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0. Introduction.

Let G be a connected linear algebraic complex group which acteladg and
non trivially on a smooth connected projective complex efgriX of dimensionn.

In this paper we consider the following question: how does@haction influence
or even determine the structure &f?

As it is stand this is a too general question, thus we will sadd some suitable
assumptions; however even in this generality we notice #has not minimal in the
sense of Minimal Model Program (MMP). In particul&r admits an extremal ray and
an associated extremal (or Fano-Mori) contractipn, X — Z, which turns out to
be G-equivariant. It is thus natural to use the tools developgdhe MMP, and the
good properties of the map, to get a classification of such varieties& This idea
was first developed in an important paper by Mukai and Umemsea (20]), where
they studied smooth projective 3-folds on which= SL(2) acts with a dense orbit.
(A complete classification of such quasi-homogeneous @&fi contained in a paper
of Nakano (see [22]); we refer the reader also to a more rewerit by S. Kebekus
where the case of singular 3-folds is considered (see [13]))

Note that if X is actually homogeneous with respect @aaction, thenX is a
Fano manifold andX can be classified in terms of Dynkin diagrams. Fano manifolds
are basic blocks of the MMP and moreover in this case there isaatifid interplay
between the representation theory @fand the projective or differential geometry of
X.

We want to propose a way to attack the general problem; haweveur knowl-
edge, this way works effectively only in the case wh@nis a simple group, i.e. the
simply connected Lie group associated to a simple Lie algebr this case one can
in fact perform many computations which seems hard or metess otherwise (for
instance find the minimal non trivial irreducible represeian).

Thus we will also assume that is a (simply connected) simple Lie group and
we will define rg to be the minimum of the dimension of the homogeneous variety
of the groupG. That is, rg is the minimum codimension of the maximal parabolic
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subgroup ofG (i.e. parabolic subgroup corresponding to one node of thekDydi-
agram). It is easy to calculate; if G is simple and this is done in Section 1 (for
instancergsy g,y = m — 1).

Then we first prove that it > n then there is no such aki, that is, the only
possible regular action is the trivial one, whilerif = n then X is homogeneous. For
instance ifn = 3 this says in particular that the only classical groupraction trivially
on a smooth 3-fold are&L(2), SL(3), SL(4), Sp(4)~ Spin(5), SO(4) and in the last
3 casesX is homogeneous; this special case was first proved in a pdperMakano
(see [21]) which influenced the setup of this paper.

Then we classify allX in the caserc =n—1 (see Theorem 4.1) via the MMP. The
special case in whicl; = SL(n) was obtained first by T. Mabuchi but in a complete
different way. Namely he started with the classificatiomedodimensional closed sub-
groups of SL(n), which follows from Dynkin’s work, and consequently he aissed
the possible completions of their quotient.

Finally we begin to consider the casg = n — 2; this is much more difficult
and it seems reasonable to make an additional general assomidamely to assume
that X has an open dense orbit; such Znis called a quasi-homogeneous manifold.
As remarked above the case with= 3 and G = SL(2) was studied in [20] and [22]
while the case withh = 4 andG = SL(3) was recently settled by Nakano [23] with the
method of computing the closed subgroups of codimension &Li(8). In the present
paper, as a test for the MMP, we try to recover this classifinatib turns out that
the program works easily until the last step, namely the adseano manifolds with
Picard number one. This requires further investigatiormsydver we believe that once
this case is solved, also for the other classical groups arall idimensions, it will be
possible to find a complete classification also fgr=n — 2.

At the beginning | was very much inspired by the papers of Mdkaiemura,
Mabuchi and Nakano which are quoted in the references; aftiingva first draft of
the paper | came across a beautiful paper of D.N. Ahieze) (ftlich contains tech-
nical tools which simplify many of my original arguments irion 2.

This note was initiated during my visit at the University otad in the fall of
1997. J. Kolar suggested me to investigate in this direction and provisieme very
useful hints; | like to thank him for all this. | also thank EaBco, P. Moeseneder
and J. A. Wsniewski for helpful discussions on this topic.

1. Definitions and preliminaries.

In this paperX will always denote a smooth connected projective varietydief
mensionn. We use the standard notation from algebraic geometry; mozeisely for
the Minimal Model Program our notation is compatible with te&f12] while for the
Group Action and Representation Theory it is compatiblenwitat of [9].
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Derinimion 1.1. A smooth projective varietX will be said minimal (in the sense
of the MMP) if Ky is nef.

Theorem 1.2 (Mori-Kawamata-Shokurov). Let X be a smooth variety which is
not minimal. Then there exists a map: X — Z into a normal projective variety
Z with connected fibers such thatKy is ¢-ample andg contracts the set of curves
numerically equivalent to drational) curve in a non trivial fiber.

