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Introduction

In the classical theory of harmonic functions the Martin boundary or the
Martin compactification, originated by R.S. Martin, is a very important and
interesting material. After Martin some significant results such as resolutivity,
minimal thinness and fine limit theorems were developped by many authors.
Meanwhile, in the course of axiomatization of potential theory, it turned out
that a relevant topological notion, ensuring the representation of all positive
harmonic functions is the completion rather than the compactification. Re-
cently, P.A. Loeb [10] has succeeded in constructing a compactification on
which the Martin representation is possible if we restrict ourselves to every
bounded harmonic function. Inspired by Loeb's paper, we want to identify
some resolutive compactifications of a harmonic space on which we can develop
analogous theory obtained in the classical case [12].

Let X be a ίP-harmonic space in the sense of Constantinescu-Cornea [2]
with countable base where 1 is superharmonic. Compactifications of Martin
type are defined to be a quartet (X*, k(xyz), Aly μ) consisting of the space, the
kernel function, a part of the minimal boundary and a boundary measure, which
are related to each other as described in the definition in § 1. It is worth to
note that all harmonic measures \x are absolutely continuous with respect to μ
and one may find the kernel function k(xy z) as a density. Also, every quasi-
bounded harmonic function u(x) is the Dirichlet solution Hf{x) and the solution
is represented by k(xyz) and / dμ,

Martin compactifications in the classical case are of Martin type. As for
Bauer spaces, Loeb's compactification, though we will discuss it in a slightly
general context here, is of Martin type which differs essentially from Martin's.
Another examples listed in § 2 are a sort of modifications (Example 4 and 5) and
a simple one which illustrates the difference between Martin kernels and those
of Martin type. (Example 6).

Like in the Martin space we can define the notion of minimal thinness in
the compactification of Martin type. We considered fine filters in § 3 and
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obtained a theorem of fundamental importance which states that μ-almost all
fine filters are convergent with respect to the topology of X* (Theorem 3.3).

In § 4, following the idea of L. Naϊm [12], the Dirichlet problem associated
with fine filters is discussed to get the Fatou-Doob-Naϊm theorem in § 5. In
virtue of Fatou-Doob-Naϊm theorem, we can establish an isomorphism between
the space of harmonic functions on X and that of boundary functions. We then,
as an application, restrict our consideration to a Hilbert space of harmonic func-
tions and discussed a minimizing problem to reveal the extremal property of
kernel functions (Corollary 6.7).

The last two sections are devoted to clear up the structure of Martin type
compactifications. Unlike Martin spaces we can claim the representation by
boundary measure only for quasi-bounded harmonic functions and not for all
positive. As a result, we state, in Theorem 8.3, that in all compactifications of
Martin type of a harmonic space the kernel functions are essentially same on
harmonic boundaries.

1. Definition and simple properties

In the sequel, let X be a ίP-harmonic space in the sense of Constantinescu-
Cornea [2] with countable base, and suppose that 1 is superharmonic. A com-
pactification X* of X is defined to be of Martin type if

1) X* is metrizable and resolutive, i.e,. for every / G C ( Δ ) (the set of all
finite continuous functions on A=X*\X) there exists the Dirichlet solution Hf

by means of Perron-Brelot-Wiener's method [11], and

where \x is the harmonic measure of x;
2) there exists a finite continuous function k(x, z) defined o n l x Δ such

that x->k(xy z) is non-negative and harmonic on X for every ^ G Δ ;
3) there exists a non-negative Borel measure μ on Δ and a boundary set

ΔχC{^GΔ; x->k(x, z) is minimal harmonic} satisfying

i) AΛ(Δ\Δ1)=0,
ii) μ{T)=0 if T is negligible, i.e., ΛX(T)=O for every x&X;
4) for every u^HB(X) (the set of all bounded harmonic functions on X)

there exists a resolutive function/on Δ such that

Let T be a reference measure, i.e., T is a non-negative Borel measure on X
and X is the smallest absorbent set containing the support of T. We call μ the

dilation of T if μ= I \xdτ{x).
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Before giving some examples of Martin type, we shall remark a few simple

results which are derived immediately from the definition. We denote by kx(z)

(resp. kz{x)) the function k(x, z) if we consider it as a function of z (resp. a

function of x).

