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Dominant Point Detection by Regularization™

{

Katsunori INOUE* and Wonchan SEO™

Abstract

*®

An algorithm for detecting dominant points on adigital closed curve is presented. It uses a technique that
called regularization in which polygonal approximation is achieved by minimizing a criterion function
proposed in this paper. The regularized criterion function is defined as the weighted conjunction of the
fitness to the given contour and the distinctness of the model. The dominant points of given contour are
controlled in various degrees of approximation by changing the regularization factor, and an iterative
method is presented for minimizing the regularized criterion function.

The proposed algorithm is compared with those of several other dominant point detection algorithms in
terms of the approximation errors and the number of detected dominant points using a number of examples.
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1. Introduction

Dominant points are the high curvature points along a
digital curve that have important shape attributes. This
concept of dominant points has been applied in shape
recognitionl)-3), motion estimation®), and coding>).

Many algorithms®)-16) have been. proposed  for
detecting dominant points. In general, there are two
approaches in those algorithms. One is to find the
dominant points directly through angle or corner detection
schemes®)-14), and the other approach is to obtain a
piecewise linear polygonal approximation of the digital
curve subject to certain constraints on the goodness of
fit15),16), In polygonal approximation, dominant points
are the interesting points of any two adjacent line
segments. These points are also known as the vertices or
break points of the closed curve(polygonal).

Most dominant point detection algorithms(either
angle detection or polygonal approximation), except for
that of references (6) and (11), require one or more input
parameters. These parameters usually represent the
support region for the measurement of local properties at
each point on the curve. They are selected based on the
level of detail represented by the digital curve. In general,
it is difficult to find a set of parameters suitable for curve
that consists of multiple size features. Too large support
region will smooth out the fine features of a curve,
whereas a small support region will generate a large

number of redundant dominant points. This is a
fundamental problem of scale because the features
describing the shape of a curve vary enormously in size
and extent, and there is seldom a well-defined basis for
choosing an appropriate scale(or smoothing) parameter
correspond to a particular feature size. This problem can
be avoided by a non-parameteric algorithm in some
degree. However, in the cases that the change of scales
and various - degrees of polygonal approximation are
required, the non-parametric algorithms do not satisfy this
expectation. '

In this paper, a new dominant point detection
algorithm by regularizationlg) is introduced. This
algorithm detects the dominant points by estimating the
regularized criterion function proposed here with. The
criterion function is defined as the weighted conjunction
of two terms which are the fitness of the approximating
polygon to the given contour and the distinctness of the
model. Dominant point detection is achieved by
minimizing the regularized criterion function. The degree
of approximation can be controlled by the regularization
factor, and the semi-optimal solution is obtained by a
simple iterative method.

More details are given in the following sections. The
properties and problems of various dominant point
detection algorithms are briefly reviewed in next section.
In section 3, regularization for detecting dominant points
is discussed, and a new dominant detection algorithm is
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proposed. In section 4, the proposed algorithm is
compared with the four algorithms using four digital
closed curves with respect to 1) the emor introduced in
approximating the closed curve by the polygon generated
by joining the dominant points, and 2) the number of
detected dominant points. In section 5, conclusions are
presented.

2. Dominant Point Detection Algorithms

In this section, the properties and problems of various
dominant point detection algorithms are briefly reviewed.
Detailed literature reviews of various dominant point
detection algorithms can be found in references (6) and
(1D).

There are two major problems with dominant point
detection on digital curves. One is the precise definition
of discrete curvature, and the other is the determination of
the support region for the computation of the curvature.
In the real Euclidean plane, curvature is defined as the rate
of change of slop as a function of arc length. For the
curve of y = f(x), this can be expressed in terms of
derivatives as

d?y

@1

For a digital curve, if the discrete curvature is defined
by simply replacing the derivatives in Eq.(1) by first
differences, there is a problem that small changes in slope
are impossible, since successive slope angles on the
digital curve can be differ only by a multiple of 45°.
This difficulty is overcome in various dominant point
detection algorithms by using k& >1 differences in
Rosenfeld-Weszka algorithm9), rather than by simply
using the first differences(k =1). In other words, a
smoothed version of discrete curvature is measured, and &
can be viewed as a smoothing parameter. Another way to
overcome this problem is to use higher order chain
codes!7) where the directions are quantized in more than
eight steps.

A number of other authors also concentrated on
techniques involving direct measurements of discrete
curvature or functions of discrete curvature. These
measurements are used in various dominant point
detection algorithms to detect dominant points in the
final steps of nonmaxima suppression. Hence, the k
cosine measures in Rosenfeld-Johnstone®) and Rosenfeld-
Weszka®), and the comerity measure in Freeman-Davis

@
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a]gorithmsB) are all different types of measures of
significance.

