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A CONSTRUCTION OF
SURFACE BUNDLES OVER SURFACES
WITH NON-ZERO SIGNATURE

HisaAki Enpot

1. Introduction

Let X, (respectively %p) be a closed oriented surface of genus g (respectively h),
where g (respectively h) is a non-negative integer. Let Dif f+2p be the group of all
orientation-preserving diffeomorphisms of 5 with C*®-topology. A T,-bundle over
¥y (also called a surface bundle over a surface) is a fiber bundle ¢ = (E,Zg,p, Zh,
Diff+Zn) over L, with total space E, fiber X, projection p : E — Y, and
structure group Dif f1¥,. Our main concern is the signature 7(E) of the total
space E of €.

It is easily seen that if £ is a trivial bundle then 7(E) = 7(3,)7(X) = 0. Chern-
Hirzebruch-Serre [5] proved that if the fundamental group 7(Z,) of X, acts trivially
on the cohomology ring H*(X;R) of L), then 7(E) = 0.

Kodaira [12] and Atiyah [1] gave examples of surface bundles over surfaces with
non-zero signature. For each pair (m, t) of integers m,t € Z (m > 2,t > 3), Kodaira
constructed a surface bundle £ = ¢(m,t) with

g:mzt(t—1)+1,
h = mt,

T(E) = %m%"l(t —1)(m? —1).

By setting m = 2 and ¢ = 3, we obtain a surface bundle ¢ = ¢(2,3) with g = 129,

= 6 and 7(E) = 256. The total space E of the bundle ¢ = ¢(m, t) is an m-fold
branched covering of ¥, x ¥; and its signature 7(F) can be calculated by using
G-signature theorem(see [9] and [11]).

Meyer [16][17] gave a signature formula for surface bundles over surfaces in
terms of the signature cocycle 74, which is a 2-cocycle of the Siegel modular group
Sp(2h, Z) of degree h. Using the signature cocycle and Birman-Hilden’s relations [3]
of mapping class groups of surfaces, he showed that if A = 1,2 or ¢ = 1 then
7(E) = 0. But he also showed that for every h > 3 and every n € Z there exist an
integer g > 0 and a Xp-bundle £ over I, such that 7(E) = 4n.

We consider the following problem:

tThe author is partially supported by JSPS Research Fellowships for Young Scientists.
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2 HISAAKI ENDO

Problem 1.1. For each h > 3 and eachn € Z, let g(h,n) be the minimum value of
the genus g such that there exists a Xp-bundle £ over Ly with 7(E) = 4n. Determine
the value g(h,n). :

In this paper, we estimate the value g(h,n) by using Wajnryb’s presentation [19]
of the mapping class group My, of .
Our main result is: '

Theorem 1.2. For each h > 3 and each n € Z(n # 0), the following inequality
holds:
—Iﬂ— +1 < g(h,n) < 111]n|.
h—1
We construct a Lp,-bundle £ over £y with g = 111, A = 3 and 7(E) = —4 to prove
Theorem 1.2. The genus of the base space of this bundle and that of a fiber of it
are smaller than those of any example constructed by Kodaira [12] and Atiyah [1].
In Section 2, we review Meyer’s work [16]{17] on signature of surface bundles over
surfaces. And in Section 3, we calculate the values of Meyer’s signature cocycle for
the relators of Wajnryb’s presentation {19] of the mapping class group M, and
characterize the 2-cycles of Mj, as words in the generators of the presentation of
M}, We prove our main theorem in Section 4 by using this characterization and a
simple technique of the commutator collection process [7].
The author wishes to express his heartfelt gratitude to his adviser, Prof. Katsuo
Kawakubo, for helpful comments and useful suggestions, and Kazunori Kikuchi and
Toshiyuki Akita for helpful discussions.

2. Meyer’s signature formula

In this section we review Meyer’s signature cocycle and Meyer’s signature for-
mula [16]{17] for surface bundles over surfaces.

