

Title	Equivariant critical point theory and ideal- valued cohomological index
Author(s)	Komiya, Katsuhiro
Citation	Osaka Journal of Mathematics. 1994, 31(2), p. 417–429
Version Type	VoR
URL	https://doi.org/10.18910/12247
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Komiya, K. Osaka J. Math. 31 (1994), 417-429

EQUIVARIANT CRITICAL POINT THEORY AND IDEAL-VALUED COHOMOLOGICAL INDEX

KATSUHIRO KOMIYA

(Received January 27, 1993)

Introduction

We develop an equivariant critical point theory for differentiable G-functions on a Banach G-manifold with the aid of ideal-valued cohomological index theory, where G is a compact Lie group. We obtain a lower bound for the number of critical orbits with values in a given interval $(a,b] = \{t \in \mathbb{R} | a < t \le b\}$ and for the number of critical values in (a,b]. We also obtain cohomological information about the topology of the critical set K of a G-function, which says a lot more about K than that obtained by using the Lusternik-Schnirelmann category.

The Lusternik-Schnirelmann category is a numerical homotopical invariant which gives a lower bound for the number of critical points (see for example [16], [17]), and this category is successfully extended to the equivariant setting [2], [3], [5], [6], [7], [15]. Ideal-valued cohomological index theory also gives important information about the existence of critical points [8], [9], [10]. The index theory in these papers is a priori in the equivariant setting and contains the nonequivariant (absolute) setting as trivial case.

In their paper [6] M. Clapp and D. Puppe developed an equivariant critical point theory using an equivariant Lusternik-Schnirelmann category. In the present paper we will develop one using an ideal-valued cohomological index theory which contains the nonequivariant setting as nontrivial case. We will obtain a type of results corresponding to their Theorem 1.1 of [6] and further results which are derived only from our theory.

Throughout this paper G always denotes a compact Lie group, and spaces considered are all paracompact Hausdorff. Let M be a Banach G-manifold of class at least C^1 , i.e., M is a C^1 Banach manifold and Gacts differentiably by diffeomorphisms. Let $f: M \to \mathbf{R}$ be a C^1 G-function, i.e., f is of class C^1 and satisfies f(gx) = f(x) for all $x \in M$ and $g \in G$. Let $K = \{x \in M | df_x = 0\}$ the critical set of $f, M_c = f^{-1}(-\infty, c]$ and $K_c = K \cap f^{-1}(c)$ for any $c \in \mathbf{R}$.

If $x \in M$ is a critical point of f, then every point of $Gx = \{gx | g \in G\}$

is also a critical point, and Gx is called a *critical orbit* of f. Note that Gx is diffeomorphic to the homogeneous space G/G_x where G_x is the isotropy subgroup at x.

Consider the following deformation conditions (D_0) - (D_2) for $f: M \rightarrow \mathbb{R}$ at $c \in \mathbb{R}$:

(D₀) There is an $\varepsilon > 0$ such that $M_{c+\varepsilon}$ is G-deformable to M_c , i.e., there is a G-homotopy $\varphi_t: M_{c+\varepsilon} \to M_{c+\varepsilon} \ (0 \le t \le 1)$ such that $\varphi_0 = \text{id}$ and $\varphi_1(M_{c+\varepsilon}) \subseteq M_c$.

(D₁) K_c is compact.

(D₂) For every $\delta > 0$ and every G-invariant neighborhood U of K_c there is an ε with $0 < \varepsilon < \delta$ such that $M_{c+\varepsilon} - U$ is G-deformable to $M_{c-\varepsilon}$ relative to $M_{c-\delta}$.

A C^1 Banach G-manifold M admits a G-invariant Finsler structure $\| \|: TM \rightarrow \mathbf{R}$ (see Palais [16], Krawcewicz-Marzantowicz [14]). The *Palais-Smale condition* (or (PS) *condition* for abbreviation) for f is:

(PS) Any sequence $\{x_n\}$ in M such that $\{f(x_n)\}$ is bounded and $\{\|df_{x_n}\|\}$ converges to 0 contains a convergent subsequence.

As is well-known, (D_1) and (D_2) at any $c \in \mathbf{R}$ is a consequence of (PS) under suitable assumptions on differentiability and completeness. See for the proof Palais [16; Theorem 5.11], [17; Theorem 4.6] for the nonequivariant case, and Clapp-Puppe [6; Appendix A], Krawcewicz-Marzantowicz [14; Lemma 1.9] for the equivariant case. If c is a regular value of f, (D_0) is also a consequence of (PS) (see [6; Appendix A]). Even if c is not a regular value we can see that (D_0) follows from (PS) under the assumption that c is an isolated critical value.

