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0. Introduction. In this paper we study the Cauchy problem for
Schrodinger type equations with variable coefficients

Lu(t, x)E% D, x)—% 33 0.,(8"() 0,1+
(0.1) .
_z_‘,l b (x) 8; ut-c(x) u = f(t,x) (x€R"),
u(0, x) = uo(xj)—,
where g*(x), b(x) and c(x) are in B=(R"). We suppose that
0.2) g*x)(j,k=1,2,+,n) are real valued and satisfy g*(x) = g"(x)

and that the uniform ellipticity

(03) 57 pI< | 33 &%) by 4l <3l "

with a positive constant §. First of all, remark that it is impossible to consider
the well posedness of (0.1) in C*(R") space, because (0.1) has an infinite prop-
agation speed (see [10]). Therefore, in the present paper we shall consider the
well posedness of (0.1) in the sense of L. We denote the set of all L? valued
continuous functions in ¢€[0, T'] by &%([0, T]; L?). We adopt the following
definition.

DerInITION 0.1. We say that the Cauchy problem (0.1) is L* well posed on
[0, To] (T4>0) (resp. [Ty, 0] (T,<<0)), if the following is valid for each T'€(0, 7]
(resp. [Ty, 0)). For any uy(x) € L? and any f(¢, x) €EY([0, T']; L?) (resp. EX[T, 0];
L?) there exists one and only one solution u(2, x) of (0.1) in &2([0, T]; L?) (resp.
EN([T, 0]; LY).

* The author was partially supported by Grant-in-Aid for Scientific Research, Ministry of Ed-
ucation.
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In order to make clear the character of the Cauchy problem (0.1) we compare
the following three types of the equations on R}:

(0.4), 0y u(t, ¥) 3 & 0% u-+ib(x) 0, u-ic() u = £(t, %)

(€=1,0,7),

that is, parabolic equations (§=1), kowalewskian type equations (§=0) and
Schrodinger type equations (§=7), where b(x)E3B~(R") and ¢(x)€B~(R"). For
the parabolic equations (€=1) it is well known that for any b(x) and ¢(x) the
Cauchy problem is L* well posed for positive direction in ¢, but never L* well
posed for negative direction. As to kowalewskian type equations (€=0) it is well
posed for positive and also negative directions in ¢, if and only if Re b(x) is
identically zero. For Schrodinger type equations (6=7) the characterization of

P
the L? well posedness for positive (or negative) direction in £ is that | S Re b(6)d0 |
0

remains bounded for all pR! ([11], [15], [16]). Thus, we would like to remark
that, in contrast to the parabolic and kowalewskian types, the characterization of
the well posedness of the Cauchy problem for Schrodinger type equations can
not be given in a local property, but in a global property of the coefficients.

The results on the above special Schrodinger type equations can be ex-
tended to the equations whose g#*(x) are all constants ([4], [5], [11], [16], [17]).
In the present paper we study the general equations with variable coefficients
g™*(x). In order to state our theorem we introduce the classical orbit of (0.1).
Set

(05) His,p) =5 316" 2: 4

and let (X (¢, x, p), P(t, x, p)) be the solutions of

d oH d
2 x;=22 (x,P), %P, = —
(0.6) {dt ’ ap,.( U

(X, P)|4=o = (x, p).

H(x, p) and (X(¢, , p), P(t, x, p)) are called the Hamiltonian function of (0.1)
and the classical orbit of (0.1) respectively. Our theorem is as follows:

OH (x Py (jh=1,2,,n).
3x,,

Theorem. It is necessary for (0.1) to be L* well posed on [0, Ty) or [T,, 0]
for a Ty=£0 that the inequality

©0.7) sup |3 S: Re b(X (8, x, p)) P8, %, ) d| < oo

(s, )R, peR  j=1

holds.
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RemARK 0.1.  If all g¥(x) are constant, Theorem accords with results which
had been obtained before.

Now, the inequality (0.7) has a geometrical interpretation as follows. We
shall introduce in R} a Riemannian metric g, Y, Z>= ﬁ_ gix) Y Z(Y=3
Y' 9., Z= 3 2 8,,€T,R"), where (g;(x); i3 1,2, -, n) i'sdt_llle inverse matrix <;f
(g(x); 4 1, é, -+, n). We denote this Riemannian manifold by M. Let  be a
one form on M defined by

(0.8) o(Y) =g<Y, 3 Re bi(x) 0.,> (YET, M),
that is,
(0.8)’ o = 33 Re b/(x) g (x) d; .

If we use the above notations, Theorem may be rewritten as follows:

Theorem’. It is necessary for (0.1) to be L* well posed on [0, Ty] or [Ty, 0]
for a Ty==0 that the inequality

0.7y’ sup |l <eo
YET Y

holds, where T is the family of all geodesics on M.

RemMark 0.2. In [6] we shall study the Cauchy problem for Schrédinger
type equations on a Riemannian manifold without boundary.

Remark 0.3. In section 4 we shall consider the Cauchy problem (0.1)
whose g/*(x) do not satisfy the uniform ellipticity (0.3) (Theorem 4.3).

Now, we explain the ideas of the proof of Theorem. We shall prove it
by contradiction. We make a change of a variable from ¢ to 7=t with a large
parameter A>1. Then, using (0.5), (0.1) is written in the form
A% Ly(u(7/n, x))
=N[(EN) 10, H (%, (EN) 71 0,)+(EN) T LP(x, (EN) 71 8,)]

u(t/n, %) = f(7/n, %),
(1IN, )| 1m0 = () .
If the Cauchy problem (0.1) is L? well posed on [0, 7], the Cauchy problem for
the equation

(0.9) L, v\(, x) = fi(7, %)

(0.1)’
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is also L? well posed on [0, AT;]. So, we obtain a priori estimate of the Cauchy
problem for (0.9). Next, if we assume that (0.7) is not valid, we can take a
2,>0 and a point (x°, p°) ER*" such that

(0.10) b3 S; Re H(X (8, °, 1)) P,(6, , °) d6>1log % C(Ty.

Here, C(Ty)>=1 is a constant determined from the L? well posedness of (0.1)
on [0, 7;] (see Lemma 3.1). Then, we can construct asymptotic solutions v,(7, %)
of (0.9) on the interval [0, %] having L*-estimates which contradict the a priori
estimate of the Cauchy problem for (0.9) derived from the L* well posedness
on [0, £,].

We note that the above #, may be very large. So, we must construct on
the global interval [0, #,] asymptotic solutions of (0.9). We would like to remark
that such a construction is in contrast with the one for the study of hyperbolic
equations (c.f. [9]). Asitwill be shown in the appendix, the fact we would
like to emphasize is that if at least one of g**(x) (j, k=1, 2, :-+, n) is not constant,
in almost cases the Hamilton-Jacobi equation

X

oo\
a,<1>+H<x, 6—) =0

has no smooth solution on the global interval [0, #,]. It seems to us that this
fact has obstructed the progress of the study for (0.1) with variable coefficients
&'*(x). Of course, if all g/*(x) are constant, we can construct asymptotic solutions
of (0.9) on [0, ¢,] via the form e®™% {afoy(x)+(ZN) " Yr(x)+++} by using the
solution @ (7, x) of the Hamilton-Jacobi equation.

To avoid the above obstruction, we shall use the Maslov method originally
due to [8]. For the proof of our theorem it is necessary to estimate asymptotic
solutions v,(7, x) of (0.9) by the L*-norm on R} for each &[0, ¢;] and also to
estimate on [0, 7] the remainder terms by the L*-norm on R;. In [8] the re-
mainder terms are estimated only on the compact sets in R7%!. Hence, in the
present paper the modifications of [8] are necessary mainly in the following two
aspects. First, we shall consider not a Lagrangian manifold in R?%*%), (E denotes
the dual variable of 7), but a family of Lagrangian manifolds in R2% with a
parameter €0, t,]. Secondly, we shall estimate the remainder terms not on the
compact set in R?%!, but on [0, #,] X R} by the L*-norm.