1. d\x(z)=k(x, z)dμ{z). For every ^eC(Δ), by 4) of the definition, there

is a resolutive function g' such that Hg(x) = Hg'(x) = \ kx(z)g\z)dμ(z) for

every x^X. This implies that g=g' dλΛ-a.e. on Δ. We have thus, Hg(x)=

\ g(%)d'λ>χ(z)= \ k*(z)g(z)dμ(z). Similarly we know that every bounded μ-mea-

surable function coincides with a resolutive function μ-a.e..

2. μ(T)=0 if and only if T is negligible. This is an immediate conse-

quence of the defintion 3), ii) and the above 1.

3. L\dμ)d{f\fίs resolutive}, and {Hf\fis resolutive, f>0}=MHB+(X),

where MHB+(X) denotes the class of all harmonic functions which are limits of

increasing sequences of non-negative bounded harmonic functions.

4. kz(x)3β0 for μ-almost every jsreΔ. For, letting T=Γ\{z^A)

k(xy z)=0}, we have for every x^X H%τ(x)=\ Xτd\x=[Xτk
xdμ=\ kxdμ = 0,

where Xτ is the characteristic function of T. This implies XX(T)=O and thus

μ(T)=0.

REMARK. In a compactification of Martin type the function k(x, z) is

closely related to the measure μ> that is, dXx(z)—k(x> z)dμ(z). Thus if we

introduce a strictly positive, finite continuous function p(z) on Δ then the same

compactification -X"* equipped with ρ(z)k(x, z) and (l/p(z))μ is also of Martin

type. However, (ίjp(z))μ is not a dilation in general even if μ is a dilation of a

reference measure.

2. Examples

In this section we give some examples of compactifications of Martin type.

EXAMPLE 1. [12] Let X be a Green space in the sense of Brelot-Choquet

[1]. Then, we can construct the Martin compactification X*, which is metri-

zable and resolutive, and the Martin kernel k(x, z). Every positive harmonic

function u is represented by a positive Borel measure μu on Δ:

u(x)= \k(x, z)dμu(z),

with μ^ΔXΔj^O, where A1={z^A; x^>k(x3 z) is minimal harmonic}. Then,

denoting by μx the representing measure of 1, (X*, k(x, z), Aly μ^ satisfies the

requirements of our definition.

In an axiomatic framework, T. Kόri considered the Martin compactification
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of a Brelot harmonic space. More precisely:

EXAMPLE 2. Let X be a locally compact Hausdorff space with countable
base, locally connected, connected, non-compact and satisfying Brelot's axioms.
We suppose that there exists a positive potential on X, 1 is superharmonic and
further that the axiom of proportionality is satisfied [4]. For every y^X we
have a potential py with harmonic support at y and such that the mapping
py(x): XxX-^R is lower semi-continuous. Let S+ be the cone of all non-
negative superharmonic functions on X. By Hervό's topology [4], S+ has a
metrizable and compact base KQ. Denoting by P the set of extreme potentials
in Ko we know that X is homeomorphic to P. We may construct a positive
continuous function a(y) such that a(y)py^P. We define k(x, y)=oc(y)py(x).
Consider CL7*, the coarsest uniformity making y -»k(xy y) uniformly continuous,
and let X* be the completion of X by CU*. X* is homeomorphic to P (the
closure of P in S+) and this is a compactification of X which is resolutive. For
every zEίA=X*\X we have kz(x) which is harmonic on X. k(x> z)=kz(x) is
continuous o n l x Δ . There exists a unique measure μλ on Δ with
= 0 , where Δ x = {siEΔ; &Z W minimal} such that

Then, (X*, k(xy z),Al9 μx) satisfies the conditions of our definition.

Recently, P.A. Loeb [10] gave an interesting compactification of a strict
harmonic space satisfying Bauer's axioms. We can see that Loeb's compacti-
fication is of Martin type. Although in the next example we are going to discuss
it in a slightly general situation, the essential part is due to Loeb.

EXAMPLE 3. Let X be a ίP-harmonic space in the sense of Constantinescu-
Cornea with countable base and we suppose that 1 is superharmonic. In the
following we shall show that if the harmonic sheaf i ϊ o n l has the property of
nuclearity ([2], p. 276), X affords a compactification of Martin type.