By a *G*-pair (X,A) we mean a *G*-space *X* together with a *G*-invariant subspace *A*. A *G*-map $f: (X,A) \rightarrow (Y,B)$ means a *G*-map $f: X \rightarrow Y$, i.e., f(gx) = gf(x) for $g \in G$ and $x \in X$, such that $f(A) \subseteq B$. Let \mathscr{P} be the category of such *G*-pairs and *G*-maps. Let h^* be a generalized *G*-cohomology theory on \mathscr{P} , i.e., h^* is a contravariant functor into graded moudles and h^* is equipped with long exact sequences, excision and homotopy property. In this paper, moreover we require h^* to be continuous and multiplicative with unit. See section 1 for the definition of the terms.

For $(X,A) \in \mathscr{P}$ the *ideal-valued index* of A in X, denoted $\operatorname{ind}(A,X)$, is defined to be the kernel of the homomorphism $i^* \colon h^*(X) \to h^*(A)$ where $i \colon A \to X$ is the inclusion and $h^*(X) = h^*(X, \emptyset)$. Then $\operatorname{ind}(A,X)$ is an ideal of $h^*(X)$.

We can now state our first theorem, which corresponds to Theorem 2.3 in section 2.

Theorem 0.0. Let M be a C^1 Banach G-manifold with $h^*(M)$ Noetherian, and $f: M \to \mathbb{R}$ a C^1 -function. For given $-\infty < a < b \le \infty$, assume that f satisfies (D_0) at a and (D_1) , (D_2) at every $c \in (a,b]$ $(c \ne \infty)$. If $b = \infty$, assume in addition that f(K) is bounded above. Then there are a finite number of critical values $c_1, \dots, c_k \in (a,b]$ of f such that

 $\operatorname{ind}(M_a, M) \cdot \operatorname{ind}(K_{c_1}, M) \cdots \operatorname{ind}(K_{c_k}, M) \subseteq \operatorname{ind}(M_b, M),$ where \cdot represents the products of ideals [1].

A ring R is said to be *nilpotent* if $R^n = 0$ for some integer n > 0. The least such integer n is called the *index of nilpotency* and written nil(R). If no such integer n exists we put nil(R) = ∞ .

REMARK. See Marzantowicz [15] for the relation between the index of nilpotency of $\tilde{h}^*(X)$ of a G-space X, the cup-length of $\tilde{h}^*(M)$ and the G-category of X.

If $-\infty < a < b \le \infty$, we see $\operatorname{ind}(M_b, M) \subseteq \operatorname{ind}(M_a, M)$ in $h^*(M)$ since $M_a \subseteq M_b$. Define for any integer $s \ge 0$,

$$s-\operatorname{nil}(M_a, M_b) := \operatorname{nil}(\operatorname{ind}^{\geq s}(M_a, M)/\operatorname{ind}^{\geq s}(M_b, M)),$$

where

$$\operatorname{ind}^{\geq s}(A,M) = \operatorname{ind}(A,M) \cap h^{\geq s}(M), \ h^{\geq s}(M) = \bigoplus_{n \geq s} h^n(M).$$

Note that if $s \le t$ then t-nil $(M_a, M_b) \le s$ -nil (M_a, M_b) , and if $b = \infty$ then s-nil $(M_a, M_b) =$ nil $(ind^{\ge s}(M_a, M))$ since $M_b = M$ and $ind(M_b, M) = 0$.

Using a suitable G-cohomology theory h^* , we will derive the following theorem from Theorem 0.0, which summarizes Theorems 3.4, 3.5, 3.6 and 3.9 in section 3.

Theorem 0.1. Let $f: M \rightarrow \mathbf{R}$ be as in Theorem 0.0 except that f(K) is bounded if $b = \infty$.

(1) f has at least 1-nil $(M_a, M_b) - 1$ critical orbits in $M_{(a,b]} = f^{-1}(a,b]$.

(2) If $h^{\geq s}(M) \subseteq \operatorname{ind}(K_c, M)$ for all critical values $c \in (a, b]$, then f has at least s-nil $(M_a, M_b) - 1$ critical values in (a, b].

(3) If s-nil $(M_a, M_b) - 1$ is greater than the number of critical values of f in (a,b], then there is a critical value $c \in (a,b]$ of f such that $h^{\geq s}(K_c) \neq 0$.

(4) If $1-\operatorname{nil}(M_a, M_{\infty}) = \infty$ for some $a \in \mathbb{R}$, then there is an unbounded sequence of critical values of f.

