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1. Introduction

Although proper modifications modify the geometry of the space only along a rare
analytic set it is enough to “disturb” important analytic and geometric properties.

For instance, Moishezon [8] proved by an example that for a surjective, proper
modification : → between compact complex spaces such that has a Kähler
metric it does not follow necessarily that is also Kähler.

Among the compact complex manifolds the Kähler manifolds enjoy a number of
remarkable properties. Kähler spaces were first introduced by Grauert [6] and their
study was continued by Moishezon [8]. (It is known that the definition of Moishezon
of a Kähler metric coincides with that of Grauert at least for normal spaces.)

The example of Moishezon gives naturally rise to the question which special prop-
erties proper modifications of compact Kähler spaces nevertheless still might have, in
particular, how far away is from being Kähler?

In the manifold case there are several results in this direction. For example,
Alessandrini and Bassanelli introduced the notion of a balanced metric. Every Kähler
metric is balanced and they proved that balanced metrics areinvariant under proper
modifications.

In this paper we study this problem in the singular case. We introduce in Defini-
tion 2.4 the notion of a generalized Kähler metric and provethat this notion is invari-
ant under proper modifications (Theorem 2.5).

Our notion of a generalized Kähler metric differs only a little bit from the defini-
tion of Moishezon: we admit−∞ as value for the system of defining functions.

Using the Stein factorization Theorem we prove that Theorem2.5 admits a gener-
alization to the more general context of Theorem 3.1.

This paper is part of the authors doctoral thesis written in Wuppertal. I thank
Prof. M. Colţoiu and Prof. K. Diederich for their helpfull discussions and advises dur-
ing the whole time of preparing my thesis. I thank the Department of Mathematics of
the University of Wuppertal for providing me a nice working atmosphere.
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2. Setup and main result

Throughout this paper all complex spaces are assumed to havecountable topology,
unless it is otherwise stated.

DEFINITION 2.1. A holomorphic map : → is called a proper modification if
it is proper and there exists a rare analytic set in such that−1( ) is rare in
and such that | \ −1( ) : \ −1( ) → \ is biholomorphic.

DEFINITION 2.2. A reduced complex space is called Kähler (in the sense of
Moishezon) if there exists a covering ( )∈ of with open sets such that for each
index there exists a strongly plurisubharmonic functionλ : → R which is regular
of classC∞ and such that on each nonempty intersection∩ we have the pluri-
harmonic compatibility condition:λ − λ = Re , locally on ∩ for some holo-
morphic function .

Two such collections ( λ ) ∈ and ( ψ ) ∈ define the same Kähler metric
on if eachλ − ψ is pluriharmonic (i.e. is locally the real part of a holomorphic
function) on ∩ 6= ∅.

REMARK 2.3. If is a complex manifold such a collection (λ ) ∈ defines in-
deed a metric on , by endowing with the (1 1)-form given locally (on each open
set ) by∂∂̄λ .

We want to generalize the above concept of Kähler metrics.

DEFINITION 2.4. We say that the reduced complex space has a generalized
Kähler metric if there exists a covering of with open sets ( )such that on
each set there exists a functionϕ : → [−∞ ∞), ϕ 6≡ −∞ on each irreducible
component of , which is strongly plurisubharmonic, regularof class C∞ outside
the set{ϕ = −∞} and such that on each nonempty intersection∩ we have
(locally) the pluriharmonic compatibility conditionϕ = ϕ + Re for some holomor-
phic function .

The main result of this paper is the following:

Theorem 2.5. Let and be two reduced, compact, complex spaces(with sin-
gularities) and : → a surjective, holomorphic map, which is a proper modifica-
tion. Suppose that is K̈ahler. Then has a generalized Kähler metric.

PROOF. Consider the covering of given by Definition 2.2 and the covering
of given by := −1( ), ∈ and on each the function ˜ϕ = λ ◦ .
Then it follows at once that ˜ϕ ∈ C∞( ) and that ˜ϕ is plurisubharmonic on but
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not necessarily strongly plurisubharmonic. The idea in what follows is to modify in
a first step ˜ϕ such that they become strongly plurisubharmonic. But then we destroy
the “pluriharmonic compatibility condition” ˜ϕ = ϕ̃ + Re( ◦ ) locally on ∩ .
In a second step we also get this condition back.