Derinimion 1.3. The mapy : X — Z given in the above theorem is called an
extremal contraction or a Fano-Mori contraction.

Lemma 1.4. Let X be a smooth projective manifold on which a connected linear
algebraic complex grou acts regularly and non trivially. TheX is uniruled and in
particular it is not minimal.

Proof. On the generic point the action is not trivial, hencésicontained in an
orbit which is unirational since&5 is rational. Thus the generic point is contained in a
rational curve ofX. ThereforeX is uniruled and not minimal (for this last statement
see for instance [14], chapter IV, more precisely 1.3 ang. 1.9 [

Lemma 1.5. Let X and G be as in the previoukemma 1.4 Then there exists a
Fano-Mori contractiong : X — Z which is G-equivariant andG acts regularly on
Z.

Proof. The existence op follows from the Lemma 1.4 and the above Mori-
Kawamata-Shokurov Theorem 1.2. The equivariance dbllows from the following
two facts: on one end two curves which are carried one to andil the action oiG
are numerically equivalent, on the other epctontracts all and only the set of curves
in a ray, i.e. a set of curves all numerically equivalent toraignal) curve in a non
trivial fiber. Therefore take two points in a fiber and a cunesging through these
two points; this curve will be carried into another curve Ine taction ofG which is
numerically equivalent to the first one and therefore it istamed in a fiber.

Let L be an ample line bundle od. Then some positive powes*L" can beG-
linearized, that is, the action aff on X extends to an action on the total space of
#*L" which is linear on fibers. Sinc& = Proj@°.,H°(X, ¢*L™)), G acts regularly
on Z through its actions on thé™"’s, ]

Derinimion 1.6.  If the action ofG is transitive onX then X is called ahomo-
geneous manifoldif X has a dense open orbit then it is calledj@si-homogeneous
manifold
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Remark 1.7. If X is homogeneous thefly is generated by global sections and
—Kx is ample (see for instance [14], (v.1.4)); in particulris a rational Fano man-
ifold. If X is quasi-homogeneous thenKy is effective; this follows easily taking
elements of the Lie algebra Li@] such that their associated vector fields are linearly
independent at a generic point &. The wedge product of these vector fields gives a
non trivial holomorphic section of- K.

Derinimion 1.8.  Let us fix a simple (or even semisimple), simply conrectad
connected Lie groug; and consider the set of all homogeneous manifolds (of dimen-
sion > 0) with respect to this group. They are in a direct correspond with the
parabolic subgroups of; (the isotropy subgroup in one point) which are in turn in
direct correspondence with the subsets of the nodes of tmkibyiagram associated
to the groupG. We definer = rg to be the minimal of the dimensions of the man-
ifolds in this set, or equivalently, theinimal codimension of parabolic subgroups of
G. A homogeneous variety which attains this minimum will bdlezh a minimal ho-
mogeneous varietjor the action ofG. The minimal codimension will be attained at
a maximal parabolic subgroup, i.e. one corresponding tanglesinode of the Dynkin
diagram.

Example 1.0.1. It is easy to check that itz = SL(m) or Sp(2) = Sp) and
s > 3 thenrg = m — 1. If G = SL(m) the parabolic subgroup@ is the one corre-
sponding to the first (or the last) node of the Dynkin diagragy if G = Sp(2) then
P is the one corresponding to the first node of the Dynkin diag. In both cases
G/P =P"! whereG acts through a linear action d@", the standard irreducible rep-
resentation or its dual in th6L(m) case (these are called the standard homogeneous
actions).

Also if G = Sp(4) thenrgs = 3 but in this case we have two different para-
bolic groups of codimension 3 which are the subgra@pcorresponding to the first
node andP, corresponding to the second one in the Dynkin diagram; is tidse
Sp(4y P, = Q% and Sp(4)P, = P.

Note that Spin(5x Sp(4) and Spin(6)x SL(4); thus when we consider the group
G = Spingn) we will always assume that > 7.

If G = Spingn) andm > 7 thenrg =m — 2. If m # 8 the parabolic subgroup
is the one corresponding to the first node of the Dynkin diagr#,_1/2) Or Dy 2),
depending on the cases whereis odd or even andz/P ~ Q=2 c Pm-1_|f
G = Spin(8) in principle we will have two minimal homogeneouarigties (spinor va-
rieties) of dimension 6 (corresponding to each of the two fegles) but they are both
isomorphic toQ®.