If in the above theorem f is bounded below and $a < \inf f(M)$, then we will obtain a bit better results (see Theorem 3.7).

We will also obtain the following theorem more precisely than in Theorem 0.1 (3).

Theorem 0.2. Assume that f has k critical values c_1, \dots, c_k in (a,b], and that there are $x_0 \in \operatorname{ind}(M_a, M)$ and $x_1, \dots, x_k \in h^*(M)$ such that $x_0x_1 \cdots x_k \notin \operatorname{ind}(M_b, M)$. If each of x_1, \dots, x_k is homogeneous, then

$$h^{d_1}(K_{c_1}) \bigoplus \cdots \bigoplus h^{d_k}(K_{c_k}) \neq 0,$$

where $d_i = \deg x_i$.

This theorem corresponds to Theorem 3.11, and the following corollary corresponds to Corollary 3.13 in section 3.

Corollary 0.3. Assume that f is bounded (above and below) and has k critical values. Then $h^{ml}(K) \neq 0$ for any integers $m, l \geq 0$ with $kl \leq \operatorname{cup}_m(h^*(M))$.

Here $\operatorname{cup}_m(h^*(M))$ is the cup_m -length of $h^*(M)$ defined to be the largest integer t such that $(h_m(M))^t \neq 0$ in $h^*(M)$. Corollary 0.3 roughly says that the smaller the number of critical values is, the higher the dimension of the nonzero cohomology of K is.

1. Ideal-valued cohomological index

Let h^* be a generalized G-cohomology theory on \mathscr{P} . h^* is said to be *multiplicative* if it has products

$$h^{p}(X,A) \times h^{q}(X,B) \rightarrow h^{p+q}(X,A \cup B)$$

for any (X,A), $(X,B) \in \mathcal{P}$ with $\{A,B\}$ excisive and any $p,q \in \mathbb{Z}$, which is natural, bilinear, associative, commutative (up to the sign $(-1)^{pq}$). h^* is said to be *continuous* if for any $(X,A) \in \mathcal{P}$ with A closed,

$$h^*(A) \cong \underline{\lim} h^*(U)$$

where the direct limit is taken over all G-invariant neighborhoods U of A in X, and the isomorphism is induced by the inclusions.

421

EXAMPLE 1.1. Let H^* be the Alexander-Spanier cohomology theory with coefficients in a field F. The following (1) and (2) are both generalized cohomology theories on \mathscr{P} which are continuous and multiplicative with unit in $h^0(X)$.

(1) The Borel G-cohomology based on H^* ,

$$h^*(X,A) := H^*(EG \times_G X, EG \times_G A; F),$$

where EG is a universal G-space.

(2)

$$h^{*}(X,A):=H^{*}(X/G,A/G;F).$$

REMARK 1.2. The equivariant stable cohomotopy theory and the equivariant K-theory are also examples of a generalized G-cohomology theory. The former is employed in Bartsch-Clapp-Puppe [4].

In what follows we assume h^* is a generalized G-cohomology theory on \mathscr{P} which is continuous and multiplicative with unit. For $(X,A) \in \mathscr{P}$ the ideal-valued index $\operatorname{ind}(A,X)$ is defined as in the Introduction. We summarize its properties in the following.

Proposition 1.3. Let (X,A), (X,A_1) , $(X,A_2) \in \mathcal{P}$.

(1) Monotonicity: If there is a G-map $\varphi: A_1 \to A_2$ such that $i_2\varphi$ is G-homotopic to i_1 where $i_1: A_1 \to X$ and $i_2: A_2 \to X$ are the inclusions, then

$$\operatorname{ind}(A_2,X) \subseteq \operatorname{ind}(A_1,X).$$

(2) Subadditivity: If $\{A_1, A_2\}$ is an excisive pair, then

$$\operatorname{ind}(A_1,X) \cdot \operatorname{ind}(A_2,X) \subseteq \operatorname{ind}(A_1 \cup A_2,X).$$

(3) Continuity: If A is closed in X and ind(A,X) is a finitely generated ideal of $h^*(X)$, then there is a G-invariant neighborhood U of A in X such that

$$\operatorname{ind}(A,X) = \operatorname{ind}(U,X).$$

Proof. (1) Easy by the definition of the index.

(2) It suffices to show that if $x_n \in ind(A_n,X), n=1,2$, then $x_1x_2 \in ind(A_1 \cup A_2,X)$. Consider the following commutative diagram.