First step of the proof. To modify ϕ̃ such that they become strongly plurisub-
harmonic we use a technique from an article of Colţoiu-Mihalache [3]. We look at
the following commutative diagram given by Chow’s lemma (see for instance [7]
and [9] or [5, p.171]):

(1)

∗ //

π
��

?
?

?
?

?
?

?
?

?

��

More precisely, given the proper modification and so implicitly the rare ana-
lytic set , the lemma of Chow ensures the existence of a coherent ideal J on ,
with supp(O /J ) = such that, denoting byπ : ∗ → the blowing-up of with
center ( (O /J )| ), it follows the existence of a holomorphic, proper and surjec-
tive map making the above diagram commutative. The idealJ is called the ideal
of Hironaka.

Without loss of generality we can suppose that the open sets of the covering
of given by the definition of the Kähler metric are all Stein open sets. Fix now for
the moment an arbitrary Stein open set of the finite covering () ∈ of .

There exist sections1 . . . ∈ J ( ) generating each fiber ofJ such that

∩ = { ∈ | 1 ( ) = · · · = ( ) = 0}

It then follows for the map

:= ( 1 . . . ) : −→ C

that we have:

−1(0) = ( ∩ (O /J )| ∩ )

Now consider the function

ψ : −→ [−∞ ∞)

given by

ψ = λ + log

(
∑

=1

| |2
)
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It is clear thatψ is strongly plurisubharmonic on ,{ψ = −∞} = ∩ and
that ψ | \ ∈ C∞( \ ). Considering now the composed functionψ ◦ we have
that ψ ◦ is plurisubharmonic on = −1( ), C∞ on \ −1( ) and {ψ ◦ =
−∞} = −1( )∩ . We will see below thatψ ◦ is even strongly plurisubharmonic.

We use the following lemma which is true for all reduced complex spaces (not
necessarily compact). For a proof see [3], [2].

Lemma 2.6. Let and be reduced complex spaces and: → a proper,
holomorphic, surjective map. Let : → [−∞ ∞) be an upper semicontinuous
function such that ◦ is (strongly) plurisubharmonic on . Then is (strongly)
plurisubharmonic on .

Using diagram (1) we can conclude with help of this lemma that, in order to show
that ψ ◦ is strongly plurisubharmonic, it is enough to prove thatψ ◦π = (ψ ◦ )◦
is strongly plurisubharmonic onπ−1( ).

For this we need the explicit description of the analytic blowing-up. Let m ⊂
OC denote the maximal ideal of the origin inC . One has then an exact sequence
(the syzygy-theorem) of the form:

O( 2)
C

α−→ OC
β−→ m −→ 0

where β is given by multiplication with the coordinates (1 . . . ) of C and α is
given by the ×

(
2

)
matrix:




2 3 4 · · · 0 0 · · · 0 · · · 0 · · · 0
− 1 0 0 · · · 0 3 4 · · · · · · 0 · · · 0

0 − 1 0 · · · 0 − 2 0 · · · 0 · · · 0 · · · 0
0 0 − 1 · · · 0 0 − 2 · · · 0 · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... −

...
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 0 · · · 0 · · · 0 · · ·
0 0 0 · · · − 1 0 0 · · · − 2 · · · 0 · · · − −1




Via the analytic inverse image this gives rise to an exact sequence on (remark that
here ∗m = J | ):

O( 2)
∗α

−−→ O
∗β

−−→ J | −→ 0
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Let P(J ) denote the projective space over associated to the coherent ideal
sheafJ (see for instance [5]).

By construction of the blowing-up we have the following commutative diagram

∗ �

�

//

π| ∗
##G

G
G

G
G

G
G

G
G

P( ∗m) �

�

//

ξ

��

× P −1(C)

1

xxpppppppppppp

Therefore it is enough to prove that

ψ ◦ ξ : P( ∗m) −→ [−∞ ∞)

is strongly plurisubharmonic.
But in this form the advantage is that for the closed subspace

P( ∗m) → × P −1(C)

we can give the defining equations explicitly. They are

( ) − ( ) = 0 ∀1 ≤ < ≤

where ( 1 : · · · : ) are the homogeneous coordinates onP −1(C).
Let

× ˜
ν := {( ) ∈ × P −1(C) | ν 6= 0} for ν ∈ {1 . . . }

and

αν : × ˜
ν −→ × C −1

be the biholomorphic map given by

αν( ) =

(
1

ν
. . .

ν−1

ν

ν+1

ν
. . .