L e m m a 2.1. There exists a finite reference measure τ on X satisfying

ί for everv compact subset K of X there is aκ>0 ]
(2.1) \ c \

[ such that suptf |u\ <ccκ I \u\dτ for every uEϊH(X). J

This is an immediate consequence of [2], Theorem 11.1.2.

In the following, we shall fix such a measure τ and assume that τ(X)=\.
Let us consider the Wiener compactification Xw of X ([5]). Denoting by λίΓ

the harmonic measure of Xw at x and forming σ r = \ λf dτ(x), we have \J<ζ.σw,

i.e., λf is absolutely continuous with respect to σw for every x G l . For, if a
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bounded function φ>0 is σ^-integrable then φ is dλ^-integrable for τ-almost

every x and I φdσw= \λf (φ)dτ(x), and hence we have \ λf (A)dτ(x)=0 whenever

σw(A)=0. This implies that \x

y(A)=0 for every x G l since x-^\^(A) is non-
negative harmonic and vanishes τ-almost everywhere. If we write d\^/dσw=
κ(x, ζ), we can prove as in [10]

Lemma 2.2. *(*, ζ) ^L°°{dσw).

In fact, suppose on the contrary that σw{Am) > 0 for every integer m, where
AM={ζ^Aw=Xw\X; κ{x, ζ)>2m}. Letting fM=(2mσw(AM))"1XAm we define

hfm{y)'=\UdXWy Then, hfm{x)=\fmd\w

x= {/„«(*, ζ)dσw>l. On the other

hand, since hfJΞH(X\ by (2.1)

sup* hfm<aκ j hfjτ = aκ J \J(fm)dr(y) = aκ\fmdσw = 2~maκ .

n

Hence, hn:=^h/ , w=l, 2, ••• are locally uniformly bounded and h:~lim hn^
m = 1

 m * n+oo

H(X). However this contradicts h(x)=*Σ hf (Λ?)= + ©O.
m = ι m

From Λ:(Λ?, ? ) ^ ( J , ζ)^L1(dσw) we have Λ:(JC, ^GL^ί/λ^) for every j G X

The function y~>\ κ(x, ζ)d\J is bounded and harmonic on X. We write

this function kx(y). kx(y) is harmonic as a function of x. For &x(j;) =

I κ(xy ζ)κ(y, ζ)dσw= I «(j, ζ)d\J=ky{x). Thus ΛΛ can be extended continu-

ously on Xw. If we denote by kx the restriction of this extension on the

harmonic boundary Γ^ ([5]), we have

kx(y) = HΪJίy) = j kxd\J = j κ(x, ζ)d\J,

where Hj is the Perron-Brelot-Wiener solution of the Dirichlet problem on Xw.
Hence kx(ζ)=κ(x, ζ) Jλ^-a.e. for every y^X, and therefore each class κ(xy ζ) of
L°°{dσw) has a continuous representative, and in the following we assume that
κ(xy ζ) is continuous on Δ^.

Let {an} be a sequence of points of X which is dense in X, and let
Q=C0(X) U {Kn\ n^N}, where C0(X) is the space of continuous functions on
X with compact support and N denotes the set of all positive integers. Then
the Q-compactification ([5]) X*=XQ is metrizable and resolutive.

Lemma 2.3. Every kx has a continuous extension on

Proof. Let {an} be a subsequence of {an} tending to x,
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and {ym} be a sequence of X tending to z. For every y^X, supAj(#')<

aκ\ky(x)dτ(x)=aκ j λ!Γ(A,)rfτ(ίr)=αjr j kydσw=aκ j rfX^α^ΓOO^α*, i.e.,

the family of harmonic functions {ky\ y^X} is locally uniformly bounded and
this implies that {ky(x'); y ^X} is equi-continuous ([2], Theorem 11.1.1).
Using kxf(y)=ky(xr), we deduce from this together with the inequality

\kx{ym)-kx{ym,) I < Ikx{ym)-kalιt{ym) \ + |ka,(ym)-ka,(ym,) | + |k a ,(y n ,)-k x (y m ,) \

that {kx{ym)\ m^N} is a Cauchy sequence.

We shall write this extended function kx again.

From the proof of Lemma 2.3, we can easily see that the function k(x, z)
=kx(z) defined on Z x X * is continuous on Z x Δ and z->k(x> z) is bounded
and continuous for every Λ G I , and x—>k(x, z) is non-negative and harmonic
for every # e Δ .