For a pair (a, B) of symplectic matricies o, 8 € Sp(2h,Z), the vector space V, g
is defined by:

Vs = {(z,9) € R xR*" | (&' ~ D)z + (8 — )y = 0},
where I is the identity matrix. Consider the (possibly degenerate) symmetric bi-

linear form
< 5 >ap Vo XVeps—R

on Vg, g defined by:
< (z1,11), (T2, ¥2) >a,p:=< 1 +y1,(I — By2 >,

(xiy yi) € Va,ﬁ ("’ = 1)2)v

where < , > is the standard symplectic form on R?" given by:

<z,y>='zJy (z,y eR™),

J=<f[é>eM%my
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Meyer’s signature cocycle [16][17]
7 : Sp(2h,Z) x Sp(2h,Z) — Z

is defined by:
(e, B) = sign(Vag,< , >ap)

(a, B € Sp(2h,Z)).

From the Novikov additivity, 7, is a 2-cocycle of Sp(2h,Z) and represents a coho-
mology class [r,] € H2(Sp(2h,Z),Z).

Let M}, be the mapping class group of a surface X of genus h, namely it is
the group of all isotopy classes of orientation-preserving diffeomorphisms of ¥5,. By
choosing a symplectic basis on H1(Xy;Z) & Z®2" the natural action of My on
H'(%;Z) induces a representation o : My, — Sp(2h,Z).

Next, we define a homomorphism k : Hy(Mp;Z) — Z by using 7, and o. It is
known that the group My, is finitely presentable, so there exists an exact sequence:

1—R—F -5 My — 1,

where F is a free group of finite rank generated by a free basis E = {ex}xea. By
well known Hopf’s theorem (cf. [4]) the following isomorphism holds:

Hy(Mn;Z) = RN [F, F)/[R, F).

The map ¢ : F — Z is defined by:

ofx) =) mh(o(n(F;-1)),0(n(z;)))

i=1

m J
(.’IZ = H.’Ei, x; € EUE—I, &Ej = Hm,)
ji=1 =1

It can be checked that the restriction ¢ |g: R — Zis actually a homomorphism and
that ¢([R, F]) = 0. Hence ¢ |g naturally induces a homomorphism k : Hy(My; Z)
RN |[F,F}/|R,F] — Z.
Now, we describe Meyer’s signature formula for surface bundles over surfaces.
Let £ = (E,Xq,p, X, Diff1Xh) be a Lp-bundle over ¥y and f : ¥ —
BDif f T, its classifying map. The map f induces a homomorphism x between
fundamental groups:

x = fy : m(Zg) — m(BDif f1Tn) = mo(Dif f+En) = M,

which is called the holonomy homomorphism of £ (cf. [18]). By a theorem of Earle
and Eells [6], which states that the connected component Dif foX5 of the identity
of Diff ¥, is contractible if h > 2, the isomorphism class of { is completely
determined by its holonomy homomorphism x when h > 2 (see [16][17] and [18]).
From now on, we suppose that h > 2 and g > 1.
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The fundamental group m;(%,) of &, is finitely presented, so we have an exact
sequence:

1——>I~Z—>F——i—+7r1(29)—-—->1,

where

g
71'1(29) =< al,---,ag,bl,---,ngH[ai, -L] Ha,ba i —-1>

F=<61,"' 7agab1;"' ,bg >,

o~

7r:5,-»——>ai,b,-»——+bi

and R is the normal closure of 7 := Hle[?i,,g (= H a,b a; b ) in F. Hopf’s
theorem allows us to identify Ha(m1(X,);Z) with RN [F F) / R, F] For the ho-
lonomy homomorphism x, we can choose a homomorphism ¥ : F — F so that
moX = xo7. Then the induced homomorphism x. : Hy(m1(Z,);Z) ~— Hao(Mp; Z)
is defined by:

X+(Z[R, F]) := X(Z)[R, F] (T € RN[F,F))

and is not depend on a choice of ¥.
Meyer proved the following theorem by using the Leray-Serre spectral sequence
for £ and the cohomology group H(Z,; H;(Zh;R)) of Ly with local coefficients.