The plan of the present paper is as follows. Theorem and Theorem’ will
be proved in section 3. The main results on the Maslov method will be stated
in section 3 (Proposition 3.4) and will be proved in section 4. Sections 1 and
2 are devoted to the preliminaries for sections 3 and 4.

The author wishes to express his sincere gratitude for their advices and
encouragements to Professor M. Ikawa, Professor S. Mizohata, Professor K.
Shinkai and Professor D. Fujiwara.
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1. Pseudo-differential operators with a large parameter M. Let
(%, *++, %,) and p=(p,, ***, p,) denote the points of R" and let a=(a,, :**, &,) be
a multi-index whose components ; are non-negative integers. Then, we use
the usual notations:

|| = @b ta,, **=axfex®, al=al-a,,

a. ) a ;7 @ a
0 =005, Di=DipDiy, 0= -
J
1 9
p,=12
1 ax,-

Let K={k,, -+, b} (1<k,<k,<---<k;<m) be a subset of the set {1, 2, ---,
n}. We permit that K is empty. For the sake of simplicity we denote the
complementary set of K by K’ in the present paper. Then, as in [8] we denote

I3
IK|=1, x¢= (xklr *ty xk;) y XgePpr = ng Xy Prj»

:
xgedpg = Z—': Xp; dplq ’ <xx> = (1+ lxxlz)m .

Also, let K, be another subset of {1, 2, ---, #} and let @(x) and f;(x) (j=1, 2, --+,
m) be C* functions on R*. Then, we denote for f(x)=(fi(x), ***, fm(X))

a¢ :( 6¢ ves 6q> > af :< a.fl . 1\L1)2) '“’m)
axK 8x,,1 ’ ’ ax,,l ’ axK axlj ’ j—)l’ 2’ -..’l ’
Fp 0 (8<p> e _ 0 (atp)

OxgOxy  Oxg, \Oxg/ Oxk  Oxx \Oxg

If |K|=m, D(f) denotes the Jacobian determinant.
K
Let #=%(R") be the Schwartz space of rapidly decreasing functions on R”.

Following [8], we define the A-Fourier transformation (Fy , .. %) (¥x’, Px) Over
a part of variables for u(x)E¥ by

(1.1) (N 2m) v S e”xtx u(x) dxg

and then, the inverse A-Fourier transformation (F} 5, v) (%x, px’) for v(p)EY
is defined by

(12 (Ov/2) 12 oot o) dpic

If A=1, Fy s p>p a0d F1},:, denote the usual partial Fourier and the inverse
Fourier transformations respectively.
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ReMARK 1.1. We remark that the definitions (1.1) and (1.2) of the A-
Fourier and the inverse A-Fourier transformations in the present paper are
slightly different from those in [8]. If we multiply (1.1) and (1.2) by constants
e i1KI*4 and ¢'1X1*/4 respectively, we obtain corresponding transformations in
[8]. But, we shall use the same symbols as those in [8].

The following lemma is easily shown from the Plancherel theorem for the
usual Fourier transformation.

Lemma 1.1. Let K be a subset of {1, 2, ---,n}. Then, we get
SS (Fazrtx %) (Xxrs Px) (Fazgspi o) (X575 Px) dgr dPxc

= () @) av
for u(x)€¥ (j=1, 2).

We introduce for a real m the symbol class T"(R;) of pseudo-differential
operators from [8].

DerFiNITION 1.1. T™(RZ) denotes the class of all C* functions A(x, p) on

T*R;=R?Z", satisfying
[REE(x, p)| < Cy,p(<x> <pD)"

for all multi-indices & and B with constants C, g, where k{g)(x, p)=03 D% h(x, p).

We define semi-norms | 4| (I=0, 1, 2, ---) of h(x, p)= T"(R}) by

sup (> <P 5 1H p)]-
The An-pseudo-differential operator A(x, A~! D,) with a symbol A(x, p)= T"(R}) is
defined by
(1.3) h(x, A71 D,) u(x)
= [[ert b, py sty aw ap

for u(x) ¥, where dp=(2z) " dp. Next, as in section 2 of chapter 2 in [7], we
shall introduce the class of double symbols.

DerFINITION 1.2. We denote by 7™™(R?) the class of all C* functions
h(x, p, x', p') on T*R%",=R;", ./ » satisfying
| BG83, 9, %', )] < Cuar 0> <PD)" (<> <pD)™

(@,a)

for all multi-indices &, @', @ and @’ with constant C, g, ¢, where k(g 5(x,p,x’, p")
=95 03 D8 D¥h(x, p, x', p').
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We define semi-norms || (I=0, 1,2, --+) of k(x, p, x', p') & T™™(R?)
by

|le+a’+B+p/ 1<)

Sup (<) (D<) ™ | B IHER (b, % 1)

The A-pseudo-differential operator A(x, A~'D,, x’, A"'D,/) with a double symbol
h(x, p, x', p')E T™™ (R?) is defined by

(14)  A(x,A7D,, &', A7ID,) u(x)
= [[[[ emrrmre==2s ha, a1,y A1 p )" i ' ap

for u(x)E¥.

Let h(x, p)T"(R:) and K be a subset of {1,2, -, n}. For the sake of
simplicity we shall write h(x, p) as h(xgs, xg, pg/, px). Then, a A-pseudo-
differential operator A(xgs, —A"! D, Al D, ., pk), which acts on the functions
on R;_,, , with a double symbol can be defined. We can easily see that its
double symbol A(xys, —xg, px/s Pk) E C™(R:p..r)=C=(T*RI}/ s 20.7) belongs
to the class T™™(R} ., ,.)-

The following lemmas 1.2-1.5 can be proevd by the same arguments as

those in chapter 2 of [7].

Lemma 1.2. Let h(x, p)€ T"(R}) and K be a subset of {1,2, ---,n}. Then,
it follows for u(x)EY that

h(x, A71D,) u(x)
= g)\_.;x-)xx {h(xK,—K_IDPK’ A‘_]'D‘*?KI’ P;() gh,“x,-)ﬁx u} (x) *

Lemma 1.3. Let h(x, p, &', p’)€ T™"'(R2) and N be a non-negative integer.
Then, we have for u(x)ES

h(x, \"' D, x', AN7'D ) u(x)
= E ——1— 7\._|ml hé::g;(x) X_IDZ) x’ X_IDZ) u(x)
1<y ol

AN rya(x, A7'D,) u(x)

where h{5:3)(x, A\7'D,, x, A7'D,) denotes the A-pseudo-differential operator with
symbol hig:3)(x, p, x, p)ET™" (R2) and 7y (%, p) belongs to T™*™(R%). Setting
s=[(n+ |m|+|m’'|)/2-+1], we get the estimates for =0, 1, 2, ---

| rN.Al (Im+M/)SCN,I |k (z'("z»'/'f-’z)su)
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with constants Cy,, independent of h(x, p, x', p’) and N\=>1. For a real m [m] de-

notes the largest integer not greater than m.

Lemma 1.4. Let h(x, p) T™(R}) and set s=[(n+ |m|)|2+1). Then, if we
denote the L*-norm of u(x)EY by |lu(+)||, it follows for u(x)EY that

e, AD) (IS C LIS 3 IK-5" D2 ()l

where C is a constant independent of h(x, p), u(x) and A>1.

Lemma 1.5. Assume that h(x, p) belongs to T™(R%) and that S(x)EB>(R")
is a real valued function. Let p(x)EY. Then, e @ h(x, A7'D,) (e*® @(x)) has
the asymptotic expression

(15) S0 D, D) pla)+M) ™ Rupl(v)

for N=1, 2, -, where the remainder term Ryp(x) satisfies

(1.6) | Ry(x)| < Cry, wrlxd™’

for N'=0, 1, -+ with constant Cy, ys independent of x and A>1. Di(x,D,) (0<
Jj<N—1) are linear differential operators of order at most j with C* coefficients and
are defined independently of @(x) and \>1.  In particular, Dy(x, D,) and Dy(x, D,)
have the forms

D, Do) ple) = b, 2 () (o),

(7 D D 93) = £} 370 329
+é— {Tr %}: (%, %‘}(x)) %’_xf(x)} o),

where Tt A for a square mmatrix A denotes the trace of A.