K. Komiya

where the homomorphisms are all induced from the inclusions. Note that the two sequences $\{j_1^*, k_1^*\}$ and $\{j_2^*, k_2^*\}$ are both exact. By the commutativity of the diagram we see $k_n^* i_3^* x_n = 0$ in $h^*(A_n)$ for n = 1, 2, and by the exactness we see that for n = 1, 2 there are $y_n \in h^*(A_1 \cup A_2, A_n)$ such that $j_n^* y_n = i_3^* x_n$. Hence

$$i_3^*(x_1x_2) = i_3^*x_1 \cdot i_3^*x_2 = j_1^*y_1 \cdot j_2^*y_2 = j_3^*(y_1y_2) = 0.$$

This implies $x_1x_2 \in ind(A_1 \cup A_2, X)$.

(3) Let x_1, \dots, x_k be generators of $\operatorname{ind}(A, X)$. Since $x_n | A = i^* x_n = 0$ in $h^*(A)(n=1,2,\dots,k)$, by the continuity there is a G-invariant neighborhood U_n of A in X such that $x_n | U = 0$ in $h^*(U_n)$. Then $U = U_1 \cap \dots \cap U_n$ is also a G-invariant neighborhood of A, and $x_n | U = 0$, i.e., $x_n \in \operatorname{ind}(U,X)$. Hence $\operatorname{ind}(A,X) \subseteq \operatorname{ind}(U,X)$. On the other hand we see $\operatorname{ind}(A,X) \supseteq \operatorname{ind}(U,X)$ by the monotonicity of index.

REMARK 1.4. In (3) of the above proposition ind(A,X) is finitely generated if $h^*(X)$ is Noetherian. One can find in Fadell [8; §3] some sufficient conditions for $h^*(X)$ to be Noetherian.

2. Indices of critical sets

Lemma 2.1. Let M be a C^1 Banach G-manifold and $f:M \to \mathbb{R}$ a C^1 G-function. For given $-\infty < a < b \le \infty$, assume that f satisfies (D_0) at a and (D_2) at every $c \in (a,b](c \neq \infty)$. If f has no critical value in (a,b], then

$$\operatorname{ind}(M_a, M) = \operatorname{ind}(M_b, M).$$

Proof. By the conditions $(D_0), (D_2)$ we can see that M_b is

G-deformable to M_a . By the monotonicity of index we see $\operatorname{ind}(M_a, M) \subseteq \operatorname{ind}(M_b, M)$. Conversely, by the monotonicity again we see $\operatorname{ind}(M_a, M) \supseteq \operatorname{ind}(M_b, M)$ since $M_a \subseteq M_b$. Thus the lemma is proved.

Lemma 2.2. Let M be a C^1 Banach G-manifold with $h^*(M)$ Noetherian. If a C^1 G-function $f:M \to \mathbb{R}$ satisfies (D_1) and (D_2) at c, then there is an $\varepsilon > 0$ such that

$$\operatorname{ind}(M_{c-\varepsilon}, M) \cdot \operatorname{ind}(K_c, M) \subseteq \operatorname{ind}(M_{c+\varepsilon}, M).$$

In particular, if $M_{c-\epsilon} = \emptyset$ then

$$\operatorname{ind}(K_c, M) = \operatorname{ind}(M_{c+\varepsilon}, M),$$

and if $K_c = \emptyset$ then

$$\operatorname{ind}(M_{c-\varepsilon}, M) = \operatorname{ind}(M_{c+\varepsilon}, M).$$

Proof. By the assumptions, K_c is compact and $h^*(M)$ is Noetherian. So by the continuity of index there is a G-invariant neighborhood U of K_c such that $ind(K_c,M)=ind(U,M)$. There is also a G-invariant neighborhood V of K_c such that $K_c \subseteq V \subseteq \overline{V} \subseteq U$. By the monotonicity we see $ind(K_c,M)=ind(V,M)$. Take an $\varepsilon > 0$ satisfying (D_2) for this V. Then we have

$$ind(M_{c+\epsilon}, M) = ind((M_{c+\epsilon}, -V) \cup U, M)$$

$$\supseteq ind(M_{c+\epsilon} - V, M) \cdot ind(U, M) \text{ by subadditivity}$$

$$= ind(M_{c+\epsilon} - V, M) \cdot ind(K_c, M)$$

$$\supseteq ind(M_{c-\epsilon}, M) \cdot ind(K_c, M) \text{ by } (D_2) \text{ and monotonicity.}$$

Thus the first half of the lemma is proved. If $A = \emptyset$ then $ind(A,M) = h^*(M)$. This fact and the monotonicity implies the second half.

