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1. Introduction

The purpose of this note is to supply a few relations between the unstable
and stable James numbers of Stiefel manifolds.

Let F be the field H of the quateinions or the field C of the complex num-
bers, and d the dimension of F over the field of the real numbers. Let G(Fn)
be the symplectic group Sp(n) or the unitary group U(n) according as F is H

or C. The stunted quasi-projective space Qn>k=Qn/Qn-k is a subspace of the
Stiefel manifold Onfk=G(F")/G(Fn-k) (see e.g! [8]). There exist the quotient

maps qr: Qn,k-*Qn,k-r and pr: On>*->OM_r. Let i': Qn>k->Ontk be the inclu-
sion map. Then i'°qr=proi' and i'ι OM>1— >On>1 is the identity map of the
(rfft— l)-dimensional sphere S**'1.

Applying the homotopy functor πdn-ι( ) and the stable homotopy functor
πdn-ι( ) to qk-i and pk_l9 we define the unstable James numbers (see [7])
Q{n, k}=QF{n, k}, O{n, k}=OF{n, k} and the stable James numbers Q*{n, k}
=Qs

F{n, k}, Os{n, k}=OF{n> k} by the following equations:

ϊ*-ι .̂-ι(0M) = Q{n, Qπ^S"-1) ,

q^πL-^Qn.k] = Qs{n, k} πin-

pk-^πs

dn-ι(0ntk) = 0s {n, k}πs

dn-ι(Sdn-1)

whenever l^k^n. As easily seen (see e.g. [12]), we have

(1.1) Q*{n, k} \Q{n, k}, Os{n, k} \O{n, k}, O{n, k} \Q{n, k} ,

Qs{», k}\Qs{n, k+1}, Q{n, k}\Q{n, k+l} and O{n, k} \O{n, k+l}

where a \ b means that b is a multiple of α. In [12] we proved

(1.2) Q'{n, k} = 0*{n, k} .

The stable James number Os{ny k} has been investigated by various au-
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thors, but the unstable ones Q{n, k}, O{n, k} have been done not so much
(see e.g. [7], [13], [15], [18]). By [2], [3], [4] we have

(1.3) <M«,«} = {2'(2n-1)! ίfniseven

V ' "* * \(2n-l)\ if n is odd;

Oc {n, n} = Oc{n, «-!} = (»-!)!.

Our first result is an easy consequence of the results of Mukaί [10], [11].

Theorem 1. ( i ) OH{n, n}=Os

H{n, n}=a QH{n, n}, where a=l if n is
even, α=l or 1/2 if n is odd.

(ii) Oc{n, n}=O'c{n, n}=Qc{n, n}=Oc{n, «-!} =O*c{n, n-l}=Qc{n,
«-!}.

Let E°°: πr( )-*πs

r( ) be the stabilization homomorphism. Since Qn>k

and OΛtk are (d(n—k-\-l)—2)-connected (see e.g. [8]), it follows from Freudenthal
suspension theorem that E°°: πdtt-ι(QHtk) -* πs

dn-ι(Qn,k) and E°°: πdH-ι(OΛtk) ->
πs

dn-ι(Ontk) are surjective whenever n^2k— 1. Thus Q{n, k}=Qs{n, k} and
O{n, k}=Os{ny k} if n^2k-\. As seen in [13], if n<2k-\y then O{n, k} Φ
O* {n, k} in general.

We consider the case n=2k—2. Since (O2Λ_2,*> C?2*-2,*) is (2dk—d—3)-
connected (seee.g. [8]) and d(2k—2)—l^2dk—d—3, it follows that ij: πd(2k-2)-ι

(Q2k-2,k) -* 7td(2k-2}-ι(O2k-2,k) is surjective, so that

(1.4) 0{2k-2, k} = Q{2k-2y k} .

Our second result is

Theorem 2. (iii) // F=H or F=C and k is odd, then O{2k—2, k}=Os

{2k-2,k}.
(iv) IfF=C and k is even, then O{2k-2, k}/O*{2k-2, k} = ί or 2.

REMARK 1. In [13] we proved (iv) by a different method from the one
in this note, and showed that Oc{2k—2, k}IO5

c{2k—2, k} is 1 if k=2, 6 and
it is 2 if k=4, 8.

REMARK 2. In [13] we did not determine O#{8, 5}. Now (iii) says that
(̂ {8, 5}=O|,{8, 5} which was calculated in [12].

REMARK 3. I know of no case where OH{ny k} Φθ^{w, k}.