Theorem 2.1 (Meyer [16](17]). Let §{ = (E,Zy,p, Ln, Dif f+X1) be a Tp-bundle
over Xg (h > 2,9 > 1) and x : m(E4) — My, its holonomy homomorphism. Then
the following equality holds:

7(E) = —k(x«(FIR, F])) (= —(X(P)).

3. Explicit description of 2-cycles of M,

In this section, we calculate values of the map ¢ : FF — Z for the relators of
the finite presentation of M} due to Wajnryb and give an explicit description of
the homomorphism & defined in the preceding section in order to characterize the
elements of RN [F, F] as words of F.

Let M), be the mapping class group of a surface X5, of genus h. A finite pre-
sentation of M, was obtained by Birman-Hilden [3] and that of My(h > 3) by
Hatcher-Thurston [8].

Wajnryb [19] s1mpl1ﬁed their presentation of Mh(h > 2) as follows. (We denote
the commutator zyz~1y~! of z,y € F by [z,y].)

The generators, which are called the Lickorish-Humphries generators, of the
presentation are:

Y1,Y2, U1, U2, ,Uh, 21,22, * , Zh—1

and the relators of it are:
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Al = [y, 42,

A?,j:zlyi’uj] (Z=1,2,1SJSh,17é]),
A} i=yiz) (i=1,2,1<j<h-1),
Al i=luu] (1<i<j<h),

i\
A ji=luyz] (1Si<h1<j<h—1,j#4,i+1),
A?,j:z[zi,zj] (1<i<j<h-1),

Bl : = yauysu; 'y w7t (=1,2),
wilzy! (1<i<h-1),

-1 _-1, -1 .
L= ziui+1z,~ui+lzi U’i+1 (1 <1 S h— 1),

B?. = Uj2Ui2; U,
1. _ -4 2 -1 2

C = (y1u121) yo(u2z1u1y7u121U2) yz(uzzwwlulzluz),
1. _ -1 -1 -1

D" : = y1z1z2t1t2(yatayets titays) ™ (wuyz1u222u3) ™ vwug 21 Uug22us,

1 2
E: = [d,upzh-1Un-1 " 21U1Y;U121  * * Up—1Zh—1Up),

where

t; : = uiy121U1,
t,; L= UZi-12iUg (2 S ) S h— 1),
v = yrurziugye(yiu z1uz) Y,

w = zauztays(z2usts)~?,

v = (uzzluly%ulzlug)_lyz(uzzlulyfulzluz),
vi i = timativio1(tieits) ™t (2< i< h—1),
wy .= ulzluzvl(ulzluz)"l,

Wy : = Uz (Wizivie) T (2<i<h=1),
d:= (wiwz - wh-1)"lyrwiwe - - wh_1.

Elements y;,u;,2; can be interpreted as Dehn twists with respect to curves
Y;,Ui, Z; in Fig.1 of [3] (see also [13] and [10]). For A = 2 we can omit the re-
lator D1,

By choosing a symplectic basis of H'(Z4;Z) as in [17], we fix an explicit repre-
sentation o : My — Sp(2h,Z) by:

I 0 .
U'yi'—“‘)(_Eii I) (7‘_1’2),

I 0

HH 1<i<h—1),
o Z;l—)(""Eii— i+1,i+1 T Biiv1 + B, I) (1<i< )



6 HISAAKI ENDO

where E;; € My(Z) is the (i, 7)-matrix unit.
We also fix an exact sequence:

l1—R—F -5 My — 1,

where

F =< Y1,Y2, ULy 0 yUR, Ry 0ty 2p—1 2>

and R is the normal closure of the set of all relators Aﬁ, o Bﬁ, C!,DY,Elin F. Let
c¢: F — Z be the map defined as in Section 2 by using explicit homomorphisms o
and 7 fixed above.

Now we calculate values of the map ¢ : F — Z for relators A! ;, B}, C*, D', E*
of the presentation and describe the homomorphism ¢|g : R — Z.