If G is an exceptional group we have the following values fgr rg, = 5, rr, =
15, rg, = 16, rg, = 27, rg, = 57. The corresponding minimal homogeneous varieties are
not always easy to describe as above. In particula® i€ G, we have two of them,
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one being a quadric hypersurface R, the other being described for instance at p.
392 of [9]. If G = Eg then the minimal homogeneous manifold is the fourth Severi
variety in the theorem of Zak (see [15] for more details).df= F, then we have
two of them, one being an hyperplane sections of the aboveriSeariety (see p. 47

of [15]). If G = E7 or Eg the parabolic subgroups correspond to the last node of the
Dynkin diagrams.

Derinimion 1.9. Let X = G/P be an homogeneous variety whefeis a simply
connected simple group anBl is a parabolic subgroup. A vector bundie — X =
G/P is called G-homogeneous or simply homogeneous if there exists anraofid;
on E such that the following diagram commutes:

GxE—FE

L

G x (G/P) —= G/P.

Remark 1.10. It is evident from the definition that the tangent bendf X is
homogeneous.

One can prove that a vector bundieon X = G/P is homogeneous if and only
if one of the following conditions holds:
) 6;E~E for everyg € G; 0, is the automorphism oX given by g.
i) There exists a representatign: P — GL(r) such thatE ~ E,, whereE, is
the vector bundle with fibe€” coming from the principal bundl& — G/P via p.

Remark 1.11. LetG be a semisimple complex Lie group acting regularly and
non trivially on X. If = : G —> G is the universal covering map a then it is a
finite morphism and hencé& acts regularly and non trivially o throughz. Hence
we may and shall assume that the acting semisimple groupmiglysiconnected with-
out loosing generality.

2. Points which are fixed by the action ofG.

In this section we enlarge slightly our setup: namely we Wwdlve an action of a
connected and reductive linear algebraic gra@upn a varietyZ with normal singu-
larities. The following result shows how the existence ofx@di point by the action of
G determines the structure &f; the main step, namely that b) implies c), was proved
by Ahiezer (see [1] Theorem 3; see also [10] for the analydise§.

In this paper we need only the equivalence between a) andc)this we could
also give a direct proof which doesn’'t make use of the Ahiezexsult.
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Proposition 2.1. Suppose that a connected reductive linear algebraic gréup
acts effectively on a complete normal varigfy Then the followings are equivalent
a) There exists a fixed point such that its projectivized tangent cone, that is the
variety P, = Proj@, m*/m**1), is a G-homogeneous variety.
b) Z has an open orbit2 and A := Z \ Q contains an isolated point.
C) Z is a projective quasi-homegeneous cone over a homogenaoiesyvP with re-
spect toG.

Proof. By the result of Ahiezer we just need to prove that 8)lies b).

In the assumption of a), sinceis a fixed point under the action of a reductive
group G, there exists aG-stable open affine neighborhodd of z in Z. Let R be the
algebra of regular functions off. Then R has a decreasing filtration by the powers
of the ideal ofz, and the associated graded ring Rjr(is the homogeneous coordi-
nate ring of P,. By assumption, g) contains no non-constar@-invariant; because
G is reductive, R contains no non-constar@-invariant as well. It follows that is
the unique closeds-orbit in U (because invariants separate closgdnvariants sub-
sets in an affings-variety). In particularz is contained in the closure of a non-trivial
G-orbit. The tangent cone of this orbit and of its closuresidnvariant. But, since by
assumptionP, is G-homogeneous, this implies that the orbit has dimensioraletp
the dimension ofZ. ]

A first application of the above proposition will give the nersult.

Lemma 2.2. Let X be a smooth projective variety ar@d a simple, simply con-
nected, connected linear group acting non trivially an let r; be the integer defined
in 1.8andn = dimX. If n < rg there are no fixed points oX. If rg = (n — 1),
then X has no fixed points unless = SL(n) or Spg = 2s), X = P" and the action
is the one which extends the standafd(n) or Sp{) action onC" via the inclusion
C"— P (z1,--.,20) — (L, 21, ..., z4) (equivalently the action is induced from the

homomorphismgy — (é g) from SL(n) or Sp@) to PGL(n +1)).

Proof. Note first that the dimensions of the irreducible espntations ofG are
strictly bigger thenrs: in fact for every irreducible representatidh there is a unique
closed orbit inP(V) which is the homogeneous variety corresponding to thebotia
subgroup perpendicular to the weight of the representatibmreover if the minimal
of such dimension is equal tg; +1, thenG = SL(m) or Spn) andV is the standard
representation; in this case the action B(V) = P"~! is homogeneous.