We will obtain the following theorem:

Theorem 2.3. Let M be a C^1 Banach G-manifold with $h^*(M)$ Noetherian. For given $-\infty < a < b \le \infty$, assume that C^1 G-function $f:M \to \mathbb{R}$ satisfies (D_0) at a and $(D_1), (D_2)$ at every $c \in (a,b] (c \ne \infty)$. If $b = \infty$, assume in addition that f(K) is bounded above. Then there are a finite number of critical values $c_1, \dots, c_k \in (a,b]$ of f such that

$$\operatorname{ind}(M_a, M) \cdot \operatorname{ind}(K_{c_1}, M) \cdots \operatorname{ind}(K_{c_k}, M) \subseteq \operatorname{ind}(M_b, M)$$

К. Коміча

Proof. First assume $b < \infty$. Let $\varepsilon(a)$ be such an $\varepsilon > 0$ as in (D_0) at a. For any $c \in (a,b]$ let $\varepsilon(c)$ be such an $\varepsilon > 0$ as in Lemma 2.2, i.e.,

$$\operatorname{ind}(M_{c-\varepsilon(c)}, M) \cdot \operatorname{ind}(K_c, M) \subseteq \operatorname{ind}(M_{c+\varepsilon(c)}, M).$$

Let V_c denote the open interval $(c-\varepsilon(c), c+\varepsilon(c))$ for any $c \in [a,b]$. Then $\{V_c | c \in [a,b]\}$ is an open covering of [a,b]. Since [a,b] is compact, there are a finite number of $d_1, \dots, d_m \in [a,b]$ such that

$$[a,b] \subseteq V_{d_1} \cup \cdots \cup V_{d_m}.$$

By the monotonicity and Lemma 2.2 we have

$$\operatorname{ind}(M_b, M) \supseteq \operatorname{ind}(M_{b+\varepsilon(b)}, M)$$
$$\supseteq \operatorname{ind}(K_b, M) \cdot \operatorname{ind}(M_{b-\varepsilon(b)}, M).$$

 $b-\varepsilon(b)$ is contained in V_d for some $d \in \{d_1, \dots, d_m\}$. Since $b-\varepsilon(b) < d+\varepsilon(d)$ we have

$$\inf(M_{b-\varepsilon(b)}, M) \supseteq \inf(M_{d+\varepsilon(d)}, M)$$

$$\supseteq \inf(K_d, M) \cdot \inf(M_{d-\varepsilon(d)}, M)$$
 by Lemma 2.2.

By the above we have

$$\operatorname{ind}(M_b, M) \supseteq \operatorname{ind}(K_b, M) \cdot \operatorname{ind}(K_d, M) \cdot \operatorname{ind}(M_{d-\varepsilon(d)}, M)$$

Repeating this we have

(2.4)
$$\operatorname{ind}(M_b, M) \supseteq \operatorname{ind}(K_{c_1}, M) \cdots \operatorname{ind}(K_{c_k}, M) \cdot \operatorname{ind}(M_a, M)$$

for some $c_1, \dots, c_k \in (a, b]$. If c is not a critical value then $K_c = \emptyset$ and $ind(K_c, M) = h^*(M) \ge 1$. So we may ssume that c_1, \dots, c_k in (2.4) are all critical values. Thus the theorem is proved for the case $b < \infty$.

Now assume $b = \infty$. Take an r > 0 such that $\sup f(K) < r < \infty$. By the above we see that there are a finite number of critical values $c_1, \dots, c_k \in (a, r]$ such that

$$\operatorname{ind}(M_a, M) \cdot \operatorname{ind}(K_{c_1}, M) \cdots \operatorname{ind}(K_{c_k}, M) \subseteq \operatorname{ind}(M_r, M).$$

Since there is no critical value in $[r,\infty)$ we can see by (D_2) that $M_b = M$ is G-deformable to M_r . Thus $ind(M_r,M) = ind(M_b,M)$ (=0). Thus the theorem is also proved for the case $b = \infty$.

If f is bounded below and $a < \inf f(M)$, then $M_a = \emptyset$ and $\inf(M_a, M) = h^*(M) \ge 1$. Thus we obtain the following corollary from Theorem 2.3.

Corollary 2.4. If f is bounded below and $a < \inf f(M)$ in Theorem 2.3, then there are a finite number of critical values $c_1, \dots, c_k \le b$ of f such that

 $\operatorname{ind}(K_{c_1}, M) \cdots \operatorname{ind}(K_{c_k}, M) \subseteq \operatorname{ind}(M_h, M).$

In particular, if $b = \infty$ then

$$\operatorname{ind}(K_{c_1}, M) \cdots \operatorname{ind}(K_{c_k}, M) = 0.$$

3. The number of critical orbits and values

In this section we will derive some results from Theorem 2.3. Before doing that we need a lemma.