Now we define Ml={h^H(X)\h>Q, J M T < 1 } , and•<£={*6= Λ 1 ; h is

minimal harmonic, \ hdτ—l.} Then it is easily checked that

Jί1 is a Ohoquet simplex; ext 3ίι=β\l {0} β is a G8-set.

We can prove also k(xy y)^Mι for every yGX*. In fact,

j k(x, y)dτ(x) = J λ?«y, r )yφ)= J <y, ζ)dσw(ζ) = j

for -sreΔ, letting {3;M} c l , j ^ - ^ we have \ k(xy ^)rfτ(Λ;)<lim sup \k(x, yn)dτ(x)
< 1 . J **" J

The mapping Ω: A-^M1 defined by Ω(z)—k(x, z) is a continuous injection
(Sίx is endowed with the compact convergence topology). This is a consequence
of the facts that k(x, z) is continuous on Xx Δ and that Q separates points of Δ.
We define Δ 2 = {#eΔ; Ω(#)e<?}. Δi is a Gδ-subset of Δ and Δx is homeomor-
phic to Ω(Δ) Π (?. Let λx be the harmonic measure of x with respect to -X"*, μ

be a dilation of r, i.e., μ=\ \xdτ{x) and 7Γ be the canonical mapping of Xw

onto X*y i.e., zr is continuous and π(x)=x for every Λ G I ,

Lemma 2.4. Λ(Λ?, ?)=Λ(ΛT, π(ζ))for every ζ<=Γw.

In fact, from the definition of k(x, z), H™x{y)=k(x, y)=Hkχ(y)=HjχO«(y)y

therefore κx=kχoπ tZλf-a.e. for every y&X. Since both functions are con-

tinuous on Γ^ and Γ ^ = U supp λ^, we have κx(ζ)=k(x> π(ζ)) for every

Let JC=iu£ΞHB(X); w>0, ( udτ=l}. For u(=JC and AtΞ$(A) (the set
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of all Borel sets on Δ) we define

μu(A): = l^Mσ", i.e., π(Udσw) = dμuy

where U is the continuous extension of u on Xw. Quite in the same way as [10]
Theorem 2, we can see that μu is the unique representating measure of u on

Jί\ i.e., ^α(Δ\Δ 1)=0 and u(x)=\ k(x, z)dμu(z). We have μu<μ, for if A^

^(Δ) and μ(A)=0 then σw{π~\A))=\ \^{π"\A))dτ{x)=^ Λx(A)dτ(x) = μ(A)

= 0 , thus μu(A)=\ ΰdσw=0. Let / = dμujdμ. f is obviously bounded.
J-re~1(A)

Since for everygeC(Δ), \ gd\x=Hg(x)=Hj.«(x)=\goπd\w

s = j (goπ)Kχdσw =

{g°π)(kxoπ)dσw = \gkxd(7tσw)= ^gk'dμ, we have d\x=k'dμ.

From the above result we conclude that for u (=JC

U(x) = m{x) = J Ud\w

x = j U(ζ)κ(x, ζ)dσw{ζ) = j (kxoπ)udσw =

= J kxπ(Udσw) = J A ' I Z ^ = j ϋ * / ^ = J /rfλx - flχΛ),

since in a metrizable resolutive compactification X*, f is resolutive if and only
if/is Jλj-integrable for every x&X.

Finally we have a=\ H^dr^X), (lla)Hl=H(1/ou)^JC and μHω^=

{\ja)μ\ hence μ(Δ\A1)=0.

REMARK. If a harmonic space satisfies the Doob convergence axiom, then
for every finite reference measure r o n l w e can construct a compactification
X* of Martin type on which μ is a delation of r.