2. The family of Lagrangian manifolds. An immersed submanifold
A in T*R;=RY", is called a Lagrangian manifold, if the two form >3 ap; \dx;
i=1

is identically zero on A (see Definition 4.1 in [8]). We shall state the funda-
mental lemma in the Maslov theory without proof. See Proposition 4.6 in
[8] for the proof.

Lemma 2.1. Assume that A is an n-dimensional Lagrangian manifold.
Then, for any point (x°, p°)EA there exist an open neighborhood © of («°, p°) on
A and a subset K of {1, 2, +--, n} such that (xgs, px) is a local coordinate system on
O. K'is the complementary set of K.
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Since we assume that the uniform ellipticity (0.3) holds, we can easily see
that for each (x, p) € T*R; there exist the solutions (X (7, #, p), P(7, x, p)) of (0.6)
for all T€R. So, for each 7&R we can define a mapping 4" from R%", to R%", by

(31) hf(x’ p)= (X(Tr X, P)’ P(Ta X, P)) .

It is easy to see that a family of mappings {/},cr forms a one-parameter group
of diffeomorphism from RZ", onto RZ",. Let Aj be an n-dimensional immersed
submanifold in 7*R%. 'Then, we set for each r€R

(2.2) A= {r' = K (x, p); (%, p)E A}
and set
(2.3) A" (T) = {r = (7, (%, 0)); 0<7<T, (x, p)EAT} .

Then, we know well

Lemma 2.2. If A} is a C™ n-dimensional Lagrangian manifold, A} defined
by (2.2) is also a C* n-dimensional Lagrangian manifold for each rR.

Let A§ be a C* n-dimensional Lagrangian manifold and define the family
of Lagrangian manitolds A**Y(T) by (2.3) for any 7'>0. Then, we get the
following lemma needed in section 3. We remark that only Lemma 2.2 is
necessary in [8].

Lemma 2.3. Let A§ be a C= n-dimensional Lagrangian manifold. Then,
the two form i dp; \dx;—dH N\ dr is identically zero on A"*(T).

Proof. Let £=(a% p°)€ A and O, be an open neighborhood of & on A}
with local coordinates y=(y,, -*+, y,). We write

O = {(*"(y), P°(9)); yE U}

by using C*= functions x°(y)=(¥1(y), -, ¥a(y)) and p%(y)=(pi(¥), ***, pa(¥)) on
U. If we set for each r€R

O, = {I" & E€04},

y are also local coordinates on ©,. Now, since A? is a Lagrangian manifold from
Lemma 2.2, we get for any point £€=(x(y), p°(y)) €0, and any rER

(E dpj/\dxj——dH/\dr)(,,hrE)(a“’ a-’l)
=& f.ipi/\dxi)(-r,ﬂé)(ay,,, 9y,)
0 (RI=1,2, 7).

So, we have only to prove for the completeness of the proof that



862 W. ICHINOSE

(g dpiANdx;—dH \d7)(; 574 (0r, 0y,) =0 (k= 1,2, ---, m)
are valid for any £=(x%y), p°(y)) €O, and any r€R. For the sake of simplicity,
we write (X (7, °(), p°(%)), P(7, (), p°(»))) as (X(7,y), P(,)). Then, it fol-
lows from (0.6) that
(2 dp i N\dx;—dH N\dt) ., s7¢(0,, 0,)
d
=2 im ) (o X)) (- Xirs ) (- Pim )
+—}—}— H(X(7,y), P(7, )
0 0H 0
= — — (X, P X X, P P
{8 x+ o n ) p)
+— H(X(t,y), P(r,
™ ( (7, 9) (T )
=0,
which completes the proof. Q.E.D.
Let Sy(x) be a real valued C* function on R" and set

2.4) At = {<x, %%(x)); xER"}.

Then, we know well that Aj is an n-dimensional Lagrangian manifold. Let
E' be the diffeomorphic mapping from R} onto Aj defined by

(2.5) E':Riox— (x 66_53(@) EA;.
X

Then, if we use the natation (E'"")*Sy(&)=Sy(E'1(&)) (EEAS]), we get

Lemma 2.4. It follows that

(2.6) > pdx; = d(E'TY*S, on Aj.

Proof. We have at each point §= ( x, ™ —— Sy(x)) on A§
x

= (""1)*S Q.E.D.
Let A% be an n-dimensional Lagrangian manifold defined by (2.4). We de-
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fine A7 and A"*(T') by (2.2) and (2.3) for this Aj, respectively. Then, since we
can determine the diffeomorphic mapping A" oE’ from R} onto A}, we can intro-
duce a volume form dV? on A} by

2.7) AV = (K oE') Y*dx, A+ Adx, ,

where dx; A+ Adx, is an n-form on R} and ((A"oE')"")*dx, A --- Adx, denotes
the pull back by the mapping (A"eE’)™* of the n-form dx, A --- Adx,. Let Q be
a sufficiently small open set on A™*(T). Then, there exists a subset K of
{1, 2, -+, n} from Lemma 2.1 so that (7, Ix)=(r, x¢, px) become local coordinates
on Q. So, there exists a C™ positive function J(r)= Jx(r; Q) on Q which
satisfies

(2.8) AV = Jo(r)'dxg Ndpg o — Ju(r) 'dxg Adpy

at r' € A7 such that r=(7, r')EQ. Here, dxgxs and dpy denote a | K'|-form dixy,
Ao Ndxy(K'= ki, -, ki} (ki <kj<<---<k})) and a |K|-form dp, A--- Adpy,_,
(K=+1ky, -+, k,_} (Ri<<--<k,_,)), respectively. Since dV* does not vanish at
any point of A?, Jx(r) is well defined. Any point 7' €AZ is written in the form

S

r =t 2 ()
X
= X(r3, 25 (3), P(r,5, 2 (3)

for ayeR". So, we can take y=(y,, ***, ¥,) as local coordinates on AZ. Then,
2.7) dvi = dy,\--Ndy,

is valid from (2.7). So, if we take (7, ) as local coordinates on €, we have
from (2.8)

(2.9) Jx(r; Q)
— |det D (Xyo(r, 3, 2
oy

S
e () Pelr, 3, 9
X

S,
o (o)

for r=(r K'(y, 6*10 (M) eQ.

()

3. Proofs of Theorem and Theorem’. As was mentioned in the in-
troduction, we shall prove Theorem by contradiction. That is, we assume

(As.1) the Cauchy problem (0.1) is L* well posed on [0, T¢] (7,>0) or [T, 0]
(Ty<<0) for a Ty,=+0

and
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(As.2) the inequality (0.7) is not valid.

In place of (As.1) we may assume without the loss of generality

(As.1)’ the Cauchy problem (0.1) is L? well posed on [0, T¢] (7,>0).
Let L, be the differential operator defined in (0.1)’. Then, we obtain

Lemma 3.1. Assume (As.1)’. Then, there exists a constant C(To)>1 such
that if vy(t, x) €EX([0, T]; L?) and L, v\(r, x) €EY[0, T]; L?), the inequality

gnax “‘UA(T’ ')”
<TT

<C(T) (a0, +)lI4+M max (1L vy(r, -l
is valid for each A>1 and each T (0, A Ty).

Theorem 3.2. Assume (As.1)’ and (As.2). Then, there exist p°ER", t,>0
and v(x)ECF(R") such that we can construct an asymptotic solution v\(7, x)EE?
([0, 2]; L?) of (0.9) with an initial data e™*° v(x) at t=0 satisfying

(3.1) max [|Ly vy(r, +)lI=0n"),
and
(32) o, )12 - (TR0

for large N. Here, C(T) is the constant in Lemma 3.1.

