotropy subgroup.

Proof. First we may prove that the homogeneous space SU(3)/SU(3), is
an orientable 5-manifold by Lemma 2.2, Thus the normal bundle E(v) of
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SU(3)/SU(3), is a trivial line bundle, since M and SU(3)/SU(3), are orientable.
But if the normal representation of SU(3), at x=M is non-trivial, then the
normal bundle E(») is non-orientable. This is a contradiction. Therefore the
result follows from Lemma 2.1.

Now we consider non-trivial smooth SU(3)-actions on AP, (C), a compact
6-dimensional manifold with the homotopy type of P,(C).

Lemma 2.4. (a) Any isotropy subgroup is of dimension>3. (b) hP,(C) does
not admit only one type (H) of isotropy subgroups for amy proper subgroup H of
SU(3).

Proof. If dim SU(3),<1, then the 6-dimensional manifold #P,(C) contains
a submanifold SU(3)/SU(3), of dimension>7. This is a contradiction. Next
if dim SU(3),=2, then SU(3)/SU(3), is an open and closed submanifold of
hP,C). Therefore

hP(C) = SU3)/SU@3), .
By an exact sequence of homotopy groups
7(SUQ)) = =(SUR)/SUR)) = 7(SUQ).) = m(SUA)) »

we obtain 7,(SU(3),)=Z, an infinite cyclic group, since SU(3) is 2-connected.
On the other hand, since dim SU(3),=2, the identity component of SU(3), is
isomorphic to a 2-dimensional toral group, and hence =, (SU(3),)=Z@®Z. This
is a contradiction. Next we prove (b). It is sufficient to consider the case

dim H=3or 4,
by (a) and Lemma 2.2. If AP,(C) admits only one type (H) of isotropy
subgroups, then there is a differentiable fibering
SUQ)H — hP(C) L hPC)ISUG),

and the orbit space £P,(C)/SU(3) is a compact manifold without boundary, by
the differentiable slice theorem (iii). First if dim H=3, then the orbit space is
of one-dimensional and hence

hP{(C)/SU(3) = S*.

By exact sequences

7(S") > m(SUG)H) — m(hP(C)) L2 m(S"),
7(SUQ)) — =(SUR)/H) — =,(H) — =,(SUQ)) ,

we obtain 7,(H)=Z. On the other hand = (H)=0 or Z,, since =,(SU(2))=0
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and 7,(SO(3))=Z,. This is a contradiction. Next if dim H=4, then H is
conjugate to N(SU(2)) and the orbit space AP,(C)/SU(3) is of 2-dimensional.
Since

SUB)IN(SU(2))=P,(C),
there is an exact sequence
my(hPy(C)) — m,(hPy(C)[SU(3)) — z((P:(C)) -

Thus the orbit space is a simply connected 2-dimensional compact manifold
without boundary. Therefore

hP,(C)/SU(3) = S*.
Then there is a contradiction in the following exact sequence
7 (hPy(C)) — = (hP(C)[SU(3)) — m(P,(C)) ,
since 7,(S?*)=2,.

RemARK 2.5. By the above consideration, if there is a smooth SU(3)-action
on AP4(C) without stationary points, then £P,(C) admits just two types (H) and
(N(SU(2))) of isotropy subgroups, where the identity component of H is SU(2).

Proof of Theorem 0.2 (a). If there is a smooth SU(3)-action on AP,(C)
with just two types (H) and (N(SU(2))) of isotropy subgroups, where the
identity component of H is SU(2), then AP,(C) is a special SU(3)-manifold in
the sense of Hirzebruch-Mayer [4]. Therefore the orbit space 2P,(C)/SU(3) is
a compact smooth manifold with boundary, and hence

hP,(C)/SU(3) = [0,1] .
Let p:hP,(C)—[0,1] be a projection and

s (o4 x=r[fa])

Then X, and X, are diffeomorphic to the disk bundle of 7n-fold tensor product
of the canonical complex line bundle over P,(C) for certain positive integer n,
by the differentiable slice theorem (iii). Therefore X,N X, is a 5-dimensional
rational homology sphere. Then there is a contradiction in the following exact
sequence of cohomology groups with rational coefficients,

H'(X,n X,) - H¥hP(C)) — H(X,)®H*X,) - H*(X,n X)) .