Since an approximate smoothed version of discrete
curvature is measured in various algorithms, an
appropriate smoothing factor(for example, m in the case
of the Rosenfeld-Johnston algorithmg)) has to be selected
based on the level of detail represented in the digital curve
in order to measure the discrete curvature to a certain
degree of accuracy. This smoothing factor is in fact a
function of the support region which is used to compute
the measure of significance. In general, the higher the
level of detail, the smaller the smoothing factor to be
selected. A major difficulty arises when a digital curve
has features at various levels of detail.

It has been remarked in (8) that the user of these
procedures has to select a smoothing factor appropriate to
the class of curves to be processed. The difficulty of
selecting a suitable smoothing factor was avoided in
some degree by the Teh-Chin algorithm®. However,
the non-parametric dominant point detection algorithm
has a problem, that is only one solution on the given
contour can be obtained. It does not satisfy the
expectation that the various degrees of approximating
polygon or different number of dominant points are
demanded. At these points, a new dominant point
detection algorithm is presented in next section.

3. Dominant Point Detection by
Regularization

Regularizationlg) proposes to solve ill-posed
problems by restricting the space of acceptable solutions
by imposing additional constrains. One of the
formulation with regularization is as follows. The
regularijzation of finding a solution z from the input data
y such that Az =y requires the choice of norms ||| and a
stabilizing functional |[Pz| One method that can be
applied is to find z that minimizes the cost functional of

4z -y |I* + A1 Pz || )

,-where A is a so-called regularization parameter. The
first texm expresses the closeness of the solution to the
input data, the second expresses the degree of
regularization, or the additional constraints, and the factor
A controls the compromise between these two terms.

In the dominant point detection problem, the
approximating polygon model should be fitted closely
without redundant dominant points to a given digital
curve. The following criterion function is proposed for
the dominant point detection as a concrete form
considering these matters.
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, where d; is the perpendicular distance between a point
p; on a given contour C and the line segment of
approximating polygon corresponding to the point p;
(See Fig. 1). I is the length of each line segment of
approximating polygon. n and n, are the total number
of given contour points and the number of detected
dominant points, respectively.

The regularization factor A controls the weight of
conjunction between two terms. The first term expresses
the degree of fitness of the approximating polygon to the
given contour. The second term is to obtain the simple
and adaptable model. The approximating polygon which
has the smaller number of dominant points and the wide
variety in the length of the line segments in case the
same number of dominant points is estimated as the
excellent model. It is also sufficient to describe the fine
features of given contour at various levels of detail.

These two terms of fitness to the given contour and
distinctness of the model have a confronted property with
each other. That is, the approximating polygon with a
high fitness becomes to be low distinctness of the model
itself. The first term is weighted more significantly with
the smaller value of A, and the fitness of the
approximating polygon to the given contour becomes to
be larger, but the shape of the obtained polygon model
becomes to be bad. When the large value of 1 , on the
contrary, the second term is weighted, and the
approximating polygon becomes a good shape. By
changing the regularization factor appropriate to the class
of contours to be processed, the degree of polygonal
approximation on the given contour is controlled, and the
suitable number of dominant points is obtained by
minimizing the criterion function.

Iterative Method to Minimize criterion
Function
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An iterative method is implemented, it allows an
attention point to converge on the given contour with
low cost functional. This method does not guarantee an
optimum solution but the semi-optimum solution may
be obtained in the limited calculation time. The method
works as follows.

Step 1. Put the candidate points on the given contour

with an interval of one point.

Compute the criterion function using the
current location of the candidate points.

Step 3. Evaluate the criterion function sequentially at
the location of the attention point obtained by
eliminating or moving the attention point
from the former to the latter.

Step 4. Fix the attention point on that position if the

value of criterion function is lower than the

calculated value of Step 2.

Go to Step 6 when the value of criterion

function is not changed. Otherwise go to Step

2.

Retain all of the candidate points as the
dominant points.

Step 2.

Step S.

Step 6.

4. Experimental Results

In this section, the proposed algorithm is compared
with the four algorithms. These include 1) the angle
detection procedure by Rosenfeld and Johnston®), 2) the
improved angle detection procedure by Rosenfeld and
Weszka?), 3) the comner finding algorithm by Freeman
and Davis!3), and 4) the determination of support region
by Teh-Chin algorithm®).

Four closed curves were chosen to compare the
algorithms with respect to 1) the approximation errors,
and 2) the number of detected dominant points. According
to the chain codes provided in reference (6), the original
contours are shown in Figs.2(a), 3(a), 4(a) and 5(a),
namely CHROMOSOME, LEAF, FIGURE-8 and
SEMICIR, respectively. Chain codes of above contours
are provided in the appendix.