Theorem is deduced from Lemma 3.1 and Theorem 3.2. Indeed, sub-
stitute (3.1) into Lemma 3.1. 'Then, we have

ot N<C(Tlo()IIHORNT),

where A is large so that ATy>%#,. On the other hand, (3.2) is valid. So, we
have

o CTR( NS CTI)I+OM
for large A so that ATy>#,. This inequality shows a contradiction for large A.
Thus, Theorem is proved.

Now, we return to the proofs of Lemma 3.1 and Theorem 3.2. The proof
of Theorem 3.2 is the essential part in the present paper.

I. The proof of Lemma 3.1. We shall consider the Cauchy problem
(0.1) on the interval [0, T'] for a T€(0, T,]. Recall the definition of the L? well
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posedness of the Cauchy problem (0.1) on [0, 7,]. Then, if we assume (As.1)’,
for any uy(x) L? and any f(¢, x) €€}([0, T']; L?) we have one and only one solu-
tion u(¢, x) of (0.1) in &Y([0, T7; L?). We first get

Lemma 3.1’. Assume (As.1)'. Then, there exists a constant C(Ty)>1 such

that if u(t, x)€&3([0, T; L?) is the solution of (0.1) for f(¢, x)€E3([0, T7; L?)
and wy(x)EL?,

max |lu(t, Il < C(To) (o)l 4 max [Lf(2, -)II)

is valid for each T (0, Ty).

Proof. We first note that &}([0, 7']; L?) is a Banach space with a norm
max llg(, )l and so, L*x&Y([0, T]; L?) is also a Banach space. Now, since
the Cauchy problem (0.1) is L?* well posed on [0, T;], the mapping: L*X &Y
([0, To); L) = (u(x), f(2, x))—u(z, x) €E([0, To]; L?) is closed, where u(2, x) is the
solution of Lu(t, x)=f(¢, x) with (0, x)=u,(x). Hence, if we apply the Banach
closed graph theorem, the above mapping is continuous. So, there exists a con-
stant C(7Ty)>1 such that

(3-3) max [fu(t, )< C(To) (luo(+)lI+ max [If(z, +)lI)
0<t<T 0<t<T,

is valid.

Take a T€(0, T,] and let @(t, x) €EY([0, T]; L?) be the solution of Li(t, x)
=f(t, x)€EX[0, T]: L?) with #(0, x)=u(x)L?. We extend f(¢, x) to f(t, x)E
€U0, To]; L?) by
%) (0<:<T)

f(T,%) (T<t<T)

and let u(t, x)€E3([0, Ty]; L*) be the solution of (0.1) for this f(2, x) and u,(x).
Then, the uniqueness of the solution on the interval [0, T'] shows

%)=

u(t, x) = d(t, x) (0<i<T).
So, if we note the choice of the extension from f(z, x) to (¢, x), we get from (3.3)
max |[Z(z, +)|l
0<.t<T
< max [fu(t, -l
S C(To) (ol +) 114 mgsllr{]‘(t, ll)
= C(T) ()4 max 17, ),

which completes the proof. Q.E.D.
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Let v,(7, x) €EY[0, T1; L?) be the solutiono of (0.9) for f,(, x)€EY([0, TT;
L*) with 2,(0, x)=v?(x)e L?* (0<T<AT;). Then, setting u(z, x)=v,(\¢, x), we
can see from (0.1)" that u(z, x) €E3([0, T/A]; L?) is the solution of

Lu(t, x) = AN’L, v)(7, x)
= M fi(A2, x)

with %(0, x)=v“(x). Hence, noting T/A<T,, we get Lemma 3.1 from Lemma
3.1

II. 'The proof of Theorem 3.2. Assume (As.2). Then, there exist a {,&
R and a (x°, p°) ER** such that

13 “ Re bi(X(0, 2%, p) Py(6, =, p*) df | >log % C(T)
i=1J0

is valid for the constant C(7;) in Lemma 3.1. Here, we can assume that Z, is
positive and (0.10) is valid. In fact, a family of mappings {#"},cr defined by
(2.1) forms a one-parameter group and

(X(—t, %), —P(~1, % p)) = (X(5, 5 —p), P&, % —p)
is valid from (0.5) and (0.6). So, we get
5 v, 5 —p) Pi6, % —p) o
=3 [ ME©,52) 0. do,
and setting (x', p")=(X (¢, x, p), P(t, x, p)), we also have
=5 [ (X6, 5", —p) P60, 5', —p') a8

[ B(x(—6, 5, ) PA—0, 5, p) db
0

I

I

2
5 | 6 (—0-+1, 5 2)) PA(—0-+, %, p) dB

Hence, we can take a £,>0 and a (x°, p°) ER** so that (0.10) holds. We fix these
Z,, »° and p° hereafter.
Let v(x) be a C= function with a compact support and set

(3.4) Sy(x) = x-1°.

Then, we shall consider the following equation
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L, v\(7,x) =0 on [0,z]xR%,
2,(0, x) = €% g(x) .
We write L, in the form
(3.6) L, vy(r, x)
— [AID,+-H(x, A™D,)+ 2 (i)~ H (%, A*D,)] vy(, %) ,

(3.5)

where H(x, p) is the function defined by (0.5) and

lH«x, P=— 5@ p+L 31 % (yp,,
(3.7) 2 2 o,
Hy(x, p) = —c(x).
Let U, be an open neighborhood of x° and set
Al = {(x, f’aio (0) = (x, p); x€R"},
(3.8)
Ko = {(x, 520 (9) = () v U

which are n-dimensional Lagrangian manifolds. We define A% and A™**(T) for
this Aj by (2.2) and (2.3) respectively, that is,
{A? = (%) (» p)ERG

A" (T) = {(r, K'(x, p°); 0<7<T, (x, p°) A3},
where A"(x, p°)=(X (7, x, p°), P(r, x, p°)) are the solutions of (0.6). In the same
way we define

(3.9)

3.9y {7‘3 = {I'(x, p°); (x, ) E AT},

AT = {(r, H(x, p°)); 0<7<T, (x, pO)EAL} .

Notice Lemma 2.1 and take a sufficiently small U, so that we can choose a family
of connected open sets {Q;};.o on A"*(f,) satisfying three properties below,
where s is a non-negative integer. We fix such an open neighborhood U, of °.

First, for each j there exists a subset K; of {1,2,---,n} such that (7, Ix,)=
(7, ks, Px;) become local coordinates on ;. Secondly, we have

(3.10) Ay U 0,

and thirdly,
Q,N0,AN=¢ (1<j<s),
(3.11) QN (ty A7) = ¢ (0<E<s—1),
QN =4¢ (< |j—kl,j, k=0,1,2, «5)
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hold. We also fix the above {Q;} ;.o and local coordinates (7, Ix;) (=0, 1, -+,
5)- 'The local coordinate system (7, Ix;)=(7, xg;, px;) defines the diffeomorphism
from Q; into R:f,}x§ . We denote its inverse diffeomorphism by r=r (7, Ix,)=
rKj(T) xKﬁ’ ij)'

Now, hereafter to avoid confusion, we denote the identity mapping from
A™(t,) into RLX T*R% as A**\(t)) Dr—(%(r), X(r), p(r))ER.X T*R:. Let E’ be
the diffeomorphism from R} onto A} defined by (2.5) with Sy(x)=x-p° and dV7
the volume form on A} defined by (2.7). Then, we define a C*™ positive func-
tion Jg (r)=Jk,(r; Q;) on Q; by (2.8). Let E be the diffeomorphism from R}
onto (0, Aj) (S A"*Y(2,)) defined by

(3.12) E: Risx — (0, x, p") (0, A).
We shall define a real valued C= function S(r) on A**'(#,) by

(3.13) S(r) = S'o Bedx—Hdr - (E-)*Sy1"),

where H (x, p) is defined by (0.5) and »’=(0, «°, p°) (0, Aj). Here, the integral
in (3.13) is taken along a path form 7° to r on A"™(#). Then, we see from
Lemma 2.3 that S(r) is independent of the choice of paths. So, we get

(3.14) dS = p-d%—Hdx on A™Yt,).