To compute values of ¢, Meyer showed the following lemma:

Lemma 3.1 (Meyer [16][17]). The map c: F' — Z satisfies the following prop-
erties:

(1) c(zy) = c(z) + c(y) + (o (n(2)), 0 (n(y))) (z,y € F);

(2) cfz~1) = —c(z) (x € F);

(3) clzyz™!) =c(y) (z,y € F);

(4) c(zzyz™1) = c(z) + c(y) if m(zzyz" ) =1e M, (z,y,z € F).

Values of ¢ for relators are computed by using Lemma 3.1.

Lemma 3.2. The values of ¢ for the relators of Wajnryb’s presentation of My (h >
3) are calculated as follows:

(1) e(AL;) = 0 (for every L, 5);
(2) e(BL) = 0 (for every L, 5);

(3) ¢(Ct) = —6;
(4) ¢(DY) =1,
(5) c(EY) = 0.

Proof. We denote 74(o(w(z)),o(n(y))) by Tn(z,y) for z,y € F. By virtue of Lemma
3.1, it follows immediately that c(Aﬁvj) = ¢(B!) = ¢(E') = 0. For example,

¢(B}) = c(y1 - wr - yrutyrt - upt)
= c(y1) + c(yrur'y7 )

=c(y1) + c(ui?) = c(y1) — c(uy)
= 0.

Using Lemma 3.1 and calculating signature of symmetric bilinear forms con-
cretely, we obtain values ¢(C!) and c(D?).
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e(Ch) = e((yrwaz1) " *y2(uzz1urydus z1u2) " Y2 (uaz1ur y3us z1us))

=c((mmz1)"*y2)  (c(y2) =0)
= c((yrmz1)™) + Tn((mwmz1) " 2)  (clye) = 0)
= 2¢((y1u121) %) + Tal(y1v121) 72, (n1u121) 72) + Tu((yrva21) ™, y2)
= 4(Tn(L,277) + Taler o) + Tz tur )

+ 270 ((yrur21) 71, (yrwr21) ™)

+ T ((y1u121) 72, (Y1w121) 72) + Fu((y1u121) ™%, v2)
=4(04+04+0)+2-(=3)+(~1)+1
= —6.

c(D') = C(y12122t1t2(yztzyztz_lhtzyz)—l(wulzluzzzua)_lkulzwzzzus)
= c(y12122t1t2(Yatayats ‘titaya) ™)
(c(v) = c(yru1z1u2y2(y1u121u2) ") = c(y1) = 0)
= c(y12122) + c(t1t2(yatayats ‘titaya) 1)
+ Th(y12122, tata(yatayaty 'titays) P
= Th(y1, 21) + Ta(y121, 22) + c(titays 't3 147 1) + c(tayy H5 tyy )
+Th(titays 13 T tayy 5 uy ) + Ta(vi21 22, tata(yatayaty Mtatay) 1)
= Th(y1, 21) + Th(y121, 22) + Taltay; 't3 1, 957 Y)
+ Tn(titays 65 14 tayg 5 ye ) + Ta (i 2122, trta(yatayaty Hitays) 7Y
(ctitzys 't3 17 ") = c(yz ') = —c(y2) = 0,
oltayz 't 'Yz 1) = cltays 43 1) + ey ) + Taltays 5 vz )
= Th(t203't7 ", 93"))
=0+0+0+0+1
=1. 0O

REMARK 3.3. All values of Meyer’s signature cocycle 75, calculated in Lemma 3.2
are independent of the genus h(> 3) because all generators which appear in C! and
D! are y1,y2,u1,uz,u3,21 and zo. We can easily check by using a computer that
the values are correct in the case h = 3. (We used Mathematica).

DEFINITION 3.4. Let F,, be a free group of rank n. Algebraic m copies of an
element z € F,, are my copies of z and m_ copies of z~!, where m,,m_ > 0 and
m4 — m_ = m. The integer m is called the algebraic number of these algebraic
copies.
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For each generator e = y{,y2,u1,** ,Un,21,"** , 2h—1, the homomorphism e*
F — Z is defined by:

@) :={+1 (z=e),

0  (x:other generators).