The results obtained by applying the five algorithms
to Fig. 2(a) are shown in Figs.2(b)-(i), which are also
summarized in Table 1. For the comparison, the results
by the regularized algorithm wused four sets of
regularization factors are shown. The processing of,
Figs.2(a)-4(a) requires one set of input parameter each,
these are listed in their corresponding tables. The
processing of Fig.5(a) uses two sets of input parameters
to demonstrate the problem of varying feature size.
Table 1-4 show the results corresponding to Figs.2-5.
Several observations are drawn from the results.



Dominant Point Detection by Regularization

®

)

®

Fig. 2 Results of obtaining dominant points of the CHROMOSOME contour: (a) original contour, (b)
Rosenfeld-Johnston algorithm, (¢) Rosenfeld-Weszka algorithm, (d) Freeman-Davis algorithm, (e) Teh-

Chin algorithm, (f) proposed regularization algorithm(A = 1), (g) A = 2, (h) A =3 and (i) A = 4.

The polygon drawn by joining the adjacent dominant
point is used to approximate the shape of the object. A
quantitative measure of the quality of the detected
dominant points is used, defined as the piecewise error
between the digital curve and the approximating polygon.
The error between a point p; of a given contour C and
the approximating polygon is defined as the perpendicular
distance of the point to the approximating line segment.
This error is denoted by E;. Two error norms between C
and its approximating polygon defined below are used:

(1) Integral square error,

50

74
E,=Vd?, Q)
(2) Maximum error, »
E_ .. = max d; . ®)

1) Approximation Errors: The regularized algorithm
consistently outperforms the rest of the algorithms in
terms of both approximation error measures. The Teh-
Chin algorithm results in very small errors. The
approximation errors obviously depend on the number of
detected dominant points, n,. The results of the proposed
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Fig. 3 Results of obtaining dominant points of the LEAF contour: (a) original contour, (b) Rosenfeld-

Johnston algorithm, (¢) Rosenfeld-Weszka algorithm, (d)Freeman-Davis algorithm, (e) Teh-Chin
algorithm, (f) proposed regularization algorithm(A =1),(g) A =2, (h) A = 3 and (i) A = 4.

algorithm show the smallest errors at the similar number
of dominant points, and it is confirmed that variouns
degrees of polygonal approximation on the given contour
is controlled accurately by changing the regularization
factor. The data compression ratios of the total number of
input contour points to the number of detected dominant
points, 7 g0 € tabulated in the tables.

2) Number of Detected Dominant Points: The number
of dominant points detected by the four algorithms except
Teh-Chin algorithm depends on the input parameters. In
general, the larger the support region introduced by the
input parameters, the lower the number of dominant
points detected, and the errors became larger. The

51

regularized algorithm proposed in this paper has the
smallest number of dominant points at the same errors.
The regularized algorithm outperforms the rest of
algorithms in terms of both approximation error
measures and the number of detected dominant points.

5. Conclusion

In two-dimensional shape representation, dominant
points are an important attribute of shape. The locations
of the detected dominant points must be accurate and
the number of dominant points must provide a good
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Fig. 4 Results of obtaining dominant points of the FIGURE-8 contour: (a) original contour, (b) Rosenfeld-
Johnston algorithm, (c) Rosenfeld-Weszka algorithm, (d) Freeman-Davis algorithm, (¢) Teh-Chin

algorithm, (f) proposed regularization algorithm(A = 1),(g) A =2, (b)) A =3 and (i) A = 4.

representation of the shape without redundancy.

A new algorithm for detecting dominant points is
presented. Outperformed dominant point detection is
realized by minimizing the regularized criterion function
defined as the weighted conjunction of fitness of
approximating polygon to the input contour and the
distinctness of the model.

It is confirmed that the proposed algorithm is
reasonably efficient, and the degree of polygonal
approximation on the given contour and the suitable
number of dominant points can be controlled by changing
the regularization factor.

References

1) N. Ansari and E. J. Delp : Partial Recognition: A
Landmark-based Approach, IEEE Trans. Pattern Anal.
Machine Intell., Vol. PAMI-12(1990), pp. 470-483.

2) N. Ayache and O. D. Fangeras : HYPER: A New Approach
for the Recognition and Positioning of Two-dimensional
Objects, IEEE Trans. Pattern Anal. Machine Intell., Vol.
PAMI-8(1986), pp. 44-54.

3) E. E. Milos : Shape Matching Using Curvature Process,
Comput. Vision, Graphics, Image Processing, Vol
47(1989), pp. 203-226.