Assume thatrz > n and thatx € X is a fixed point; thenG acts on the tangent
spaceT = Tx,, and by the above observation this has to be the trivial reptagon.
Let m, be the maximal ideal o® = O,, the local ring of germs of regular functions
near x; then G acts trivially onm/m? = T* and onm*/m%*Y = S¥(m/m?). Using
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inductively the exact sequences

(k+1) (k+1)

0— m/m — O/m — O/m* — 0
and the fact that is a reductive group we have that acts onO/m* trivially for all
k > 0. ThusG acts trivially on the completior@, hence trivially onO. This implies
that G acts trivially on X itself.

After noticing thatG acts trivially on 7T, one can conclude alternatively via the
Luna’s étale slice theorem as in the next Lemma 2.3.

Assume now that = n — 1 and letx € X be a fixed point. IfG = Spinn)
(m > 7) or an exceptional group then the above proof appliesithe.action ofG on
the tangent space at must be trivial. In the other cases we can apply the Propositi
2.1 (or the Proposition 2.2) since the action @fon P, := Projlgr(©x..)] = P is
transitive. ThusX is isomorphic to the cone over; sincex is a smooth pointX = P".

Lemma 2.3. Let G = SL(n — 1) acting with a dense open orbit on a n-fold.
Then there are no fixed points.

Proof. If n =3 this is the Lemma 1.2.2 in [20]. Therefore we assume ithat4
and that, by contradictions is a fixed point. Then we have an induced linear action of
G on Ty ., i.e. ann-dimensional representation 6f. These are of three types, namely
if Ae SL(n—1)

A—> (A, 1), or (A™Y, 1), or I;

in particular there are na-dimensional orbits orffx , in any of these there cases.
On the other hand we can apply the Lunawle slice theorem (see [16]); this
says that there exists &-stable affine subvarietyy containingx and anétale G-
equivariant morphismV — Tx,. This is a contradiction since, by assumptiox,
has an-dimensional orbit. ]

Actually the following more general result holds; it was yed forn = 3 in [22],
here we adapt this proof (or the one of 1.2.2 in [20]) to theegahcase.

Lemma 2.4. Let G be any reductive group acting with a dense open orbit on a
projective varietyZ and assume that is a fixed point. Thenn,/m? does not have
nonzero invariants.

Proof. Assume by contradiction that there exists a non-zZevariants f €
m,/m?. Let U = Spec@) be a G-invariant affine neighborhood of. Let f be a
litting of f, i.e. f € (U, Oy) is such thatr(f) = f wheret : T(U, Oy) —
O, — O,/m,. Let V be a finite dimensionaiG-invariant vector subspace of con-



158 M. ANDREATTA

taining f; this exists by Borel [7] (it can be defined as the vector sabspof A gen-

erated by{g o f|g € G} which is of finite dimension). Sin097(x) = 0 we have that
(V) C m,/m?. The imager(V) contains a non zerG-invariant henceV contains a
G-invariant. SinceV and mx/mf are finite dimensional, and is linearly reductive,
the imaget(V) is a direct summand o¥; henceV, in particular A, contains a non
zero G-invariant F. Since G has an open orbit the invariaf should be constant.

Since its value orx is zero, it is constantly zero which is a contradiction. ]

3. A starting point.

Our main goal will be a classification of smooth connectedjgutive varieties
with a non trivial action of a simple groug which has the number; "big enough”
with respect to the dimension of. The following easy result seems to be a good
starting point.

Proposition 3.1. Let G be a connected simple Lie group acting on a connected
projective varietyX of dimension:. If the action is not trivial, them > rg; if more-
over rg = n, then X is homogeneous. In particular i = SL(m) or Spn) acts on
a connected projective varietie¥ of dimensionn < m — 1 then this action is trivigl
if n =m — 1 then X = P~Y and the action is the standard one apart for the case
G = Sp(4) where we have bot?® and Q3 as homogeneous variety of dimensi®n
If G = Spingn) with m > 7 acts on a connected projective varieti&s of dimension
n < m — 2 then this action is triviglif » = m — 2 then X = Q"2 and the action is
the standard one.

Proof. If X contains a non-trivial closed -orbit, thenn > rg with equality if
and only if X is homogeneous. Thus we may assume that all closed orbii ame
fixed points; moreover there is at least one fixed point (seenfstance [7], 1.8), call
it x € X. If X is a smooth variety, then by the first part of the Lemma &.2acts
trivially on X. In general if X is singular, replacingX by its normalization, we may
assume thatX is normal and we can prove th& acts trivially on X by induction
on n as it follows. If » = 1 the only simple group acting non trivially on a projective
curve is SL(2) acting transitively on projective line. If > 1, let x € X be a fixed
point and letU be an open affing;-stable neighborhood of in X. By the induction
hypothesis,G acts trivially on the complemenk’ of U; becauseU is affine, each
irreducible component ok’ has codimension one iX. By normality of X, we can
choosex’ € X’ which is a smooth point o and of X’. Then G acts trivially on the
tangent spac€y ., a subspace of codimension oneTR , . BecauseG is simple, it
acts trivially on Ty ,/; by the same argument used in the proof of 2.2, it acts thwial
on X. O
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Remark 3.1.1. The special case = 3 of the proposition gives the main theorem
of [21].