EXAMPLE 4. Let (X*, &(#, #), Aly μ) be a compactification of Martin
type and μ be the dilation of a reference measure T. We define K(x, y)=

J *(*, *)k(y, z)dμ{z). K(x, y) = K(y, x) = Hk,(x) = H ^ y ) . Let K } be a

countable dense set of Xand Q= {F\X; F<=C(X*)} U {ΛΓ(Λ?, aM); n^N}, where
ί 1 1X denotes the restriction of F to X. We construct the Q-compactification
X=XQ. X is metrizable and resolutive. In the same way as Example 3, we
can show that the function K(x, a)=K(a, x) of x extends continuously on Jt. In
the present example, however, the local uniform boundedness of K(xy y) is
proved from the continuity of k(x, 5f) on Z x Δ. In fact, sup [sup {K(x, y); #G
JC};yeL]=sup[sup{£Γ^(Λ?);^eJ?};3;eL]^sup{||Ay |U;yeL}<oo for every
compact subset L of X. Thus we have functions K(x,y) defined o n l X Λ and
k(xy z):=K(x, z) defined on XxA, where Δ = ^ \ X It is easily checked that
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k(x, z) is continuous on Xx Δ. Let

JL = {UΪΞMHB+(X), τ

Jl is relatively compact in H+(x) with respect to the compact convergence

topology. In fact, Jl is equi-continuous for every u^JL is the Dirichlet solu-

tion Hf of a non-negative resolutive function / and 0< \fdμ= I ^x(f)dτ(x)=

\ Hf(x)dτ{x) = τ(u) < 1. We have then

I u(x)-u(x') I = I ί (kx-kχ/)fdμ I <sup I **-**' I,
J Δ

and, by the continuity of k(x, z), the last term is arbitrarily small if x' is near x.

Furthermore u(x)=\ k(x, z)f(z)dμ(z)< ||#Ί|oo implies that {u(x); u^Jl} is

bounded for every x^X. We note

ik(x, &); έ G Δ } c J c { W G i ί + ( Z ) ; τ(u)<ί}y

since K(x, y)^Jl for every j / G l and (̂Λ?, Z) is the local uniform limit of

K(x, ym) whenever ym-*z. Jl is compact, convex and metrizable, i.e., a Choquet

simplex. Therefore, for every uEzJl there is a unique measure v on ext Jl

such that u=\ hdv(h). As in Example 3, we see that ext Jl=£U {0}, where

G= {U€ΞH+(X); minimal, τ(u) = l}> S is a Gδ-set and the mapping z—>k(x, z) of
Λ

Δ into JL is a continuous injection. We define

λι= {*GΞΔ; £(*,*)&?},

that is, k(x, z) is minimal and \ k(x, z)dτ(x)=l if and only if z^Aλ. We pro-

ceed as in the previous example. Let, for each u^HB+(X) with τ(u)=l,

JMU= {v\ probability measure on JL, u= \ hdv(h)}. Denoting by μ a dilation of

T on, X i.e., β=\ \xdτ(x), we can see that μu=(foπ)fi^JHu, where u=Hf and

π is the canonical mapping of X onto X*. This is an easy consequence of

πfr=μ, Hkχ=Hyy and k*=kx°π /2-a.e.. Moreover, we can prove, as in Example

3, that μu is minimal with respect to the Choquet order. Thus, μu{JL\ext JL)

= 0 and, with the obvious identification, this is expressed as )L6M(Δ\Δ1)=0. If

we take, in particular, u=hQlτ(h0), where h^—Hx we have [τ(A0)]"1/i(Δ\Δ1)=0.

Hence (X, k(xy z), Δ2 μ) is of Martin type.

EXAMPLE 5. Let X* be a compactification of Martin type and let Q be
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{F\X;F*=C(X*)}(zQ(ziF\X;F€ΞC(X*)}\JiHf;fζ=C(A)}. Then the Q-
compactiίication XQ is of Martin type, for the canonical mapping π of XQ onto
X* yields the homeomorphism π0 of harmonic boundaries Γ° and Γ ([8]).
k{xy 2):=k{x, πo(2))9 Δ^^zr^ΔxΠΓ) and μ(Λ):=μ{πo{Λ)f]TQ)) for every A<EΞ
-S(ΔQ) fulfill the conditions of the definition of Martin type. When Q= {F | X;
F e C f Z * ) } U {Hf;f^C(A)}f it is known that all points of ΓQ are regular with
respect to the Dirichlet problem on XQ ([7]). Also, for Q= {F \ X; F GΞC(X*)}
U {Hky\yGl}, /^-almost all points are regular when μ is the dilation of a
reference measure r. (Cf. Example 4 and [10]). In this case, the compacti-
fication X coincides with XQ, but kernel functions may different !since the con-
tinuous extensions k(x, z) can separate the boundary points.