ν

)

and define

τν : × C −1 −→ [−∞ ∞)

given by

τν ( 1 . . . −1) = λ ( ) + log | ν ( )|2 + log

(
1 +

−1∑

=1

| |2
)
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where (1 . . . −1) denote the coordinates onC −1.
It is then clear thatτν is strongly plurisubharmonic on × C −1. Becauseαν

is biholomorphic it follows thatτν ◦ αν is strongly plurisubharmonic on × ˜
ν . But

on ( × ˜
ν) ∩ ξ−1( ) we have that

τν ◦ αν = ψ ◦ ξ

so that finally it follows thatψ ◦ ξ is strongly plurisubharmonic onξ−1( ). So we
also obtain thatψ ◦π is strongly plurisubharmonic on ∗. As already seen above this
implies thatψ ◦ is strongly plurisubharmonic on .

As a conclusion of the first step of the proof we obtain the following properties
for ψ ◦ : it is strongly plurisubharmonic on , regular of classC∞ on \ −1( )
and{ψ ◦ =−∞}= −1( )∩ . But we have destroyed the pluriharmonic-compatibility
condition, because now

ψ ◦ = λ ◦ + log

(
∑

=1

| ◦ |2
)

the last term being a “perturbation factor”.

Second step of the proof. In order to obtain on a collection of strongly
plurisubharmonic functions with the pluriharmonic compatibility condition we proceed
as follows.

Let

:= | 1 |2 + · · · + | |2 on

and

:= | 1 |2 + · · · + | |2 on

Consider now a relatively compact subcover of with open subsets ′ ⊂ ,
∀ ∈ . Then the quotient

=
| 1 |2 + · · · + | |2
| 1 |2 + · · · + | |2

remains bounded (upper and lower) on (′ ∩ ′)\ . The problem is only in small
neighbourhoods of in (′ ∩ ′)\ . But we know that on ∩ the sections
in J ( ∩ ) are generated by (1 . . . )| ∩ and also by (1 . . . )| ∩
because the respective germs generateJ for all ∈ ∩ and ∩ is Stein. So
the boundedness is clear and therefore we also know that log− log is bounded
on ( ′ ∩ ′)\ .
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In what follows we apply a glueing technique of Demailly [4] for a collection of
certain functions, which has the advantage that the glueingresult is of classC∞.

More precisely, we can suppose, without loss of generality,from the begining that
the open sets ′ are isomorphic with analytic sets in open balls (0 )⊂ C .

Let : ′ → (0 ) denote the chart. We can assume that 0∈ ( ′). Con-
sider for each the function

v : ′ −→ [−∞ ∞)

given by

v ( ) = log ( )− 1
2 − | ( )|2 =: log ( )− θ ( )

One sees at once thatv ∈ C∞( ′\ ) and v ( ) → −∞ for → ∂ ′, ∈ ′ (we
also have thatv ( ) = −∞ for ∈ ∩ ′).

In order to get aC∞-glueing of the functionsv on \ , to overcome the fact
that the function max(v ) is only continuous, one proceeds as follows:

Let ̺ : R → R be a function of classC∞ with ̺ ≥ 0, supp̺ ⊂ [−1/2 1/2] and
with

∫
R ̺( ) = 1 and let denote the function

: R −→ R

given by

( 1 . . . ) =
∫

R

max{ 1 + 1 . . . + }
∏

1≤ ≤
̺( )

(in our case will be the number of open sets of the finite covering ( ′) of ).
It is clear that is increasing in each variable, that it is convex and of classC∞

and that the following property holds:

(2) ( 1 . . . ˆ . . . ) = ( 1 . . . . . . )

whenever

< max{ 1 . . . −1 +1 . . . } − 1

(where ˆ· denotes, as usual, that the respective variable is missing).
Let now v denote the function on given by

v( ) = (v1( ) . . . v ( ))

We then have thatv ∈ C∞( \ ). However, written in this form we have to ignore
the v ’s for which 6∈ ′. This can be done because of the following: the maximum
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is taken over thevi’s with ∈ ′, so for different positions of we have a differ-
ent number of functions over which we take the maximum. But wehave thatv ( ) →
−∞, for → ∂ ′, ∈ ′, i.e. the values ofvi( ) with near the boundary of ′

doesn’t play an effective role in the maximum. This fact together with (2) shows thatv
is globally well defined.