Also, it follows from Lemma 2.4 that

(3.15) S(r) = (E™)*Sy(r) for r=(0, A}),
that is,
(3.15)’ S(0, x, p°) = Sy(x) = x+p° for x=R".

Next, let define a real valued C* function Sg;(r)=Sk,(r; Q;) on Q; for each j by
(3.16) Siy(rs Q) = S()— (1) B (1) -

Then, it follows from (3.14) that

(3.17) dSg, = PxydZg—Zg,dpg,—HdT on Q;.

Now, we shall define a pre-canonical operator K (£;, Ix;) acting from C5(£;)
to C=(R:+}!) for each j, which corresponds to (6.3) in [8], by

(3.18) K(Q;, Ix,) p(7, x)
_ eiASx}(r)
= Q:A.;xl-bxzj [W P 7') I r=rg; ("'-“Kf;.PKj) ]
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for p(r)eCT(Q;).
Lemma 3.3. We have
K, I @, ) = [ I, 7 2V
for any o(r)ECF(Q;).
Proof. It follows from Lemma 1.1 and (2.8) that
K (), Ix,) (7, I
= [ AP TSN o ey oy
= [aslotm ry17ams QED.
Taking account of (3.10), there exist e;(r)EC5(Q;) (=0, 1, -+, s) satisfying
(3.19) 20 er)=1 on A™(t).
We fix these functions ¢;(r) (=0, 1, --+,s). Set
1

_ 1 H .
(3.20) F(x,p) = 3 Tr 2x3p (%, p)—Hy(x, p) .
We have from (3.7)
(3.20)' F(x,p) = 31 ¥(x)p; -

Then, we shall define W® acting from C=(A"*(2,)) to C=(A"*'(z,)) by
(3.21) WO g(r) = {%—F (" (x, 2°)} (7, H(%, 7))

at r=(, K'(x, p°)). Then, we obtain the following correspondingly to Theorem
9.3 in [8].

Proposition 3.4. By choosing a real constant o(Q;) (1<j<s) in a suitable
way, we can define an operator K acting from C=(A**Y(,)) to C=(R:%) by

(3.22) Ko(r, x) = z} ¢ K(Q, I,) (e; 9) (7, %)
(a(Q)=0) so that Kp(r, x) for p(r)E C(A**\(t,)) satisfies (i), () and (ii5) below.

(i) Kp(0,x) = " (0, x, p°) .
i) &t I = {5y Iplt 7)1* AV,
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(i) L, Ko(,x) has the asymptotic expression
(3.23) L, Ko(t, x) =1j2_,_‘—1 () K(W® @) (1, x)+Ryp(T, %)

for N=1,2, -+, where we have for the remainder terms Ryp(t, x)

(3.24) max ||Rye(r, NN =0x7).

W® (2<I<N—1) are linear differential operators in A**X(t,) of order at most 2l
independent of \.

RemMARK 3.1. We do not study the index of a curve on A™(%,) (c.f. [8]).
So, we shall determine o(Q;) (1<j<s) directly in the proof of Proposition 3.4.

If we admit Proposition 3.4, we can give the proof of Theorem 3.2 as fol-
lows. Let v(x)eC7(U,). We shall construct an asymptotic solution v,(r, x)
of (3.5) satisfying

{max Ly a(r, Il = O79),
(3.25) o<ty

2,(0, x) = e*?° 9(x)

in the form

(3.26) o(r, %) = K[ 33 (M) @] (7, 9)

If () (j=0, 1) belong to Cy(A**Y(t,)) and satisfy the following equations

{{%—F(h’(y, PN} oo, B (y, %) =0,
\¢0(0a Y, po) = 'IJ(y)
and

{%—FW@, PN} @i, K (3, PN+HW® @(r, K (3, ) = 0,

¢1(O’y,P0) =0 ’

we see that v,(7, x) satisfies (3.25) from (i) and (iii) of Proposition 3.4. Ob-
viously, @,(7) and @,(r) are written as

oor, (3, ) = {exp || F(1(9, £%) 40} o(3)
(3.27) AP K (3, p")
= — [ texp {, FOR(s, ) dB} WO g, 17 (3, ) "
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So, @(r) belongs to C§(A™(t,)). Also, since W is a linear differential opera-
tor in A™*(s,), we can see that ¢,(r) belongs to Cg(A**Y(%,)). Thus, @,(r)ECS
(A**(t,)) (j=0, 1) are determined.

If we take v(x) such that supp o(-) is sufficiently small around x=x", we
get from (ii) of Proposition 3.4 and (2.7)’

(3-28) [loa(%os )”
= || Bpyts, *)II+-O™)

= (ag, 1 exp Re [ P00, ) db)} o(9)1* aVE 00
>3 fexp Re | PO, ) dt} ([, lo(3) 1 )00
Hence, we obtain by (0.10) and (3.20)"
oa(te 1= CTo(-)II+00™) QE.D.
Proof of Theorem’. Using the Legendre transformation, for the Hamil-

tonian function H{(x, p) defined by (0.5) we define the Lagrangian function L(x, )
on the tangent bundle TR}=R?Z", by

(3.29) L(x,7) = pn—H(x, p),

where p is expressed in terms of by the formula
(3.30) 2 = %(x, 2) = (g3 11 1,2, ).
Then, it is easy to see that L(x, ») is written in the form
/ 1 &
(3.29) L m) = o 33 g mim, -

The following two facts are well known in the theory of analytical dynamics
(for example, see section 15 in [1]). If (X(z, , p), P(¢, x, p)) are the solutions
of (0.6), we have

X _ oH
(3:31) At 0.0 = 2L(X(0, 5.0, Pt 5, 9)
and
d 0L (4 dX\ 0L [y dX .
. 4 4X) XN _ o a<j<n).
(3:32) dt o, <X dt> ox, <X dt> 0 (=j<m
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The equation (3.32) is called Lagrange’s equations of motion. Conversely, let
X (t x, ) be the solutions of (3.32) with initial data X(0, x, p)=x and ——(0 x, p)
(x p) and set
oL ( X >

(3.33) Pt p) = o (X5

Then, (X(¢, x, p), P(t, x, p)) are the solutions of (0.6).
' Now, we can see that the equations (3.32) are also the equations of geodesics
on M

632 (L o+ Brh(Lnw)(Lum)=0 (sjsn),

where T'}; are the Christoffel symbols (1/2) _2 870, g1i+0x, £1i— 0, g1s) (for ex-
ample, see p 167 in [14]). Hence, it follows from (0.8)" and (3.31) that

zg Re (X (0, x, p)) P,(6, x, p) db

Jj=1

= 33 [ Re H(X(0, %)) £4(X (6, %, ) 4X,(6, %, p)

zsw,
Y

where 7 denotes a geodesic {X (6, x, p); 0<0<t}. Consequently, we can easily
complete the proof from Theorem. Q.E.D.

4. Proof of Proposition 3.4. We shall first prove (i) and (ii) of Proposi-
tion 3.4.

Since £, includes (0, A= {(0, x, p°); x€ Uy} from (3.11), K, is the empty
set. Let @(r)=@(, r’) belong to C5(A**(%,)). Then, it follows from (3.11) and
(3.19) that

e(0,7)=1 on supp @(0, -).
So, we get together with (3.15)’

Ep(0, x)
= H(Qo, Ix,) (€ P) (0, x)
— (eix.pO/]KO(O’ x, Po)llz) ¢(O’ x, PO) .