Lemma 3.1. Let $\mathfrak{U} \supseteq \mathfrak{B}$ be two ideals of a ring R. If $\mathfrak{U} \cdot \mathbb{R}^k \subseteq \mathfrak{B}$ for some $k \ge 0$, then $\operatorname{nil}(\mathfrak{U}/\mathfrak{B}) \le k+1$.

Proof. Assume to the contrary that $k+1 < \operatorname{nil}(\mathfrak{U}/\mathfrak{B})$. Then there were k+1 elements $x_0, x_1, \dots, x_k \in \mathfrak{U}$ such that $[x_0] \cdot [x_1] \cdots [x_k] \neq 0$ in $\mathfrak{U}/\mathfrak{B}$, i.e., $x_0 x_1 \cdots x_k \notin \mathfrak{B}$. This contradicts the assumption $\mathfrak{U} \cdot \mathbb{R}^k \subseteq \mathfrak{B}$.

For a function $f: M \to \mathbb{R}$ and a subset $S \subseteq \mathbb{R}$ define $M_s:=f^{-1}(S)$ and $K_s:=K \cap M_s$. In the theorems below we will assume (3.2) and (3.3).

ASSUMPTION 3.2. A generalized G-cohomology theory h^* is continuous and multiplicative with unit and satisfies $h^{\geq 1}(G/H) = 0$ for all closed subgroups H of G.

The G-cohomology theory of Example 1.1 (2) satisfies Assumption 3.2. Note that if K is a disjoint union of a finite number of orbits $G/H_1, \dots, G/H_m$ in M then

$$\operatorname{ind}(K,M) = \bigcap_{i=1}^{m} \operatorname{ind}(G/H_i,M) \supset h^{\geq 1}(M)$$

under Assumption 3.2.

Assumption 3.3. *M* is a C^1 Banach *G*-manifold with $h^*(M)$ Noetherian. For given $-\infty < a < b \le \infty$, a C^1 *G*-function *f*: $M \to \mathbb{R}$ satisfies (D_0) at *a* and (D_1) , (D_2) at every $c \in (a,b]$ $(c \ne \infty)$.

Theorem 3.4. f has at least $1-\operatorname{nil}(M_a, M_b) - 1$ critical orbits in $M_{(a,b)}$. In particular, if $1-\operatorname{nil}(M_a, M_b) = \infty$ then f has infinitely many critical

K. Komiya

orbits in $M_{(a,b]}$.

Proof. It suffices to consider only the case where the number of critical values in (a,b] is finite. Let $c_1, \dots, c_k \in (a,b]$ be such critical values. It also suffices to consider the case where K_{c_i} is a finite union of orbits for all $1 \le i \le k$. In this case we see $h^{\ge 1}(M) \subseteq \operatorname{ind}(K_{c_i}, M)$. Thus by Theorem 2.3 we have

$$\operatorname{ind}(M_a, M) \cdot (h^{\geq 1}(M))^k \subseteq \operatorname{ind}(M_b, M).$$

By Lemma 3.1 we see $1-\operatorname{nil}(M_a, M_b) \le k+1$. This implies that the number of critical orbits in $M_{(a,b]}$ is at least $1-\operatorname{nil}(M_a, M_b) - 1$.

A similar proof to above also shows the following.

Theorem 3.5. If $h^{\geq s}(M) \subseteq \operatorname{ind}(K_c, M)$ for all critical values $c \in (a, b]$ and for some integer $s \geq 0$, then f has at least s-nil $(M_a, M_b) - 1$ critical values in (a, b].

The contrapsotion of this theorem is:

Theorem 3.6. If s-nil (M_a, M_b) -1 is greater than the number of critical values of f in (a,b], then there is a critical value $c \in (a,b]$ of f such that

$$h^{\geq s}(M) \not\subseteq \operatorname{ind}(K_c, M)$$

and hence $h^{\geq s}(K_c) \neq 0$.

If f is bounded below and $a < \inf f(M)$, then we may use Corollary 2.4 instead of Theorem 2.3 in the proofs of Theorems 3.4, 3.5, 3.6, and obtain

Theorem 3.7. Assume that f is bounded below and $a < \inf f(M)$. Then

(1) f has at least 1-nil(\emptyset, M_b) critical orbits in M_b ,

(2) if $h^{\geq s}(M) \subseteq \operatorname{ind}(K_c, M)$ for all critical values $c \leq b$ of f, then f has at least s-nil (\emptyset, M_b) critical values in $(-\infty, b]$,

(3) if s-nil(\emptyset, M_b) is greater than the number of critical values of f in $(-\infty, b]$, then there is a critical value $c \le b$ of f such that $h^{\ge s}(K_c) \ne 0$.