2. Proof of Theorem 1

The assertions are trivial when n=l. So we assume that n^2.
Let E denote both the reduced suspension functor in the category of point-

ed spaces and the suspension homomorphism in homotopy groups. For a
continuous map /: Sr->X, we denote the order of / in πr(X) and πs

r(X) by #/
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and ίf-E00/, respectively.
As well known (see e.g. [8]), we have a CW-decomposition

Qn = Qnn =

such that Qm is a subcomplex of Qn provided m<n, so

(2.1) ρM =

Let jΓί.! : (JB"-1, S '̂2) -* (£)n, ρ )̂ be a characteristic map of the top cell,
and let Tn^: Sd»-2 -> Qn.λ be the restriction of T^ to Sdn~2, the boundary of

the disk JB"-'. Let also T^.^o^oT^: (B*-\ Sd»~2)-* (Qn,ky ρn_M_0

and Γ .̂̂ ^oT;̂ : S'-2 -> ρ.̂ .j.
Applying π ̂ ( ) to the cofibre sequence

we obtain the exact sequence

It follows from the cell structure of Qn-ι,k-ι that πdn-ι(EQn-ιtk-ι) is finite, so
#JB

00Γ r t_ l fΛ_1 is finite. Hence the exactness implies that

(2.2) &•{«,*> =*JB-Γ..U_1.

Next we see the unstable case. Consider the homotopy exact sequence

of the pair (QM, Qn-ι.k-ι)

y* 9
By definition 8(Γ^1>,.1)=Γn_1>Λ_1. Let q'ι (Qn>k, Qn-ι,k-ι} - (5'-1, *) be the
collapsing map. Then qf^(Tn-\tk-ι) generates πdn-ι(Sdn~1}. If n>k or F=H,

then, by Blakers-Massey [1], q*ι πdn-ι(Qn,k> Q«-ι,k-ι) -* π<ι*-ι(Sd*-1) is an iso-
morphism, so r£_i f*_i generates πdn-λ(Qn>k, Qn-ιlk-ι). Since ?*°y*=&-ι*, it
follows that the order of Tn_l)k_l is equal to the order of the cokernel of qk-ι*
^dn-ι(Qn,k) ~* 7tdn-ι(Sdn~l) provided n>k or F=H. Hence the following lemma
implies that

(2.3) Q{n, k} = tfTV^ ifn>k or F=H.

Lemma (2.4). The order of ΓM_1 > Λ_! is finite if ri>k or F=H.

Since Tn.ltk_1=qn.koTn.1 and since Tn_lik^=qn.k.^Tn^n^2 if n>k, it is
sufficient for proving (2.4) to show that it^.j is finite if F=H, and #ΓΛ_ l t n_2

is finite if F=C.
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The rest of this section is devoted to the proofs of (2.4) and Theorem 1.
We consider the case F=H. In [11] Mukai proved that ^T^^ftE^T^

=2 (2ιι-l)! if n is even; JfBT.^Zfi-l)! and $Tn^l(2n- 1)1-1 or 2 if n
is odd. Hence we obtain (2.4) and ( i ) follows from (1.1), (1.2), (1.3), (2.2),
(2.3).

We see the case F—C. Let Pn be the (n— l)-dimensional complex pro-
jective space, and let P£ be the union of Pn and a base point. We then have
Qn=E(PΪ) and Qfltn_l=EPn (see e.g. [8]). Note that there is a homotopy
equivalence E(PΪ) — EPn\/ S1 which makes the following triangle commutative
up to homotopy:

£„,„_! - EPn

where p is the projection. Hence ql has a left homotopy inverse, so

(2.5) ft*: π2n-ι(Qύ -* τr2«-ι(δ«,«-ι) is surjective.

Let SU(ri) be the special unitary group and let ft: Ontn.1=U(n)/(U(l)χln-ι)
-> SU(n) be the homeomorphism defined by

Note that h°i': EPn=Qn_n_l-^SU(n) is the inclusion map defined in [20].
Hence in the following commutative diagram h^oi^ is surjective by Proposition
4.2 of [16].

It follows that the lower i% is surjective and so is the upper i% from (2.5). Thus
we have

(2.6) Qc(n, n} = Oc{n, n} .

On the other hand we can take 7'B_lι,,_2=.Z?7,,_1 where Jn-i'. 52n"3-»PB_1 is the
canonical S^fibration. It is well known (see e.g. [10]) that #Ejn_1=$E'"7n_1

=(n— 1)!. Thus we have (2.4) and

(2.7) Qc{n, «-!} = Qi{n, n-1} = («-!)!
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by (2.2), (2.3). Therefore (ii) follows from (1.1), (1.2), (1.3), (2.6), (2.7). This
completes the proofs of (2.4) and Theorem 1.

3. EHP-sequence

Let X, Y be /--connected CW-complexes which have exactly one vertex *,
and let/: X-+Y be a continuous map with /(*)=*. We then have a diagram
consisting of the exact ZSί/P-sequences for ί^3r+l (see e.g. [9], [19]):

πi(X) £- πi+l(EX) ^ πi+l(E(XAX)) - π^X) - -

\f*E l(Ef)*H JWΛ/))*p I/* p
*,.,( Y) - -

In the next section we shall use

Lemma (3.1). The above diagram commutes.

By using Theorem 5.3 of [6] and following faithfully the construction of
the EΉP-sequence, we can prove (3.1). We omit the details.

4. Proof of Theorem 2

For an abelian group A, AjTor denotes the quotient group of A by its
torsion subgroup, and π: A-+A/Tor denotes the quotient homomorphism.
Let Z be the infinite cyclic group.

By (2.1) we have

(4.1) πdn^(Qn,k)ITor^Z.