Since K, is the empty set, Jg,(0, x, p°)=1 for x€ U, is valid from (2.9) as Sy(x)=
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x+p’. Hence, we obtain (i).
In the same way to the proof of (i) we have
Kop(ty, x)
= 7@) K(Q,, I,) p(to, %) .

This shows (ii) by Lemma 3.3 independently of the chocie of real constants
g (Qj).

We shall prove (iii) of Proposition 3.4. Let K (£}, Ix;) be the pre-canonical
operator defined by (3.18). We shall first consider L,{KX(Q;, I;) @(r, x)} for
p(r)€CF(Q;). Here, we omit the suffix j. Then, we get from (3.17)

%SK(TK(T’ XK/, PK)) = ﬁK’(rK(T’ XK’y PK)) ’
xK/

4.1) %{ Sk(re(t, xgr, Px)) = —Zglrg(r, X575 Px)) >

d

ai Sx(a(rs g, )+ H(xgr, —=2 Sg(rx)s ~2— Se(rx), pr) = 0.
T 6j)K axK;

We also have from (2.9) as Sy(x)=ux-p°
(4.2) T, K (3, %) = | det % (XA, 9, %), Prlry 3, )|

at (7, i'(y, p))=Q. Hence, if we apply Lemmas 1.1-1.5 to L, { X (Q, Ix) o(1, ),
we obtain in the similar way to the proof of Theorem 8.4 in [8].

Proposition 4.1. Let p(r)ECF(Q;). Then, Li{KX(Q;, Ix,) p(v, x)} has the
following asymptotic expression
N-1
#3) K@, Ir)) (M) WD @(r)+ 33 (M) DOQ;, L)) p(r)] (7, %)
+RI.N(QJ'7 IKj) ¢(T’ x)

for N=1,2, -, where W is an operator defined by (3.21) and DN (Q;, Ir,) (2<
I N—-1) are linear differential operators independent of \ and N inr' = A} of order
at most . We also have for the remainder terms

(44) max ||Ry,n(Qj, L)) @(7, )l = O(A™Y) .

Next, let Q; and Q; be connected open sets in {Q;} j_o such that Q;NQ; is
not empty. Then, we shall study the transformation formula from K (Q,, Ix,) to
K(Q;, Ig))-
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We set up the decomposition into disjoint sets as in the proof of Lemma
6.3 in [8]

{1,2,,n} =aUbUcUd
with the property
(4.5) K;=aUb, K{=cUd, K;=aUc, K;=bUd.
Then, we have for p(r)e C5(Q; N Q)
(46) T v, (K 1) @} (7, %y D)
= D 1,59, °Fx 1032, {(€xXP INSk (1) PV ks (1) ™ | rmr e str s o
= (vf2m) 110 {(exp iND(xi, 213 7, 2y )
Pr) Jri (1) 2 pmr iyt xxctopiey @b A% s
where

(4‘7) D= q)(xca Pb) = q)(xc’ Py Ty xK;-a PK,')

= —x, Pt Pt Sk, (7x, (75 Xxt5 Pry)) -
It follows from (4.1) and (4.5) that

oD

0x,

g—z (% Do) = %—2y(rx, (T, Xk Prs)) -

(xcr Pb) = *Pt_i_ﬁc(rlﬁ("" X!y PKI)) ’
(4.8)

Take an open connected set £;; so that

(4.9) supp (+)CQ;;C0,;;CQ,NQ;.

Then, we may consider @(x,, ps; T, ¥x/, Px,) in (4.6) as a function on the set
(4.10) {(x., ps; T Xgr, Pr;); Ty (T) %k Pre,) E Qi 2, €R"®  p. R’} .

We shall study the proof of Lemma 6.3 in [8] in more detail mainly in
order to obtain the estimate (4.15) below. We see from (4.8) that a stationary
point (%, py) of ®(x,, ps; T, %k}, Px;) on the set (4.10) is determined by

(4'11) Xp = ’?b(rK.'(T’ xK"-) PK{))!?: = ﬁc(rKi(-"’ fo’ PK.')) .

On the other hand, the equalities
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(4.12) Xy = Xy(rg,(7, XKl Pxi))s Pa= ﬁa(rKi(T’ XKl Pxy))

always hold from (4.5). So, (4.11) is equivalent to

(4.11y g, = Zpi(rg,(7, %xyy Prs))s Pr; = P (1 (7, %y D)) -

Since (7, xxy, px,;) and (7, xg), px;) are local coordinates on Q;NQ; respectively,
(4.11)’ is also equivalent to

(4.11)" xgy = Zre (T, %xpy Pry)) Pri = Pri(7ic (T, %k Prcj)) -

Hence, we can see from (4.11)" that if and only if ®(x,, ps; 7, *x}» Pk;) on (4.10)
has a stationary point, (, xx;, px;) belongs to the set

(4.13) {(=, XK Px;) = (F(), -71{;-(”)» I‘SK;(’)); rel;;} .

Also, we see from (4.5) and (4.11)"” that the stationary point of ®(x,, p;; 7(7),
Z (1), Bry(r)) (r€0;;) is determined by

(4.14) (%, s) = (Z(r), Bo(1)) -

Moreover, we obtain the fact below from (4.11)" together with (4.8). There
exists a constant Co>0 such that if (7, x4/, px;) does not belong to the set (4.13),
for any point in the set (4.10) satisfying

rK.'(Tv fo; PK.‘)Esupp q’(.)
we have
l oD
ox,
> Cy(1+ | |2+ | pe |92 .
Let (7, xx’, Px ;) be not contained in the set (4.13). Set T=i,(|~62|’+
|ac1>,2)-l(aq>. 9,00 0 i\ 0w
9ps Ox, Ox, 0p, 0p,
Then, since the supports of @(rx, (7, %z, Px;)) =P(Tx,(T, %c, %4, Pay Ps)) With respect
to variables (x,, p,) are compact, we get from (4.6) and (4.15) for N'=1, 2, ---
(4-16) Igr}.,xxj—bﬁxj {‘]C('Q'n IK.) ¢} (T’ xK;.) PK})I
= (7\,/27,)(11:|+|c|)/z X—N’ISS eim(:T)N’ {¢(r)
]Ki(r)—l/2 I r=rK'.('r,zK(~,pK‘.)} de dxcl

< Cpr NSHIDE=N L4 | gy |24 | p | ) V2> <pad} ™Y
<Cjp )\'(Ibl+lcl)/2-N'(1 + lxxg.lz"‘ Ipxilz)—zv//z ,

o I
ops

(4'15) (xc) _pbr T, xK;-) PK})I + |

) and let ‘T be the transposed operatorcof T.
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where Cy and Cj are constants independent of (7, Xt Pr) EAFT(), %K;(r), Dx,
(n);r€Q;y and A>1.

Next, let 7&8;;. Then, we can easily obtain the following two results in
the similar way to the proof of Lemma 6.3 in [8]. First, we have from (4.7)
and the definitions (3.16) of Sg,(r; &) (I=4,j)

*17) DE(r), Blr); 7(), Exo(r), B, 1)
= Sgi(r; Q;) .