52



Trans. JWRI, Vol. 22 (1993), No.1

I 1 { = [— 4
L /D 4 L 4 L ]
i 11 I ]
@ » ©
i |1 I _
© e
L § | ﬁ L _
® ' ® 0
T T T T T [T T T T T T T T T T T T T
0 © 0

Fig. 5 Results of obtaining dominant points of the SEMICIR contour: (a) original contour, (b) and (c) Rosenfeld-
Johnston algorithm, (d) and (e) Rosenfeld-Weszka algorithm ,(f) and (g) Freeman-Davis algorithm, (h)

Teh-Chin algorithm, (i) proposed regularization algorithm(A = 1), ) A = 2, (k) A =3 and (1) A = 4.

4)J. K. Aggarwal and N. Nandhakumr : On the Computation 5) S. N. Biswas, S. K. Pal and D. B. Majumder : Binary
of Motion from Sequence of Images-a review, Proc. Contour Coding Using Beizer Approximation, Pattern
IEEE, Vol. 76(1988), pp. 917-935. Recognition Lett., Vol. 8(1988), pp. 237-249.

53



Dominant Point Detection by Regularization

Table 1  Results of the CHROMOSOME contour
Number of Input Contour Points, » = 60
Input Number of | Compression | Max | Integral
Algorithm Parameter | Dominant Pts Ratio Erxor | Sq Error
g n/ng Emas B,
Rosenfeld-Johnston m=6 8 7.5 1.54 21.94
Rosenfeld- Weszka m=6 12 5.0 1.58 22.61
Freeman-Davis §=3 8 7.5 1.51 22.56
m=2
Teh- Chin(k-cosine) None 15 4.0 0.74 7.20
A=1 15 4.0 0.75 4.01
Proposed Algorithm A=2 14 4.3 0.93 6.21
A=3 13 4.6 1.41 10.15
A=4 12 5.0 1.41 13.67
Table 2  Results of the LEAF contour
Number of Input Contour Points, n = 120
Input Number of | Compression | Max | Integral
Algorithm Parameter | Dominant Pts Ratio Error | Sq Error
ng n/ng Ermasx By
Rosenfeld-Johnston m=8 17 7.1 1.76 43.42
Rosenfeld- Weszka m =38 18 6.7 1.53 30.57
Freeman-Davis =3 17 7.1 1.72 45.27
m=2
Teh- Chin(k-cosine) None 29 4.1 0.99 14.96
A=1 30 4.0 0.92 8.76
Proposed Algorithm A=2 20 6.0 0.95 14.93
A=3 19 6.3 0.97 16.41
A=4 18 6.7 0.99 18.99
Table 3  Results of the FIGURE-8 contour
Number of Input Contour Points, n = 45
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Algorithm Parameter | Dominant Pts Ratio Error | Sq Error
g n/ng Ermaz By
Rosenfeld-Johnston m=4 10 4.5 1.61 22.83
Rosenfeld- Weszka m=4 16 2.8 1.59 12.87
Freeman-Davis s=2 11 4.1 1.34 14.61
m=1
Teh-Chin(k-cosine) None 13 3.5 1.00 5.93
A=1 11 4.1 1.00 3.70
Proposed Algorithm A=2 9 5.0 1.00 6.27
A=3 K 6.4 1.00 7.83
A=4 7 6.4 1.00 7.83
Table 4 Results of the SEMICIR contour
Number of Input Contour Points, n = 102
Input Number of Compression | Max | Integral
Algorithm Parameter | Dominant Pts Ratio Error | Sq Error
ng n/ng Bmas By
Rosenfeld-Johnston m=9 12 8.5 2.04 92.37
m=4 30 3.4 0.74 8.85
Rosenfeld- Weszka m=9 14 7.3 1.56 59.12
m=4 34 3.0 1.00 15.40
s=3 17 6.0 2.54 79.53
Freeman-Davis m=1
s=2 19 5.4 1.41 23.31
m=1
Teh- Chin(k-cosine) None 22 4.6 1.00 20.61
A=1 23 4.4 0.72 7.68
Proposed Algorithm A=2 22 4.6 0.98 9.72
A=3 20 5.1 1.40 12.69
A=4 15 6.8 1.40 15.58
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Appendix
Chain Code of the CHROMOSOME Contour
55454 32011 01111 12112 12006 65655
60010 10765 55455 55555 55431 12122
Chain Code of the LEAF Contour

33332 30700 00332 32307 00003 32322
26777 22212 76661 11116 66566 55000
10056 65655 00110 66565 65555 56667
66666 66664 22222 22222 23224 43433

Chain Code of the FIGURE-8 Contour
76776 77007 10121 22234 44555 55654
55453 42211 21121

Chain Code of the SEMICIR Contour
00007 00777 77766 76666 66665 76766
56454 43436 66656 55454 44434 33232
22254 54434 23221 21322 22222 21221
11111 00100 00