4. Minimal Model Program on manifolds with a G-action.

In this section we use the notation and the approach of thaqu® one, passing
to the next step; namely we assume that= » — 1. We will prove the following
theorem, the first part of which was proved in [19] with difat methods.

Theorem 4.1. Let X be a smooth projective manifold of dimensierand G a
simple, simply connected and connected Lie group actingtrieially on X.

If G = SL(n) then X is isomorphic to one of the following varietjethe action
of G is unique for each case and it is described in the course ofptoef (see also
[19]):

1) the complex projective spad#,

2) P x R, whereR is a smooth projective curve,

3) The projective bundleB(Opw-n(m) & Ope-v) with m > 0,

4) if n =2 we have an extra action oR* x P! and onP?,

5) if n =3 we have moreover the projective bundi¢T:),

6) if n =4 we have moreover the smoofhdimensional quadric which is isomorphic
to Gr(2, 4), the Grassmannian a?-planes inC*,

If G = Sp) then X is isomorphic to one of the following varieties and the agtio
of G is unique for each case.

1) the complex projective spad#&,

2) P"=Y x R, whereR is a smooth projective curve,

3) The projective bundl€(Opw-n(m) & Ope-v) with m > 0,

4) if n = 4 we have moreove®* the homogeneous variety which is the quotient
of Sp(4) by the Borel subgrougwhich has two structure of ®-bundle overP® and
over Q%), Q% x R, whereR is a smooth projective curve and the projective bundles
P(Oqz(m) & Ogs) with m > 0.

If G = Spin@ + 1) with n > 6 then X is isomorphic to one of the following vari-

eties and the action of; is unique for each case.

1) the complex projective spad®’,

2) the complex projective quadri@” c P"*D),

3) QY x R, whereR is a smooth projective curve,

4) The projective bundl®(Oqu-v(m) & Ogu-v) with m > 0.

Proof. The proof of the theorem will be reached in a nhumberteps which are
similar for all the three groups.

Lemma 4.2. Let X and Y two manifolds on which a simple group acts in the
hypothesis of the theorefihe. = rg +1 =dimX = dimY). Assume tha% and Y have
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each a dense open orbit which ate isomorphic, thenX ~ Y unlessG = SL(n) or
Spp) and Y =P, X = P(O(1)® O).

Proof (See also the last part of the proof of 2.2). Since b6étand Y are com-
pletion of the same open dense orbit there is a birational thapt — —— > X in-
duced by identifying the orbit. I¥ = P* let us consider the blow-up of the fixed point
o .Y —> Y and take instead of the compositiong = f oo. This map is defined in
codimension 1, since botlk and Y has minimal closed orbits of codimension 1 and
no fixed point (see 2.2), thus it is an isomorphism. O

Let us now run the Minimal Model Program to classify in the following p(X)
will denote the Picard number of.

1-st Step. Assume thai(X) > 2 and letyp : X — Z be the contraction of an
extremal ray (which exists by Lemma 1.5).

a) If ¢ is birational then, by theG-equivariant property ofp and our assumption
on r, it must be divisorial and the divisor has to be contractedh tpoint. Moreover
the exceptional diviso is isomorphic toP" =3, respectively toQ"~Y: here the two
cases depends on wheth@r= SL(n), Spg = 2s) or if G = Spinf + 1), n > 6, unless
G = Sp(4) ~ Spin(5) in which both are possible. Since it is an extremaitiaztion

the conormal bundle of the exceptional locusNg = O(k) with 1 < k <n —1, re-

spectively 1< k <n — 2.

We can thus apply the cone’s Proposition 2.1 {t& Z); this gives thatX is a
completion of the open variety (E, N*) = Spec@, O(hk)). Note that the open orbit
is isomorphic toG/K where K is the kernel of the character map: P — C* as-
sociated to the homogeneous line bundlé), P is the parabolic subgroup associated
to P"1, resp.Q" L.

One possible completion i¥; = P(N*®0) which has an open orbit isomorphic to
G/K and two closed orbit isomorphic 8", respectivelyQ®"~%. But, by the above
Lemma 4.2, this is actually the only one exceptkiE 1 andG = SL(m) or Spn),
where X; can be actually blow-down t®". In this case there are thus two possible
completions (actuallyo(P*) = 1 and therefore®” will appear in the proper place in
the second step).

b) Let ¢ be of fiber type and consider the induced actionfon Z. By our as-
sumption either this action is trivial aZ = P~V if G = SL(n) or Sp = 2s), respec-
tively Q=Y if G = Sping + 1).