At the same time it allows us to choose coverings (′′) and ( ) of , ′′ ⋐

⋐ ′ such that already eachv ( ) for ∈ ′ \ ′′ does not play an effective role
in the maximum, in particular we have (v1| 1

( ) . . . v | ( )) = (v1( ) . . . v ( ))
for each ∈ . We will need the covering ( ) in what follows.

Remark first that we have{ ∈ | v( ) = −∞} = .
The listed properties of the function imply that (η1 . . . η ) is still plurisub-

harmonic if η1 . . . η are plurisubharmonic. Because of the special form of it fol-
lows that it also preserves the strongly plurisubharmonicity.

Indeed, we have to check that for any strongly plurisubharmonic functions (such
that the composition makes sense)η1 . . . η and for eachθ ∈ C∞

0 there existsε0 > 0
such that (η) + εθ is plurisubharmonic for all 0≤ ε ≤ ε0.

But this follows at once from:

(η) + εθ = (η) +
∫

R

εθ
∏

1≤ ≤
̺( )

=
∫

R

max(η1 + 1 + εθ . . . η + + εθ)
∏

1≤ ≤
̺( )

= (η + εθ)

Now consider on , for each index , the function

λ + v|

We will show that, if is a sufficiently big constant then

ϕ = ( λ + v) ◦ | −1( )

is strongly plurisubharmonic on−1( ).
To do this consider first the function λ − θ on ∩ . Becauseθ and its

derivatives are bounded on andλ is strongly plurisubharmonic on it follows
that there exists a constant such thatλ −θ is strongly plurisubharmonic on ∩

.
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Now look on −1( ) at

ϕ = ( λ ◦ + v ◦ )| −1( )

= λ ◦ +
∫

R

max(v1 ◦ + 1 . . . v ◦ + )
∏

1≤ ≤
̺( )

=
∫

R

max( λ ◦ + v1 ◦ + 1 . . . λ ◦ + v ◦ + )
∏

1≤ ≤
̺( )

(where λ ◦ + v ◦ = λ ◦ + log ◦ − θ ◦ is defined on −1( ∩ )).
We have shown in the first step that

ψ ◦ = λ ◦ + log

(
∑

=1

| |2
)

◦ = λ ◦ + log ◦

is strongly plurisubharmonic on :=−1( ). Concerningλ , in the proof of the first
step it is only important thatλ is strongly plurisubharmonic on . So we can replace
it by any other strongly plurisubharmonic function, for example by λ − θ on ∩

, to obtain by the same type of argumentation the analogue conclusion, namely that

λ ◦ + log ◦ − θ ◦

is strongly plurisubharmonic on−1( ∩ ), ∀ , ∀ .
So, it finally follows from the above listed properties of that the functionϕ is

strongly plurisubharmonic on :=−1( ).
In conclusion, we obtained a covering

( := −1( )) ∈

of and on each open set a strongly plurisubharmonic function

ϕ : −→ [−∞ ∞)

with the property thatϕ is regular of classC∞ outside the rare set{ ∈ | ϕ ( ) =
−∞} = ∩ −1( ).

This collection of functions also satisfies the desired pluriharmonic-compatibility
condition, that is we have, on each non-empty intersection∩ , locally that

ϕ = λ ◦ + v ◦ | −1( )∩ −1( )

= λ ◦ + Re( ◦ ) + v ◦ | −1( )∩ −1( ) = ϕ + Re

with holomorphic. This completes the proof of our Theorem 2.5.
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REMARK 2.7. With almost the same proof it follows that Theorem 2.5 also holds
if one only supposes that is generalized Kähler.

3. A generalization of Theorem 2.5

Now we can extend our result to the following more general context:

Theorem 3.1. Let : → be a holomorphic and surjective map between
two reduced, compact, complex spaces with singularities and with the property that
sends each irreducible component of (surjective) onto an irreducible compo-
nent of of the same dimension, dim = dim . If is Kähler, then has
a generalized K̈ahler metric.

REMARK 3.2. 1. In the context of the above theorem it follows that dim=
dim .
2. The hypothesis of the above theorem concerning the irreducible components of
and is satisfied for example in the following special cases:

(a) and are irreducible (and therefore pure dimensional) and dim = dim .
(b) and are pure dimensional with dim = dim and they have the same
number of irreducible components.

The idea of the proof is to reduce this problem to the now knowncontext of
a proper modification between compact complex spaces, wherethe “base” space is
Kähler. This is possible with help of the following “Stein factorization theorem” (see
for instance [5, p. 70, Theorem 1.24]).