An element z € F belongs to [F, F] if and only if e*(z) = 0 for every generator
e. Combining this with Lemma 3.2, we characterize the elements of RN [F, F] as
words in y;, u;, 2z; and calculate the value of ¢ for each element z € RN [F, F).

Proposition 3.5. Suppose that h > 3. For an element x € F, the following two
conditions are equivalent:
(1) z € RN[F, F| and ¢(z) = 4n(n € Z);
(2) z is equal to a product of conjugates of algebraic copies of relators and the
algebraic number m(R!) of algebraic copies of a relator R' included in x is
determined as follows:

R1 AL B} Bj} B? B2  B2(i >3)
m(RY) v —6n 18n —2n 10n 0
B} B}i>2) C! D! E1
—8n 0 n 10n v ,

where V¥ stands for arbitrary number of algebraic copies of R'.

Proof. (1)==(2) : Since R is the normal closure of the set {A,],BQ,CI,DI,EI}
of all relators, any = € R is a product of conjugates of algebraic copies of relators.
For x € RN [F,F), let a} ; (respectively bl,c!,d!,e') be the algebraic number of

algebraic copies of A! (respectlvely B!, C’1 D1 E?) included in z. These numbers
must satisfy the followmg system of equations because z belongs to [F, F].

2 h—-1 h—1
D bie*(B})+ ) ble*(B)+ ) ble*(BP) +cle’(C') + dle*(D) =0

(e =Y1,Y2,U1," " ,Up,21, """ yZh— 1)
(e*(AL;) = e*(E"') = 0 for every generator e because A. ; and E' belong to [F, F).
Values of e* and c for other relators are exhibited in Table 3.6 below.) Solving this,
we get
bl = —6n, by =18n, b2 = —2n, b2 =10n, B2 =03 <i< h-1),
b= -8n, b3=002<i<h-1), c =n, d' =10n,
where n is an integer, while ali,j and e! are arbitrary integers.

(2)==(1) : Such an element z belongs to RN [F, F] because e*(z) = 0 for every
generator e. The value ¢(x) can be calculated by using Lemma 3.2:

c(x) = nc(C*) + 10nc(DY)
= —6n + 10n
= 4n.

This completes the proof of Proposition 3.5. O
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TABLE 3.6.

Yi ¥z Ul U3 oo Up Uk g Up 2] 23t Zhog %y
B} 1 -1 0
Bl 1 -1 0
B? 1 -1 0
B2 1 -1 0
B2 _, 1 -1 0
B3 -1 1 0
B3 1 0
B3_, -1 1 0
B}_, -1 1 0
ct 42 -40 ---0 0 O -40 - 0 0 —6
npbi1 -20 0 .0 0 0 1 1 .. 0 O 1

(The blanks in the table above mean that the corresponding value is equal to
Z€ro.)

REMARK 3.7. Proposion 3.5 implies that the ‘signature’ c¢(z) of a ‘2-cycle’ z €
RN[F, F] of My, is concentrated on relators B}, B, B, B2, B}, C!, D! of Wajnryb’s
presentation and the algebraic number m(R!) of a relator R! is independent of the
genus h(> 3).

4. A construction of holonomy homomorphisms

We now construct the holonomy homomorphism x : 71(Xy) — My, of a surface
bundle £ over a surface ¥4 with non-zero signature. We use a simple technique of
the commutator collection process (see [7][15]) to construct x.

DEFINITION 4.1. Let F,, be the free group on the n free generators e;,--- ,e, and -
let a,b,u,v and w be words in ey, - - - , €,. Two words u and v are called freely equal
(denoted u = v) if they determine the same element of F,.
The a-skip is the following sequence of free equalities:
(

1 1

wava ™ lw = u(ava" v )vw
= ula, vjyw

and the (-skip is the following sequence of free equalities:

uavba 1071w ~ u(avba= oo How
= ula, vbjvw,
where [a,b] := aba~1b~1. (We used the commutator relation ba = [b, ajab.)