Note that $s-\operatorname{nil}(\emptyset, M_b) = \operatorname{nil}(h^{\geq s}(M)/\operatorname{ind}^{\geq s}(M_b, M)).$

Lemma 3.8. If A is a G-invariant compact subspace of a G-space X with $h^*(X)$ Noetherian, then

$$(h^{\geq 1}(X))^k \subseteq \operatorname{ind}(A,X)$$

for some integer k > 0.

Proof. Since A is compact, there are a finite number of orbits in A, say G/H_i $(1 \le i \le k)$, and G-invariant open neighborhoods U_i of G/H_i such that A is covered by $U_i(1 \le i \le k)$ and $\operatorname{ind}(G/H_i, X) = \operatorname{ind}(U_i, X)$. This fact shows

$$\operatorname{ind}(G/H_1, X) \cdots \operatorname{ind}(G/H_k, X) \subseteq \operatorname{ind}(A, X)$$

by the monotonicity and subadditivity of index. Then Assumption 3.2 implies the lemma. \Box

Theorem 3.9. If $1-\operatorname{nil}(M_a, M_b) = \infty$ and $b = \infty$, then f(K) is not bounded, i.e., there is an unbounded sequence of critical values of f.

Proof. If f(K) were bounded, then by Theorem 2.3 there were a finite number of critical values $c_1, \dots, c_k > a$ such that

(3.10)
$$\operatorname{ind}(M_a, M) \cdot \operatorname{ind}(K_{c_1}, M) \cdots \operatorname{ind}(K_{c_k}, M) = 0.$$

Since nil(ind^{≥ 1}(M_a ,M))=1-nil(M_a ,M)= ∞ , for every n>0 there are $x_1, \dots, x_n \in \text{ ind}^{\geq 1}(M_a, M)$ with $x_1 \dots x \neq 0$. Since $K_{c_i}(1 \leq i \leq k)$ is compact, Lemma 3.8 shows that for a sufficiently large n there is an m < n such that

$$x_1 \cdots x_m \in \operatorname{ind}(K_{c_1}, M) \cdots \operatorname{ind}(K_{c_k}, M).$$

Then (3.10) implies $x_1 \cdots x_m \cdots x_n = 0$. This is a conradiction. So f(K) is not bounded.

Theorem 3.11. Assume that f has k critical values c_1, \dots, c_k in (a,b], and that there are $x_0 \in \operatorname{ind}(M_a, M)$ and $x_1, \dots, x_k \in h^*(M)$ such that $x_0x_1 \cdots x_k \notin \operatorname{ind}(M_b, M)$. If each of x_1, \dots, x_k is homogeneous, then

$$(3.12) h^{d_1}(K_{c_1}) \bigoplus \cdots \bigoplus h^{d_k}(K_{c_k}) \neq 0,$$

where $d_i = \deg x_i$.

Proof. If the left hand side of (3.12) were zero, then $x_i \in ind(K_{c_i}, M)$ for all $1 \le i \le k$. This implies

$$x_0x_1\cdots x_k \in \operatorname{ind}(M_a, M) \cdot \operatorname{ind}(K_{c_1}, M) \cdots \operatorname{ind}(K_{c_k}, M),$$

К. Коміча

and by Theorem 2.3 we see $x_0x_1\cdots x_k \in ind(M_b, M)$. This conradicts the assumption of the theorem.

Corollary 3.13. Assume that f is bounded (above and below) and has k critical values. Then $h^{ml}(K) \neq 0$ for any integers $m, l \geq 0$ with $kl \leq \sup_{m} (h^*(M))$.

Proof. If $\operatorname{cup}_m(h^*(M)) < k$, then the corollary is trivial since l=0 can only be taken. So assume $k \le \operatorname{cup}_m(h^*(M)) = t$. Then there are $y_i \in h^m(M)$ for $i=1, \dots, t$ such that $y_1 \dots y_t \ne 0$. If we take a and b such that $-\infty < a < \inf f(M) \le \sup f(M) < b < \infty$, then $\operatorname{ind}(M_a, M) = h^*(M)$ and $\operatorname{ind}(M_b, M) = 0$. Thus we can take x_0, x_1, \dots, x_k in Theorem 3.11 so as

$$x_0 = 1, x_i = y_{(i-1)l+1} \cdot y_{(i-1)l+2} \cdots y_{il} \ (1 \le i \le k).$$

Since deg $x_i = ml$ for all *i* with $1 \le i \le k$, Theorem 3.11 shows $h^{ml}(K) \ne 0$.