Secondly, setting

0°dD 0’dD

6;“@ Zf;,ax‘ (Br), Bilr); 7). Zny(r), B (1)

Ox, 0p, 0p}

(+18) A =

we have from (4.8) and the definitions (2.8) of Jg (r; &) (I=1,j)
(4.19) [det A;i(r)|=Jk(r; Q;)[Jei(r5 ) -

Now, we see from (4.19) that we can apply the stationary phase method to (4.6)
with (7, xxs, px;)=(7(r), Zxy(7), Px,(r)). See Theorem 1.4 in [8], Theorem 2.4 in
[2] or Theorem 7.7.6 in [3] for the stationary phase method. Then, it follows
from (4.14), (4.17) and (4.19) for N=1, 2, -« that

(420) g}‘,zxj—wxl {JC(Q,-, IK.') @} (F(7), xK}(r), 51{,-(7))
M2 D fexp A7), Bur)3 T(r), B, B )}
{exp % i sgn A;(r)} | det A;i(r)[2z | 742 p-(bI+IeD/2

N -1
{1+ 'Z-l‘l A" L) p(rry(T, Xl Px:)
Jrirw) ™2 le=2(r), 2y =287, pr;=Fx ()
+R£.N(IK1’ Iy,) p(r)
= foxp i sgn Au()} (65 S (0)) Jrr) 441

+ 3O VOl L)} 9+ R, Ix) 9(7)

and
(4’21) mEXIRé.N(IKj; IK,') ¢(7) | = O(A’—N) 4
’Enij

where sgn A;,(r) denotes the signature of A;,(r), L,(m=1, 2, ---, N—1) are linear
differential operators independent of A\ in x,&R'! and p,&R!" of order at most
2m and VO(Iy;, Iy;) (I=1, 2, ---, N—1) are linear differential operators inde-
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pendent of A and N in '€ A} of order at most 2/.
If we note that @(r)=C5(Q;NQ;), we can combine (4.16) and (4.20) with
(4.21). We obtain

(4.22) F e, K (s L)) 9} (7, 51y D)
— {oxp i sgn A} (exp inSg,(r) Jes() 1
+ ST VO T )b ) mr ety
+REN(Leyy L) @ (r, sy P
and
(4.23) 22X |REN (Lo L) (7 =5 )l =O(7Y) .

Here, sgn A;,(r) is constant on {);;, because det A;(r)=0 on 0;; and {;; is con-
nected. So, we set

(4.24) a(Q;, Q) = ii sgn Ay(r) (reQy).
Operate &, }’Ki” x; O1 both sides of (4.22) and apply Lemma 1.1 to the remainder
term. Then, we have

Proposition 4.2. K(Q;, Ix,) ¢ (7, x) for p(r)ECF(Q;NQ;) has the another
expression for N=1, 2, «-+

. N-1
#25) &7 K(Qy, L)) Ap () + 2 @N)7 V Oy, L) ()} (7, %)
+R2,N(IKj) IK,') ¢(T) x) ’
where the remainder term R, y(Ix;, Ix,) (T, x) satisfies
(4.26) nax R, n(Ik;» Ig;) @ (7, )l = O(A"Y).
<T<t,
If we use Propositions 4.1 and 4.2, we can complete the proof of Proposi-

tion 3.4 as follows.
First, we see from (4.25) that

‘K(‘Q'l') IK{) ¢(T7 x) = eio-(n"oi) ‘]C(‘Q‘i) IK}) ¢+-R2,1(IK," IK.') P
and
JC(Q;, IKi) ¢(T’ x) = €70 JC(‘Q‘!" IK;) ¢+Rz,1(IK.-: IK,’) P

for any @(r)€CF(Q; N ;). So, we get from (4.26) and Lemma 1.1
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O(A™) = lI(1— €@ 20+7;190) J(Q,, Ir,) @ (r, I
= {f10—ememapmiresai) (o)
]-K.'(r)_ll2 l r=rx'-('r.xxz~,pxi)} Iz de: dPK.'
for any p(r)eC7(Q;NQ;). Hence,
(4.27) (), &) = —a(Q;, Q;)

is valid.
We shall determine real constants o(Q;) (1< j <s) by

(429) o) = — Z (@ 0.

We choosed {Q;} -0 in section 3 so that if and only if Q;NQ,, is not empty, m
is equal to j—1, j or j+1. So, if Q;NQ,, is not empty, we have from (4.27)

(4.29) a(2;)—a(Q,) = a(Qy, Q) .

Using these o(Q;), let define K by (3.22).
We shall use Proposition 4.1. For the sake of simplicity we set

(4:30) DOy L) = ()7 WO+ S (1) DO, Iy),
=2
which acts from C7(Q;) to C7(Q;). Then, we have for @(r)E C7(A"*(t,))

(431) L(Kp) (v, %)
= 3167 LAK(Q;, I,) ; 9} (7, )

= 316@) H(Q;, Ix,) Du( Qs Ix,) €; 0+ 33 Run(y I ¢ 2 -
Next, we also set for V (I, Ix,) in Proposition 4.2
N-1
(4.32) Vil In) = T+ 33 (0 VOl L)

which acts from C3(Q;NQ;) to CF(Q;NQ;). Then, since we have from (3.19)
for @(r) = C(Q, N Ar(t))

2Vl Is,) (e 9) ()
= U+ 3 S 6N VO, Ix,) eal 9(7),

there exists for each j
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F-1
(4.33) Va(Qy, I) =1+ E @)~ VOQy, I)
such that we have for any g(r) € C7(Q; N A+i(2,))

(4.34) {,g, Vg Ix,) emt Va(Qy, I,) 9(r)
2(N-D =~
=+ 2 @) VQy, Ik 9()

where V(Q;, I¢,) and ﬁ'(")(ﬂj, Ig;) are linear differential operators in 7' €A} of
order at most 2/ and 2/’ respectively.

Now, let @(r)€ C7(A**(t,)). Then, if we note the function spaces on which
operators K (K, Ig;), Vy(Ik;, Ix,) and the like act, we can apply proposition 4.2
and (4.34) to (4.31) as follows. We obtain

435  L(Kp)(r, )
= 3167 K(Qy, Ie) {3 Vil Ix,) end Vil 1)

DOy Ie) 50— 31 53 (M) &7 K(Qy, L)
Vi(Q;, Ix;) Dn(Q;, Ix;) € o+ ,go R, v(Qj, I)) e; P
= 2... ¢7@P7ie @m0 ) K (Q,,, I ) € Va(Q;, Ix,)
Dy, Ley) & 9, ¥)+Ris 9l %)
There, it follows from Lemma 3.3, Propositions 4.1 and 4.2 that
(4.36) max [|Rk o(r, )l = O).

0<T<ty

If we use (3.19), (4.29), (4.30) and (4.33), we get from (4.35)

L(Kp) (7, x)
=n¢2:o et'Q‘(Qm) JC(QM, IK,.) €y g VN(QJ', lKj) QN(QJ', IKj) e,- ¢(T, x)
+Ry @(7, x)

— K(E ) W 0) (r, 9+ Ry g, ).

which shows (3.23) and (3.24). Thus, we can complete the proof of Proposi-
tion 3.4.

As was mentioned in Remark 0.3, Theorem in the present paper is gen-

eralized as follows. We consider the Cauchy problem

L®y(t, x)E% 0, u(t, x)—% jélax,-(g""(t_, x) 0, %)

(4.37) ” + D, %) 0 utc(t, x)u = f(t,4),
#(0, x) = uy(x),
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where g7%(t, x), (¢, x) and ¢(¢, x) are complex vaued C* functions on R}}!. We

assume that

(4.38) all gi*(t, x) (j, k=1, 2, ---, ) are real valued and satisfy g/*(¢, x) = g
(2, x).

Here, we do not suppose even the ellipticity.