We apply a- and (-skips to elements of the free group F' on the generators
Y1,Y2, U1, " U, 21, - ,2n—1 defined in the preceding section and prove the fol-

lowing lemma.
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Lemma 4.2. Suppose that h > 3. There exists a word W in y1,y2,u1, -

s+ zp—1 with the following properties:

(1) W is a product of 111 commutators;
(2) W belongs to RN |F, F| as an element of F;
(3) c(W) =4.

Proof. We set

Wi = (B?)"1(Bi)®BiB3D!,
W, := B}(B})~'B} B3 D",
W= C\W2WE.

y Uhy 21,

Since the word W satisfies the condition (2) of Proposition 3.5 in case n = 1, w
has the properties (2) and (3) above. We decompose W to a product W of 111

commutators by using a- and (-skips repeatedly.
We rewrite some of Wajnryb’s relators as follows:

Bl =yiRiui'  (Ry = [u1, 1)),

B = y2Rou;’  (Rg = [ug, 4a),

B? = uiR3z;!  (R3 = [21,u1)),

B2 = U2R422_1 (R4 = [22,u2]),

B} = z1Rsu;'  (Rs = [ug, 1)),

C' = (iwaz1) " *¥3Re  (Rs = [v3 ", (waz1wayiurziug) ™)),
D' = yizizatitay; 85147 'y; '3 ' ReRs

(R7 = [y5 L yiwiz1ug), Rs = v, (wuyz1up20u3) 1)),

where R;,- -+ Rg are commutators.

Wi(i = 1,2) is transformed into another word W;(i = 1,2) by using a- and

B-skips in the following way:

W, = (B})~!(B}) B} B} D"

~ z1R3 'Ry yT  (wi Ry Yy )2 ya Ro Razy My 2 2ot toyy 15 Mt Hay; 1t P Ry Rs

(?) les'lRflyl_l(ulRflyl—l)zisngz'1y1z1z2t2y51t51R7R8

(S1 = [y2, RoR423 'y12120t1t2))
(f) leglRfng(ulRl_1y1_1)251R2R4z2-1z122t2y51t51R7R3

(S2:= [yr", (urRT 'y 1)?S1R2Raz3 1))
=: Wi,
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Wa = B3(B3})™' B3 BID"
~ Y2 Ro R ' 27 Yya RaRazy tyr 21 2atatayy 5 M Mays 1t Ry R

(7) yszRs_lzl‘15’3R2R4z;1y1z1z2t2y51t51R7R8

(S3 := [y2, RaRazy 'y12125t1t2))
(?) S4R2R5_1z1_153R2R422'1y1z1z2R7R8

(S4 := [y2, RoaRy ' 27 1S3 Ry Razy 'y 29t2])
5 S4R2R5'S5S3RyR425 *y120Rr R

(55 = [21_1,53R2R4Z2_1’y1])
= Wz.

The word W; obtained above naturally includes 10 commutators and the word
W, 9 ones. Hence the word C!W2ZW$ naturally includes 93 commutators.

Furthermore we perform 6 a-skips and 4 3-skips to C1W2 and get a word W in
the following way:

C'WE = (y1ur21) " *yay2Rez1 Ry Ry ' Sa (w1 Ry 'y 1)?
. 51R2R422_12122t2y51t51R7R8W1

(?) (yrur21) 327 tur YT Ly Se Rez1 Ry Ry L Sa(wa Ry Yy 1)

. SIR2R4Z2—12122R7R8W1
(Sa = [yz, RsleglRl—lsz(’u,1R1_1yfl)251R2R4z2_121Z2t2])
& (y1u121) "3 S7uy 'y Y2 SeRez1 Ry ' Ry 1 Sa(ur Ry Myp )2