It follows that Q*{n, &}ΦO from (2.2) and that Q{n, &}ΦO from (2.3), (2.6),
(1.3). Thus we have

Lemma (4.2). τro£~φO: πdn-ι(Qn,k}^7rs<in-ι(Qn,k}ITor.

From now on we denote Q2k-2,k by Q. By (1.1), (1.2), (1.4), (4.1) and
(4.2), Theorem 2 is equivalent to

Proposition (4.3). Let n=2k—2. Then the image of π°E°°: πdn

πs

dn-ι(Q)ITor is a πs

dn-ι(Q)ITory where a=l ifF=H or k is odd, a=l or 2 if F=C
and k is even.

Proof. We consider the case F—C only, because we can prove the asser-
tion for the case F=H by a similar but slightly easier method to the following
one.

If k=2, then the assertion is trivial by Theorem 1. So we assume that
Λ^3. By (2.1) we have
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and so

(4.4) Q Λ Q = β° U e4"-* U έ?4*'4 U e4"-* U U έ?8*'10 .

Let i: S2k-3=e0\J^k-3=Qk.ltl-^Q be the inclusion. Since Q is ^-^-con-
nected., it follows that

(4.5) E°°: π4k.2(E3Q) -> πS4k-s(Q) is an isomorphism, and

(4.6) E: π4k.3(E2Q) -> π4k.2(E*Q) is surjective.

By (3.1) we have the commutative diagram:

4 - 4 -

By (4.4) and Blakers-Massey [1], πtk(E\Q/\Q\ 54*-1) « ̂ -ι(̂ (β Λ Q), 54*'1)
^0, so the above (£5(ι'Λί))* *s an isomorphism. As well known (see e.g.
Proposition 2.7 of [17]), the upper H is not zero, hence so is the lower H.

Thus the image of P is finite, so that, by (4.6), E induces an isomorphism

(4.7) B: π4k-3(E*Q)/Tor «

Consider the Z?//P-sequence:

By (4.4) and Blakers-Massey [1], π4k-*(E*(Q/\Q\

S4k-3^ _ 0> so E\if\ϊ) induces a surjection

and an isomorphism (Z^) π4k-3(S4k~3) β π 4Λ_3(£3(ρΛj9)) Thus it follows that

(4.8) **-JE\QΛQ)) is finite, and

(4.9) ^

The kernel of E is finite by (4.8). The cokernel of E is torsion free by (4.9),
while it is finite by (4.1), (4.2), (4.5), (4.7), hence it is zero, so E is surjective.
Thus E induces an isomorphism

(4.10) E: χΛ_t(EQ)ITar « π

By (3.1) we have the following commutative diagram:

I**
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Here η2: S
3-* S2 is the Hopf map and ηm=Em-2η2: Sm+1->Sm for m^2. By

(4.4) and Blakers-Massey [1], π4k.4(E(Q/\Q), S4*-5)^0. Thus (E(i/\i))* is
surjective, so τc4k^4(E(Q /\Q)) ̂  Z2 or 0. Hence the cokernel of the lower E
is Z2 or 0. Since π4k.4(EQ)ITor^Z by (4.1), (4.5), (4.7), (4.10), it follows that
the image of the homomorphism E: π4k-5(Q)ITor->π4k-4(EQ)ITor induced by
E is a π4k-4(EQ)ITor, where a=l or 2. Thus the assertion of (4.3) for k even
follows from (4.5), (4.7) and (4.10). We can prove (4.3) for k odd by showing
that π4k-4(E(O Λ 0) is Z2 if k is even and 0 if A is odd. But we will take a different
method which can be applied to the case F=H.

As well known (see e.g. [19]), P( η4k-s)=\]>2k-3> -̂3]* the Whitehead product,
where l2k-3 is the identity map of S2*"3. It follows from [5] that [/2*-3, ^A-S]
=0 if and only if k is odd. We show that E: π4k-s(Q)ITor-*π4k-4(EQ)ITor
is surjective if k is odd. Then the assertion of (4.3) for k odd follows from
(4.5), (4.7) and (4.10).

Let k be odd. Then there is an element x in π4k-4(S2k~2) such that H(x)
=i74*-5 by exactness. Hence H((Ei)^(x))==E(iAi)^(H(x))=E(i/\i)^(η4k.5) which
generates π4k-4(E(Q/\Q)). Choose y in π4k-4(EQ) such that π(y) generates
the infinite cyclic group π4k-4(EQ)/Tor. If H(y)=Q, then there exists y' in
π*k-s(Q) such that E(y')=y, so E(π(y'))=π(y) and E is surjective. If H(y)*Q,
then π4k.4(E(Q/\Q))^Z2 which is generated by H(y). Hence H(y)=H((Ei)*(x))
and there exists y" in π4k-s(Q) such that E(y//)=y— (Ei)*(x). Since π4k-.4(S2k~2)
is finite as seen in [14], it follows that (Ei)*(x) has a finite order and E(π(y"))
=π(y—(Ei)χ(x))=π(y), so that E is surjective. This completes the proofs of
(4.3) and hence of Theorem 2.
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