Theorem 3.3. Let : → be a proper holomorphic map. Then there is
a commutative diagram

σ

��
@

@
@

@
@

@
@

��

τ
oo

of complex spaces and holomorphic maps with the following properties:
1. τ is finite.
2. σ is proper, surjective, has connected fibers and the canonical mapσ0 : O →
σ∗O is an isomorphism.

REMARK 3.4. In our context we also have the following supplementaryproperties:
1. is compact.
2. τ is surjective.
3. is reduced: Indeed, if there would exist an open set⊂ such thatO ( )
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contains a nilpotent element, then because ofO ( ) ≃ O (σ−1( )) it would fol-
low that O (σ−1( )) contains nilpotent elements, which is a contradiction to the fact
that is reduced.
4. τ being finite and surjective it also follows that dim = dim , so that dim =
dim .
5. being Kähler andτ being finite it follows that is also Kähler (see for in-
stance [1] or [11]).

Proof of Theorem 3.1. In order to prove Theorem 3.1 our goal isto show thatσ
is a proper modification.

The subsets

Sing( ) →
Sing( ) →
σ(Sing( )) →
σ−1(Sing( )) →

and

σ−1(σ(Sing( ))) →

are all rare analytic sets.
Consider now = Sing ∪ σ(Sing ), → which is a rare analytic set in .

For each irreducible component of we then have a surjective map between two
connected manifolds

σ| \σ−1( ) : \σ−1( ) −→ \

where is chosen such thatσ( ) = (in particular by our hypothesis we then
have that dim = dim ). Applying Sard’s Theorem it follows thatthere exists
a regular point ∈ \σ−1( ) where the linear tangent map ofσ, (σ| \σ−1( )) is
surjective. Because of the same finite dimension of the spaces it follows that the linear
tangent map (σ| \σ−1( )) is in fact bijective. But this tells us that the set

{ ∈ \σ−1( ) | det σ( ) = 0}

is a rare analytic set in \σ−1( ), where σ( ) denotes the Jacobian matrix. This
being true for all irreducible components of it follows that

:= { ∈ \σ−1( ) | det σ( ) = 0}

is a rare analytic set in \σ−1( ). Note that we do not know whether is analytic
in (where denotes the closure of in ).
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It is enough for us to find a rare analytic set in such that⊂ . To find
we make use of some known notions and results about the tangent space and the tan-
gent map for complex spaces with singularities, namely thatthe set

:= Sing0(σ) := { ∈ | corank σ > 0} = { ∈ | dim ker σ > 0}

is analytic in .
Moreover because ∩ ( \ σ−1( )) = , this set is also rare.
Let := ∪ σ( ) which is rare in and consider the surjective map

σ| \σ−1( ) : \ σ−1( ) −→ \

We have for all ∈ \ σ−1( ) that ∈ Reg( ) and /∈ . Therefore /∈ , so
that det σ( ) 6= 0 for each ∈ \ σ−1( ).

But this means thatσ is locally biholomorphic on \σ−1( ). Becauseσ| \σ−1( )

has connected fibers it therefore follows thatσ| \σ−1( ) is injective, so we finally de-
duce that the map

σ| \σ−1( ) : \ σ−1( ) −→ \

is biholomorphic. Soσ : → is indeed a proper modification.
As we mentioned above this is enough to conclude, as desired,that X has a gen-

eralized Kähler metric. The proof of Theorem 3.1 is now complete.

REMARK 3.5. Of course the statement of Theorem 3.1 remains true whenis
only required to be generalized Kähler.
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[6] H. Grauert: Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146

(1962), 331–368.
[7] H. Hironaka: A fundamental lemma on point modifications; in Proc. Conference on Complex

Analysis (Minneapolis, 1964), Springer, Berlin-Heidelberg-New York, 1965, 194–215.
[8] B.G. Moishezon:Singular Kählerian spaces; in Proceedings of the International Conference on

Manifolds and Related Topics in Topology (Tokyo 1973), Tokyo, 1975, 343–351.
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[11] V. Vâjâitu: Kählerianity of -Stein spaces, Arch. Math.66 (1996), 250–257.

Fachbereich 7 Mathematik
Bergische Universität Wuppertal
Gaußstraße 20, D-42097 Wuppertal
Germany
e-mail: apopa@wmka8.math.uni-wuppertal.de