In the first case, since any fiber gf is an orbit, we must have that dith= 1
and X = PV x Z, respectivelyX = Q" x Z, with the G-action factorizing to the
product of the standard homogeneous onePShY), respectively onQ” Y, and the
trivial one onZ, except possibly for = 2. This follows for instance by the more gen-
eral Theorem 1.2.1 in [18]; for the reader's convenience w#ire his proof in this
case. Namely take a poinip € X and let H be the isotropy group o6 at po. Let
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Z1={peX:G,=H}, whereG, is the isotropy group ofG at p. Then one can de-
fine a reqular map : G/HxZ, — X by t(gH, p) = g p. It is straightforward to see
that this map is well defined, injective an@-equivariant. Moreover, by the Zariski's
main Theorem, it is an algebraiG-equivariant isomorphism. This gives our claim af-
ter noticing thatG/H ~ P"~ Y, respectivelyQ"~?, and thatZ, = X/G = Z.

If n =2 andG = SL(2) then we have another case which comes from the diagonal
action of SL(2) on P*xP!. It is straightforward to prove that there are no other atio
of SL(2) on the smooth two dimensional quadric.

In the second one is an equivarianf*-bundle overP” -3, respectivelyQ:
in fact the action onZ is homogeneous and thus the fibers are all equidimensional
and there are no reducible or double fibers. Thiis P(E) with E a rank 2 vector
bundle onZ; E is homogeneous since the actiongsequivariant. Therefore either
E = O(s) ® O with s > 0, after normalizing if necessary, ar= 3, G = SL(3) and
E =Tz, orn=4,G =Sp(4) andE is the nullcorrelation bundle oR® or the spinor
bundle onQ?3.

If E=0(s)®O we have a decomposition df into three orbits. Two isomorphic
to P*~1), respectivelyQ” Y (the section at infinity and the zero section) and an open
dense orbit isomorphic t6;/S where S is the kernel of the character map: P —

C* associated to the homogeneous line bur@ig), P being the parabolic subgroup
associated td®"~%, resp.Q"~1. The fact that this is the unique action dh can be
proved as above with the exceptian= 2 ands = 0 (note that the section at infinity
can be contracted so we can apply the cone’s proposition).

If n =3 andE = T it is well known thatX = P(7p2) is the homogeneous vari-
ety G/B where B is a Borel subgroup ofL(3) which corresponds in taking all the
Dynkin diagramAs (or equivalently the kernel of the two dimensional repréaston
of H associated to the tangent bundle); it is the unique closbi of the adjoint rep-
resentation ofSL(3).

If n =4 andE is either the nullcorrelation bundle d?® or the spinor bundle on
Q3 then X = P(E) = Sp(4Y B where B is a Borel subgroup.

2-nd Step. Assume finally thai(X) = 1, i.e., since it has an extremal ray, is
a Fano manifold.

If X is homogeneous then we can just look at the list of parabelig®ups of
codimensionz corresponding to one node of the Dynkin diagram.

If G =SL(n) we have only one possibility for = 4, namelyX = SL(4)/Q where
Q is the parabolic subgroup corresponding to the second nbdéleedDynkin diagram
Aq. It is the unique orbit of the irreducible representationSdf(4) into A2C* and it is
isomorphic to the Grassmanian of planesdfy i.e. the smooth 4-dimensional quadric.

If G = Sp@) or Sping + 1) with » > 6 there is no homogeneous manifold of
dimensionn with p(X) = 1.

If X is not homogeneous and has no fixed points then it must havesaclorbit
H which will be isomorphic toP®~Y, respectivelyQ" Y. Let L be a positive gen-
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erator of PicK); then H = mL. Since H is effectivem > 0; then it is well known
that a smooth projective variety with an ample section isquhic to P”~3, respec-
tively QY| has to be isomorphic t&” (if n = 2 we can have als®* x P!, this has
however p(X) = 2 and thus it was considered above), respectiveli?t@r to Q".

So if G = SL(n) or Sp), the last withn # 4, thenX has to beP” and it contains
the closed orbitH ~ P"~1 as a linear subspace except for= 2 in which case the
orbit can be a conic~ PL. If the orbit is linear thenX contains as an open Zariski
subset the total space of the normal bundle. Thus the actiothis open subset is
fixed (by the action on the orbit) and as discussed above ihigue (see the Lemma
4.2).

If » = 2 we have another non trivial action: namely the inducedoacon P? =
P(C®) by the 3-dimensional irreducible representation: SL(2, C) — GL(3,C). It
is straightforward to prove that there are no other actidn$(2) on P2.