EXAMPLE 6. Let X be a punctured unit disc in the complex plane, e.g.,
X= {*eC; I x I < 1}\{1/2}. The Martin boundary of X is just the topological
boundary dX. Let

rRe{(*+*)/(*-*)} if | * | = 1
k{X'Z) = U if , = 1/2

where u0 is an arbitrary non-negative harmonic function, X=X\JdX, Δ x =
{#eC; 1^1=1} and ^ be the Lebesgue measure on Δx. Then {X> k(x, z), Al9 μ)
is of Martin type.

3. Fine filters

Let X* be of Martin type. We use the convention kz(x)=kx(z)=k(x, z).
For ^GΔj, a set EczX is called thin at z if Rkz^k2, where Rk2=inf{w; non-
negative hyperharmonic on X, w>kz on E}. The lower semicontinuous regulari-

zation of Rξg is denoted by # £ , and # £ ( * ) = j kz(y)dβξ(y) ([2], p. 160). It is

trivially seen that if E is thin at z and ExcE then ^ is thin at z. As in [3],
we can prove

Proposition 3.1. For every z^Ax and for every EdX, Kkz is either kz or
a potential.

Proposition 3.2. If E{ (i=l,2) is thin at z^Ax then EX{]E2 is thin at z.

For #eΔχ we define βz = {EczX\ X\E is thin at z}. Since every compact
subset of X is thin at every z^Aly we see that Qz is a filter possessing no limit
points in X. The next theorem is fundamental to our further consideration.

Theorem 3.3. Qz converges to z for μ-almost all z, i.e., there exists AΓcΔ
with μ(N)—0 such that U(z)Γ\X^Sz for every Z^LA\N and for every neigh-
borhood U(z) of z in
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To prove the theorem we require some lemmas.

Lemma 3.4. For EdX, T{E) = \z e Δx E is not thin at z} is μ-measurάble.
Therefore {#eΔj; E is thin at z} is also μ-measurable.

Proof. Let {ak} be a countable dense subset of X and {Un} be a base of
X. We call (k, n) a pair if ak^Un. For a pair (k, n) we set T(k, n)={z^A;

kz(ak)-H%g(ak)=0}. FromHV§(ak)==\[\kz(x)dβϊ(x)]de™»(y) and the con-

tinuity of kx we see that z->HgE(ak) is lower semicontinuous, therefore T(k, n)

is a Gδ-set. Our lemma is derived from T=[Γ\ T(ky ri)\ Π Δx, where Π is taken
over all pairs {k, n).

Now, for Ad A and for a non-negative hyperharmonic function ^ o n l
we define

vA(x) = MiRfnx(x); GziA, open in X*}.

If v is a non-negative superharmonic function then vA^H(X) and (kz)A is
either kz or 0 for every z^Av We note that if A is closed and if {Gn} is a

©o

decreasing sequence of open sets in X* with Π Gn=A, then vA(x)=limRvnC]X(x).

Lemma 3.5. Let u^HB{X), u(x)= I kz(x)dμu(z) and Abe a closed subset

of Δ. Then

uA(x)=\ (kz)A(x)dμu(z).

Proof. This is derived easily from the above remark and

*) = ί [ ( k,(y)dμu(z)]d6™x(y)

In the following we write ho=Hιt

Lemma 3.6. (hQ)A=H%Λ for every Ad A, where XA denotes the charac-
teristic function of A and R is the upper PBW solution.

Proof. Let G be an open set in X* with AdG and let l=hQ+p be the
Riesz decomposition. From Rinx<Rho

nx+p it follows that H%A<Rfnx<
Rho

nx+p. Since G is arbitrary, H%A<(hQ)A+p. H%Λ being harmonic H%A<
(ho)A. Conversely, let v be a hyperharmonic function such that liminf^>%,4
on Δ. For every £ > 0 we set G={$>1—£}, where ύ is the lower semiconti-
nuous extension of υ to X*. Since G is open and AdGy (h0)A<Rho

nx<Rinx<
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vj(\—S). v and £ being arbitrary,

If Ad A is /^-measurable, then XA is resolution (§1, 3). Thus

(fhUx) = H,A(x) = j kz(x)XA(z)dμ(z).