Finally, we give an application of Corollary 3.13. Let K be the reals R, the complexes C, or the quaternions H, and according to that G be the group \mathbb{Z}_2 , S^1 or S^3 of $g \in K$ with |g|=1. Then G acts on K^n by coordinate-wise multiplication, and the unit sphere $S(K^n)$ of K^n is a G-invariant submanifold with the orbit space $S(K^n)/G = KP^{n-1}$, the projective space. Let $h^*(X) = H^*(X/G;F)$ where H^* is the Alexander-Spanier cohomology and $F = \mathbb{Z}_2$, Q or Q according to K = R, C or H. Then

$$h^*(S(\mathbf{K}^n)) \cong \mathbf{F}[x]/(x^n), \ d = \deg x = 1,2 \ \text{or} \ 4,$$

and we see $\operatorname{cup}_d(h^*(S(k))) = n-1$. Thus Corollary 3.13 shows that if a C^1 *G*-function $f: S(\mathbf{K}^n) \to \mathbf{R}$ has k critical values, then $h^{dl}(K) \neq 0$ for any integer l with $0 \le kl \le n-1$. This says a lot more about the cohomology of K than in Clapp-Puppe [5; §2].

For many spaces other than $S(\mathbf{K}^n)$ we already know the cup₁-length or a lower bound of that. See for example Fadell-Husseini[10; Theorem 3.16], Hiller [11], Jaworowski [12; §5] and Komiya [13; Remark 5.10]. So we can apply Corollary 3.13 to functions on such spaces.

References

[1] M.F. Atiyah and I.G. MacDonald: Introduction to Commutative Algebra (Addison-Wesley Publ. Company, Reading, MA, 1969).

- [2] T. Bartsch: Critical orbits of invariant functionals and symmetry breaking, Manuscripta Math. 66 (1989), 129–152.
- [3] T. Bartsch and M. Clapp: Bifurcation theory for symmetric potential operators and the equivariant cup-length, Math. Z. 204 (1990), 341-356.
- [4] T. Bartsch, M. Clapp and D. Puppe: A mountain pass theorem for actions of compact Lie groups. J. reine angew. Math. 419 (1991), 55-66.
- [5] M. Clapp and D. Puppe: Invariants of the Lusternik-Schnirelmann type and the topology of critical sets, Trans. Amer. Math. Soc. 298 (1986), 603-620.
- [6] M. Clapp and D. Puppe: Critical point theory with symmetries, J. reine angew. Math. 418 (1991), 1-29.
- [7] E. Fadell: The equivariant Ljusternik-Schnirelmann method for invariant functionals and relative cohomological index theories, in: A. Granas, ed., Méthodes toploogiques en analyse non linéaire (Sém. Math. Sup. 95 (1985), Presses Univ. Montreal), 41-70.
- [8] E. Fadell: Ideal-valued generalizations of Ljusternik-Schnirelmann category, with applications, in: E.R. Fadell et al., ed., Topics in equivariant topology (Sém. Math. Sup. 108 (1989), Presses Univ. Montreal), 11-54.
- [9] E. Fadell and S. Husseini: *Relative cohomological index theories*, Adv. in Math. 64 (1987), 1–31.
- [10] E. Fadell and S. Husseini: An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynamical Systems 8* (1988), 73-85.
- [11] H.L. Hiller: On the cohomology of real Grasssmanians, Trans. Amer. Math. Soc. 257 (1980), 521-533.
- [12] J. Jaworowski: A Borsuk-Ulam theorem for O(m), in: E.R. Fadell et al., ed., Topics in equivariant topology (Sém. Math. Sup. 108 (1989), Presses Univ. Montreal), 105-118.
- [13] K. Komiya: Borsuk-Ulam theorem and Stiefel manifolds, J. Math. Soc. Japan 45 (1993), 611–626.
- [14] W. Krawcewicz and W. Marzantowicz: Lusternik-Schnirelman method for functionals invariant with respect to a finite group action, J. Differential Equations 85 (1990), 105-124.
- [15] W. Marzantowicz: A G-Lusternik-Schnirelman category of space with an action of a compact Lie group, Topology 28 (1989), 403–412.
- [16] R.S. Palais: Lusternik-Schnirelman category on Banach manifolds, Topology 5 (1966), 115–132.
- [17] R.S. Palais: Critical point theory and the minimax principle, in: S.-S. Chern and S. Smale, ed., Global Analysis (Proc. Symp. Pure Math. XV (1970), Amer. Math. Soc.), 185-212.

Department of Mathematics Yamaguchi University Yamaguchi 753 Japan