- S1RyR4 Ry RgW;
(S7:= [zl_l,ul"lyflygSﬁRsleglRl_ng(ulRl_lyf1)251R2R422"1])

(f) (y1v121) 227 'y tyr 1 S7Ssyr Y2 SeRe21 Ry R VS Ry Myt

~us Ry Y7 S1 Ry Ry Ry Re W
(Sg := [ul!, y; 'y2Se Rez1 R3 'Ry 1 S2))
(f) (y1u121) "2 Soui 'y; 1 S7Ssyy 'v2Ss Re R ' RT ' S2 R My
-uy RTYy7 S Ry Ry Ry Rs W) |
(So = [z7 Y, uT 'y 1 S7Ssyy Y256 Re))
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(f) (y1u121) 289 S10y7 1 S7SsyT 'y2Se Re Ry ' Ry So Ry Myt

- Ry'y'S1R2R4R7 R
. leglRl_lsz(ulRl_lyl_1)251R2R4z2_121z2t2y51t51R7R8
(S0 := [uT?, 7 " S7Ssyr *y2Se Re Ry ' RT 1 S2 Ry My 1))

. (?) (Zl_lul_lyl_1)259510y1_1S7Sgy1_1SuSsRnglR;lSle_ly;1

- R7Yy7 1 S1R2R4R7Re 21 Ry ' R So(ua Ry Yy 1) 2S1 ReRy25 2122 R Ry
(S11 = [y2, SeRe Ry 'Ry 'S Ry 'y; 'R yT ' S1Ra Ry Ry Rs
. ZlelRI.lSz('UqRi_lyl_l)251R2R422—12122t2])

5 27 tur YT S ouy yr L Se S0y 1Sy Ssyr 1 S11Se Re Ry P R 1S, Ry ty !

- Ry 'S1RaR4R7Rsz1 Ry ' Ry 1 Sa(us Ry 'y 1)2S1 R R4 Ry R
(S12 == [0 Y ul Yy 1 SeS10y7 1 S7SsyT 1 S11Ss Re Ry ' Ry 1S Ry Yy !
- R{'y7'S1RaR4R7 Rez1 Ry ' RT 1 Sa(ur Ry My ) 2S1 RaRa 25 1))
~ 27 'l tyr ES12813y7  SaS10yy FS7Ssyy LS11Ss Re Ry ' Ry 1 So Ry 1yt

(@)
- Ry 'S1ReR4R7Rez1 Ry 'Ry ' So Ry Yy fus Ry yT 1 S1 Ry Ry Ry Rg
(S13 := [ur ", yi ' SoS10y7* SrSsyr ' S11Se ReR3 Ry ' Sa Ry 'yt

- Ry 'yr'S1RyR4 Ry Rs21 R3 'R S5))
(f) 27 1 814y7 1 S12513y7 1 S S10y7 1 S7Ssyr 1 S11S6 Re Ry * Ry 1S Ry Yyt

- R{'y;*S1RyR4R7Rgz1 Ry ' RS Ry Yy Ry Yy ' S1 Ry Ry Ry Rg
(S14 = [u7 !, y7 1812513y 1 S0 S10y1 ' S7Ssy1 ' S11S6 Re Ry ' Ry 1 So RT 1y !
- R{'y7'S1 R R4 Ry Rsz R 'R SaRT Yy 1))
(f) S15S14y7 1 S12513y5 1 SeS10y7 1 S7Ssyy 1 S11Se Re R L Ry 1 So Ry Hyp !

-R7'yi'S1RaR4R7RsR3 ' Ry SR yi ' Ry 'y 1 S1 Ry R4 R Ry
(S1s = [27' 1, S1ayy 1812513y L So 10y 1 S7Ssyy 1 S11S6 Re Ry ' Ry SR Lyt
- R7'y7'S1 Ry R4 R7 Ry))

=W
The word W is a product of 31 commutators and 8 copies of y;° 1. The word w8
is a product of 72 commutators and 8 copies of 2] Yz
We perform 8 (-skips to the word /VVWZS repeatedly by setting @ = y;! and
b = 27! in Definition 4.1. Then we obtain a word W which is a product of
111(=31+472+8) commutators and is freely equal to W. This completes the proof
of Lemma 4.2. 0O

By virtue of Lemma 4.2, we can show the following theorem.
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Theorem 4.3. There exists a Yp-bundle § = (E,Zg,p,Zp, Dif f121) over I
with g = 111, h = 3 and 7(E) = —4.