As in the proof of Theorem, let make a change of a variable from ¢ to 7=t
with a large parameter A>1. Then, if we use the Taylor expansion, (4.37) is
written in the form for v,(7, x)=u(7/\, x)

hz L&l) ‘UA(T, x)

=0 [N D, 4+-HP(x, A1D,)+ 33 (V) HO(r, %, \'D,)
j=1

(4.37)
+(N)THE (7, %, NTID,; )] 0a(T, %) = f(7/N, %),
7))\(07 x) = uo(x) ’
where
1 &
HP(x, p) = - 33 £™(0, %) p; s,
) . n 3 1 n 8gjk
(4-39) H{(, x,p) = — ) b (0, x)P;+‘2‘ 2 (0, x) ps
j=1 jrk=1 ax’.
i n 6gfk
+? T,-,%, e 0, x)p; P

H{(7, x, p) belongs to T%(R}) and we have
(4.40) sup |[H(7, 2, A7'D,; N) @(+)||[ <o

0<T<T,1<A

for any ¢(x)€S and any 7>0.
Let (X (7, x, p), P(r, x, p)) be the solutions of (0.6) as H(x, p)=H{"(», p) and
set B(x, p)>0 by

6(x, p) = sup {r; | X(0, %, p)| +|P(6, x, p)| <o0, 0<O<7} .
Then, we obtain
Theorem 4.3. It is necessary for the Cauchy problem (4.37) to be L? well
posed on [0, Ty] or [Ty, 0] for a Ty==0 that the inequality

n P .
sup | 31" Re ¥/ (0, X(0, %, )) P(6, %, ) d0] <oo
Cr.p)E n. j=1

OS::)<®122,P)

holds.
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Proof. We can prove Theorem 4.3 in the same way to the proof of The-
orem. There, we note that F(x, p) defined by (3.20) is replaced by

1 0°H g

— 1T

2 Ox 0p
n . y ” 513
— 350,92 73, L2050,

(x’ p)_Hsl)(T’ X, P)

Take a (2%, p°)ER* and a 1,(0<t,<B(x’ p°)). Then, if v(x) is a C* func-
tion with sufficiently small compact support around x=x°, we can construct the
asymptotic solution v,(7, x) satisfying

max [|[A 7D, +H{P(x, A7'D,)
0<T<t,

+ ]‘é‘.l () THP (7, 2, A7ID)] va(7, )]l = O(A79),
5(0, x) = &+'7" o(x)

in the corresponding form to (3.26). We can easily see for this v,(r, x) from
(4.40) that

max L 2y(7, )l = O(\79)
0<T<
is valid. Using such v,(7, x), since g’*(¢, x) are real valued functions, we can
complete the proof of Theorem 4.3 in the same way to the proof of Theorem.
Q.E.D.

Appendix. Here, we shall show that if at least one of g#*(x) (j, k=1, 2, ---,
n) is not constant, in almost cases the Hamilton-Jacobi equation 9,®+H (x, ?62)
x

=0 has no smooth solution on the global interval [0, ¢,]. Let (X (¢, x, p), P(¢, «,
?)) be the solutions of (0.6). Then, to show it, we have only to prove that the
family of rays {X(¢, x, p)} .cp» for any fixed p very often has a focal point on
[0, #,], if we use the terminology in optics. Here, a point (¢, X (¢, x, p))ER** is

called a focal point, if det aai(t, %, p)=0. 'Though we consider only the simple
x

examles, the result for them indicates the above.

We consider the Hamiltonian function
1 &
(A1) Hs,p) = 8@,

where we assume that
all g’*(x) are real valued and satisfy g*(x)=g"(x). We suppose the as-
sumption (*):
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(i) We have for any (x, p)=R*"
(A2) | 33 £ 2,04 <81 p1*

with a positive constant § independent of (x, p) = R*.
(if) There exists a family of real valued C? functions {y;(x)}7-1 such that

(A.3) %(x)(g”(x);;i 1,2, -+, n) ‘%’(x)zz or —I

holds at each point *&R", where y(x)=(¥y(x), ***, ¥a(%)), ?—y(x) denotes the
x

transposed matrix of g—y(x) and 7 the identity matrix.
x

ReMARK A.1.  Let #=1, and let g"(x) be a rel real valued C' function and
x 1

be bounded function which does not vanish on R'. Set y(x)=S W do
0

Then, the assumption (*) is automatically satisfied.

Let (X(¢, x, p), P(t, x, p)) be the solutions of the canonical equations (0.6)
for H(x, p) defined by (A.1). Then, we get

Theorem A.l. Assume (x). Then, the following (i) and (it) are equivalent.
(1) There exists a t=0 such that det aai(t, %%, p) does not vanish for any pE
R ¥
o 0gY o ..
(it) 67(x V=0 holds for all i,j and k.
k

We first introduce the result on the global homeomorphism from [13]
without proof.

Theorem A.2 (Theorem 1.22 in [13]). Let f be a C* mapping: R"Sx—

F@)=(fi(x), =+, fa(x))ER". If there exists the inverse matrix —6f—(x)'1 of _a_f.(x)
for each xER" and we have ox ox

of (1
sup Il (@) 7lI<ee,

then, f is a homeomorphism of R" onto R". Here, ||Q|| for a matrix Q denotes the
operator norm of Q as the mapping from R" to R".

Proof of Theorem A.l. Since we may replace ¢ by —¢, in place of (A.3)
We can assume

(A3 B o) (i 1,2, ) ) = 1.
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It is easily seen from the assumptions (A.2) and (A.3)’ that we can apply The-
orem A.2 to the mapping: R"Sx—y(x)ER". That is, the above mapping is a
diffeomorpism of R" onto R". There, we denote the inverse mapping by the
mapping: R*y—x(y)=(x,(), ***, #,(¥))ER". Then, since we have

5% 0.,

%= k= 16y

one can define the canonical transformation ® from RZ", onto R%", by
(A4 @: RS (v, ) = (¥(), pa—;(y(x)» SR}, .

Then, the inverse canonical transformation &! is given by

(Ady @7 Ry(5, 9) = (+(9), 4 2 (x() SRE

See section 4 in [8] or chapter 9 in [1] for the theory of the canonical transfor-
mations. Using this canonical transformation ®, H(x, p) defined by (A.1) is
given from the assumption (A.3)" by the formula

(A.5) H(x, p) = 2 @) pipr = lql”-

It is well known in the theory of the analytical dynamics that canonical
transformations map the solutions of the canonical equations into the other
ones. Consequently, noting (A.5), we get

(A.6) (X, #, p"), P2, &, p°)) = (x(»"+14"), ¢ %(x(y"-i—tf N>
where (¥°, ¢")=®(«°, p°). So, we have

(A6) X(t,,9) = 2(y ()1 2 0x

(y(x")))
a s 0X,, o 40 . .
Then, it is easy to see that det 6—(t, %%, p°) =0 is equivalent to
x
0= det [I+2{-2p° 3” 2
U5 8 LN 3 ()

=det [[+tM(°, p°)] .
The (i, j) component of M(«°, p°) is given by

(A7) 394 @ )

=3 25 3 R Cl) "’ym( ) a%( )
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0x, 0
=3 # 5 o (V)

So, M(x°, p°) is a real symmetric matrix and satisfies M(x°, pup®)=pM(x’, p°) for
wER. Consequently, (i) in Theorem A.1 is equivalent to M(x°, p°)=0 for any
pP’ER", which is also equivalent to

% (@) =0 (G k=12, )

(A.8) TR

from (A.7).
We have only to prove that (A.8) is equivalent to (ii) in Theorem A.l.
Assume (A.8). Then, since we have from (A.3)’

i( 5 i e ) O fox
(&"( ):J_)I’ 2, -, m) dy (¥ (%)) ay (y(=)),

it follows that (ii) in Theorem A.1l is valid. Conversely, assume (ii) in Theo-
rem A.1. Then, we have from (A.3)’

—6——() Ty Ol =0 (k=1,2,,m).

(A.9) o0,

We may assume y(x°)=0. Set
(a.10) (3) = #(3) -2(0)".
y

Then, since we have

82 - 6x -1 ax
B =GO 0,
we get from (A.9)
0=_0 92, 0%
o o)
_ 0 a ‘oz
B ot g TR e

E(a;:k;;'il, 2, e, n)+(a} h,t y 1,2,,n) (k=1,2,--,n),

where afy= 2{(9)|y=- So,

62
0y 0y,
(A.9)I a,k—}—a = =0
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for all 7, j and % are valid. Consequently, for any fixed 7, j and Z we have

ahtaiy =0, af;+at =0,at;+ai; =0.

There, if we add the first equality to the third one, we obtain a},=0 by the
second one and aj,=aj;. Hence, we can see together with (A.10) that (A.8)
is valid.
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