If G = Sp(4) then we have the above case wh#rm~ P® but we can have also
H ~ Q3. Then X can be eitheP* or Q* the action is described in the following if
we think of G as Spin(5).

If G = Spin@ + 1) then we have an action oki = Q" given by the embedding
Spin(z+1) — Spin@+2) and one can prove that this is the only possible acticereth
is a closed orbit, isomorphic to the ¢ 1)-dimensional quadric and an open orbit. If
X =P” the action is coming from the canonical action @fon C**Y and X has two
orbits: a closed one, isomorphic to the € 1)-dimensional quadric and an open one
isomorphic toX, = Sping + 1)/S(0(1) x O(n)).

5. Fourfolds which are quasi-homogeneous under the actionf &L (3).

The next step will be the casg =n — 2, so for instances = SL(n — 1).

If n =3, G = SL(2) and X quasi-homogeneous this was studied in a series of
papers starting with the one of Mukai-Umemura (see [20] ar])[2

If n =4 andG = SL(3) Nakano proved the following theorem; his proof started
by computing the closed subgroup of codimension 45it(3).

Theorem 5.1 ([23]). Let X be a smooth-fold on whichG = SL(3) acts with
an open orbit. ThenX is isomorphic to one of the following
1) Xpg = P(Lpq ® O) whereL,, is a line bundle onZ = SL(3)/B = P(Tp)
(described in the poind)).
2) Y = P(Tr(a)) ® O)
3) X= P(Sszz)
4) X =P?x P? and Bl,(P? x P?)
5) X=Q%c P

We will try now to reprove this result by applying the MMP; so rficnow on we
assume thatX is a smooth 4-fold, quasi-homogeneous with respect @ a SL(3)-
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action, and we will run the MMP orX.

Let first p(X) > 2 and letp : X — Z be the contraction of an extremal ray; if
¢ is birational let alsoE be its exceptional locus. As in the previous section, by the
G-equivariant property ofp and the fact thats, ) = 2, we can, a priori, have only
the following cases.

a) ¢ is birational, dimt = 3 and ¢(E) = z is one point; in this cas& is a 3-
dimensional del Pezzo variety with &1.(3)-action induced by the one df. In par-
ticular E cannot have fixed point.

First note thatE has to be smooth: in fact its singular locus S4.(3)-invariant
and thus it has to be isomorphic Bf. The normal bundle of thi®? in X has to be
homogeneous. But this cannot occur because there is a ptéstrof the possible non
normal del Pezzo exceptional divisor by Fujita and the normendle of the singular
locus (which isP?) in X is not homogeneous (see [8]).

Thus, being smoothE has to be in the classification of the previous section: that
is E can be eitheP®, either P(Op:(1) ® Opz) with conormal bundlet ® H where ¢
is the tautological bundle an# is the pull back of©O(1) from P2, or P(Ty) with the
conormal bundleO(1, 1), the tensor of the two line bundles obtained by pullingkbac
O(1) from the two projections intd>.

The caseE = P® cannot occur because it has a fixed point. In the second case we
notice that the section at infinity d?(Op2(1) ® Op2) is an orbit~ P? with conormal
bundle N* = O(1)®O(1). Then we canG-equivariantly blow-up this orbit and contract
the exceptional divisor into a compact (non projective) ifcdth which will then con-
tains a 1-dimensional orbit, namely the image of the exoegti divisor isomorphic to
P!; this is a contradiction sinc€L(3) has no 1-dimensional homogeneous variety (see
also the next point ¢) concerning small contractions).

The caseE = P(Tp2) can actually occur. We apply the cone’s proposition, thus
X =P(O(1,1)® O) and ¢ is the contraction of the zero section to a point. But this
contraction is not elementary and it factors through a sddw down with center
P? (and then through a flop of thiB? to a point).

b) ¢ is birational, dimE = 3 and dim{(E)) > 0; thus dimE) =1 or 2.

If dim(E) = 1 then, by the usual arguments(E) is a curve of fixed points and
all fibers F are isomorphich td®?. Moreove one can prove that the normal bundle of
F is eitherO(—=1) @ O or O(-2) & O (for more details on contractions of this type
see the section 4 in [5]). In the first case all pointsfifE) are smooth points of (f
is a smooth blow-up along'(E)), and this is a contradiction with 2.3. In the second
case one can see that for everg f(E) C Z we havem./m? = HO(P?, O(-2)® 0)
(see for instance 5.5 in [4]) and this is a contradiction t. 2.