Proof. Set ¢ = 111 and h = 3. We choose a word W which satisfies conditions
(1)-(3) of Lemma 4.2 and write

g
W=H[auﬂz] (a,,ﬂ,EF(zzl, 79))
i=1

Let ¥ : F — F the homomorphism defined by:

i(az) = Qy, i(bz) = :81'. ('L = 17 v )9)7

where F =< ay,--- y8g, b1, -+ ,bg >. Since x(¥) = W € RN[F, F], x induces the
homomorphism x : m1(Z4) — My, (i.e,, o)X = x o) as in Section 2. For the
Yp-bundle £ over £, which has x as its holonomy homomorphism, we calculate the
signature of its total space E:

~(E) = —o(%()
= —c(W)
= —4.
We have thus proved the theorem. O

Finally, we prove our main theorem (Theorem 1.2) by using Lemma 4.2 and
results of Liick [14] concerning about L2-Betti numbers of groups.

Proof of Theorem 1.2. Let W be the word constructed in the proof of Lemma 4.2.
For every h > 3 and each n € Z(n # 0), we can construct a p-bundle & = £(h,n)
with g = 111|n| and 7(E) = 4n by using the word W~" as in the proof of Theorem
4.3 (see Remark 3.7). Therefore we have

g(h,n) < 111|n|.

On the other hand, for every Yp-bundle { over ¥, with ¢ > 1,h > 3 and
7(E) = 4n, the associated exact sequence:

1 — 11 (Zh) — m(E) 25 m(8,) — 1

of fundamental groups satisfies the assumption of [14,Theorem 4.1]. Then the first
L2-Betti number by (7m1(E)) of 1 (E) is equal to zero and the Winkelnkemper-type
inequality x(E) > |7(E)| holds from [14,Theorem 5.1]. By substituting

X(E) = x(Zn)x(Xg) = 4(h - 1)(g - 1), 7(E)=4n

for the inequality, we obtain

g(h,n) > % +1

and this completes the proof of our theorem. O
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REMARK 4.4. The ¥j-bundle £ = é(h, n) over ¥, constructed in the first half of
the proof of Theorem 1.2 has g = 111n|, 7(E) = 4n, b;(FE) = 2(111|n| + h - 3),
b2(E) = 2(222|n|h — 5) and x(E) = 4(111|n| — 1)(h — 1), where h(> 3) and n €
Z(n # 0). If the total space E admits a complex structure, E is an algebraic
surface of general type and satisfies the Noether condition, the Noether inequality
and the Bogomolov-Miyaoka-Yau inequality (cf. [2]). But E cannot be a geometric
4-manifold in the sense of Thurston [20], in particular, a compact Kahler surface
covered by the unit ball in C2. :

Let I'(h, n) be the fundamental group of the total space of ¢ = é(h, n)(h > 3,n >
1) constructed in the first half of the proof of Theorem 1.2. Computing an invariant
defined by Johnson [11], we obtain the following result.

Corollary 4.5. The family {I'(h,n)}n>3n>1 contains infinitely many commensu-
rability classes of discrete groups. In particular, {I'(h,n)}n>1 is a family of infin-
itely many non-commensurable discrete groups for each h(> 3).

Proof. The commensurability invariant y(I') [11] for ' = I'(h, n) is

n

W) = G- Rz3nzD

which runs over infinitely many rational numbers. O

REMARK 4.6. Although the author attempted to show that the value g(h,n) does
not depend on the genus h(> 3) of fiber &) for each n € Z(n # 0), it was not
achieved because of some serious transformation problems on words in free gener-
ators.
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