Therefore any smooth SU(3)-action on AP,(C) has at least one stationary point,
by Remark 2.5.
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Lemma 2.6. Consider a non-trivial smooth SU(3)-action on a connected
6-dimensional manifold M. Let xM be a stationary point. Then the normal
representation SU(3)—O(6) is equivalent to the standard inclusion SU(3)C O(6),
and SU(2) is a principal isotropy subgroup.

Proof. This follows from the fact that non-trivial 6-dimensional real
representation of SU(3) is isomorphic to the real restriction of the standard
3-dimensional complex representation.

RemaRrk 2.7. Denote by V,, the 3-dimensional complex vector space C°
with the standard SU(3)-action. Then P(C'@V,) is the complex projective
space P,(C) with a non-trivial linear SU(3)-action, where the SU(3)-action on
C" is trivial. Denote by D° the unit disk in V,. Then there is an equivariant
decomposition

P(C'DV,) = (SUB) x D) U D,
NST(2)) h
where the N(SU(2))-action on D? is induced from the standard action of
N(SU(2))/SU(2)=S* on D? and k is an equivariant diffeomorphism on
boundaries.

Lemma 2.8. Any equivariant diffeomorphism on 0D° is extendable to an
equivariant diffeomorphism on D°.

Proof. Since the SU(3)-action on 8D° is transitive, it is easy to prove that
any equivariant diffeomorphism on 0D° is given by a scalar multiplication

(zl’ ‘22) 23) g (uzl’ uzz’ u23) b

where (2,,2,,2,)€0D°, u=C and |u|=1. Such a diffeomorphism is canonically
extended to an equivariant diffeomorphism on D°®.

Proof of Theorem 0.2 (b). Let £P,(C) admit a non-trivial smooth SU(3)-
action. Then we can use Lemma 2.6, via Theorem 0.2 (a). Thus SU(2) is a
principal isotropy subgroup, and hence the possible types of isotropy subgroups
are

(SU(2)), (N(SU(2))) and (SU3)),

by Lemma 2.2 and Lemma 2.3. In any case, #P,(C) becomes a special SU(3)-
mainfold with the orbit spacc [0,1]. If the type (IN(SU(2))) does not appear,
then hP,(C) is diffeomorphic to D°UD®. This is a contradiction. Therefore
hP,(C) has isotropy subgroups of type (N(SU(2))) and of type (SU(3)). Hence,
by the differentiable slice theorem (iii), there is an equivariant decomposition

hP(C) = (SUB3) x D*uD,

NSUTE)
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where k is an equivariant diffeomorphism on boundaries. Moreover there is
an equivariant diffeomorphism from AP,(C) to P(C'@V,), by making use of
Lemma 2.8 and Remark 2.7.

3. Concluding remarks

3.1. If G=T", the n-dimensional toral group, then it is known that for
any smooth G-action on an oriented compact manifold M without boundary,
each connected component of the stationary point set M€ is canonically oriented
and the index formula

I(M) = I(M€)

holds. Thus we ask whether the above is true or not when G is a compact
connected Lie group. The answer is no as follows. Denote by S,(V,,) the k-th
symmetric product of V', which is C* with the standard SU(n)-action. If n>2
and n—1<<2%, then

t = dim ¢Sy(V,)

is odd, and there is a linear SU(n)-action on P_ (C) with P(C) as the stationary
point set for each integer s. This example shows that the index formula is false
for SU(n)-actions in general. Similarly we can construct linear SO(n)-actions
on P (R) with P(R) as the stationary point set. This example shows that
there are smooth SO(n)-actions for which the stationary point sets are not
orientable.

3.2. Let V, be as above, then SU(n)-manifold P(C*'®V,) has only one
stationary point for each #>2. Such a phenomenon does not appear for
compact G-manifold without boundary when G is an abelian group such as a
toral group or a finite cyclic group of prime order.

3.3. Let G be a compact Lie group. Denote by F, the family of all
closed subgroups of G, and by Fj the family of all closed proper subgroups of
G. Then there is an exact sequence of bordism modules of weakly complex
G-manifolds,

Z / 0
v o> Ug(G; Fp)—2> Un(G3 Fa) 225 UG Fay Fp) —5 Un(G; Fp) — -

It is known that 7y is trivial for G=T" and almost trivial for G a finite cyclic
group of prime order. On the other hand, we can prove that 7, is injective
when G is a compact connected semi-simple Lie group, by making use of
projective space bundles associated to complex G-vector bundles.
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