In the other case, by th&L(3)-equivariance ofy, we have thaip(E) = P?> and all
non trivial fibers are one dimensional. We can thus apply alted T. Ando ([2], see
also [3]) which says that in this hypothesis the extremaltramtion ¢ is an equivariant
smooth blow-up of an orbitv P? in a smooth manifoldZ.
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Cc) ¢ is a small contractions, i.e. codifi]f > 2. ThusE has to be of dimension 2 and
isomorphic toP? and with conormal bundl&V* homogeneous. It is immediate then to
check thatN* = O(1) & O(1) (since dev* = 2 and N* has to be ample); this fol-
lows also by a general theorem of Kawamata which describesn#dll contractions
on a smooth 4-fold (see [11]). We blow-up the orBit and we obtain a smooth vari-
ety with a G-action; but sinc&v* is ample we can blow-down the exceptional divisor
in the other direction, i.e. consider the map supported4#y — tL where L is a ¢-
ample divisor andr is a rational number such thatE — tL is nef but not ample
(thus we can flip the contraction). We thus obtain a (smootbjeptive variety with a
G-action and a orbit of dimension one, the image of the exoepti divisor~ P!, a
contradiction.

The above three steps prove the following

Proposition 5.2. Let X be a smooth projectivé-fold which has an action of
SL(3) with an open orbit. Ifp : X — Z is a birational elementary Fano Mori con-
traction thenZ is smooth andy is the blow-up of an orbit isomorphic t8° in Z.

Remark 5.3. The above proposition implies that we can run the Miniivialdel
Programwithin the category of smooth varietie3his is true also for the case of
quasi-homogeneous 3-folds under the actionSaf2) (see [20]) and we conjecture it
should be true for quasi-homogeneoufolds under the action ofL(n — 1).

Therefore we consider now the cases in whicls of fiber type.
d) ¢ is a conic bundle.

There can be some isolated two dimensional fibers: then tiagg ko be orbits
isomorphic toP? and with homogeneous normal bundle. By the results in [4]pén-
ticular 5.9.6) there is only one possibility for the conotnimndle, namelyN* =
Tw2(—1). Moreover in this cas& is smooth thus we use the classification in the pre-
vious section which gives thaf = P® (since the images of the isolated exceptional
fibers are fixed points irZ). This will eventually give the cas& = P(T2(—1) ® O),
for instance using the results in [6], which ¥ in the Theorem 5.1.

With the above exception, we have thus that all fibers of theiccdundle ¢
are one dimensional; then this implies thatis smooth, again by the results in [2],
and we can use the classification in the previous sectibrannot beP?® since oth-
erwise we will have a one dimensional orbit (the fiber over fixed point). Thus
Z = P(Op2(m) & O) or P(Tz2); the first cannot happen since in this case we will not
have a dense orbit while in the second cagg,) = P(L,, ® O) whereL,, is the
line bundle which corresponds to the character definedBorthe Borel subgroup of
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SL(3), by

a *x *
0 e x| —> ale?;

0 0 i

this is the case 1) in 5.1.

e) ¢ is a Fano fibration oveP?; thus it is actually an equivariar®®>-bundle, i.e.

X = P(£) with £ an homogeneous bundle of rank 3 BA The homogeneous bundles
O(a) ® O(b) ® O don't give a quasi-homogeneous variety, i.e. there is nan apbit,
except ifa = b = 0 in which case we have the diagonal actionRinx P?> which has

an open orbit. Therefor& is one of the manifolds, := P(Tp:(a)) ® O) or P(5?Tp2).

f) Since Z cannot be a curve the only remaining case is when im0, i.e. X is

a Fano 4-fold with PicX) = Z. Note that there are nho homogeneous such manifolds.
From the Theorem 5.1 of Nakano it happens tlat Q* c P°. We hope to find a
direct proof of this last fact and in general we believe threg following holds.

Conjecture. Let X be a smooth Fano manifold of dimensianwhich is quasi-
homogeneous under a regular action of the graup(n—1); assume also tha®ic(X) =
Z. Thenn = 3 and X is one of the examples found &0] and [22] or n = 4 and X
is the smooth quadric ifP°.

Thus a 4-foldX which is quasi-homogeneous with respectstb(3)-action has to
be one of the manifolds coming up in d), e), f) or the blow-upoog of them along a
closed orbit isomorphic t6> 5.2. So we also havé/,(P? x P?); note that the quadric
in f) has two closed orbits isomorphic %’ (and an open one); blowing up one of
them we obtain a manifold in the class 2) of 5.1, then blowipgthe other we obtain
a manifold in the class 1) of 5.1.

Added in proof. The conjecture stated at the end of section 5 as well as the one
in 5.2.1 have been recently proved. They follow from a moreegal result obtained
by J. A. Wisniewski and the author in the preprint; "On quasitogeneous manifolds-
via Brion-Luna-Vust theorem”.
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