Lemma 3.7. // Ad A is closed then μ{{z^A(λ Aλ\ (kz)A=0})=0, i.e.,
(kz)A=kzfor μ-almost all z on A.

Proof. By Lemma 3.5 and the above remark

{h)A{x) = \ klx)XA{z)dμ{z) = J (k.Ux)dμ(z) .

CO

Let {Gn} be a decreasing sequence of open sets with f)Gn = A. Then, by

Lemma 3.4, {z^At; Rk?nx = kz} is /^-measurable, and hence B=
CO

*)ir=**}= Γl ίz^Aii Rkz

nΓiX=kz} is /^-measurable. Therefore
n 1

J {KUx)dμ{z) = \BK(x)dμ(z) = j klx)XB{z)dμ{z) = H%B{x)

and hence H%A=H%B> which means XA = XB /-6-almost everywhere. Hence

μ(A\B) = 0.

Let {Vn} be a countable base of open subsets of Δ. We call (n, m) a pair
if Vn(zVm. For every pair (n, m), we define

Anttn = {zeΞVnΓi Δj; (kz)*\Vm = kz}.

Lemma 3.8. μ(Antfn)=0.

Proof. By Lemma 3.5,

kz(x)dμ(z) <

On the other hand,

HχΛ (X) = \ kz(x)dμ(z) < \ kz(x)dμ(z) = \ kz{x)Xyn{z)dμ{z) = H%r (x) .
»*** JAntm JVn J »

Hence

H,ΛJx)^{H^VnAH%γ){x) = HmiaU^rj(x) = 0,

i.e., Anm is negligible and therefore μ(Anm)=0 (§1, 2).

Now we shall prove the theorem. We set N= U Antfny where the union
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covers all pairs (n, m). Then, by Lemma 3.8, μ(N)=0. For zGA^N, let U(z)
be a neighborhood of z in -X"*. Consider a pair (?z_, m) such that zEzVnaVna
VmdVmczU(z)f]A. z^Ap>m implies that (kz)A\Vm=0, which means also that
there is an open set G such that Δ\Vmc:G and RG

2

nx is a potential. Since the
set K=X\[G U U(z)] is a compact subset of X, Rkz is also a potential. From
I W ^ c i ^ U G we deduce that k^U{z)<Rξ^G^X)<kfz+RG

k^
x, and hence

X\U(z) is thin at #, i.e., U(z)niEί2, q.e.d..

4. The Dirichlet problem associated with the fine filters

We define A2={z^A1; Qz converges to z}. By Theorem 3.3 we have
A*(ΔΛΔ2)=0.

Following the idea of L. Nairn ([12]), we shall consider the Dirichlet
problem associated with fine filters Qz. The limits by the fine filters Qz will
be denoted by lim sup^ etc.

Proposition 4.1 ([12] Thόoreme 22). Let w be an upper bounded hypo-
harmonic function on X and let T be a subset of A with H%τ=0. If for every
z^A2\T there exists a set EzCiX which is not thin at z and for which lim sup w(x)
< 0 then w<0. *^2

Proof. w+=mzx(w, 0) is an upper bounded, non-negative and subharmonic
on X. Let h be the least harmonic majorant of w+. We have a representation
of A:

h(x) = j k(x, z)f(z)dμ(z),

where f^L°°(dμ). For £ > 0 we set S E = { J C G I ; W+<S}. BZ is not thin at
We have

Φ•(*) = \ ήk

B.'(x)f(z)dμ{z) = J kz(x)f(z)dμ(z) = h(x) .

In fact, let Σ = { # ^ Δ 1 ; B2 is not thin at z}. By Lemma 3.4, Σ is /^-measu-
rable, and Δ 2 \ T c Σ thus A2\ΣdT. Since Δ 2 \ Σ is /^-measurable, %Δ2\2 is
/-6-integrable and is resolutive (§1,3). H%^ <H%T implies μ(Δ 2 \Σ) = 0.
Therefore

j ήϊ;(x)f(z)dμ(z) = ^ήϊ*(x)f(z)dμ(z) = j ^ * , z)f(z)dμ(z) = J kjdμ.

In view of the Riesz decomposition w+=h—p, h<S~{-p on Bz. Hence
h=Rhs<S-\-p on X. Since S is arbitrary, h<p and hence h=0, which means
w+=0 i.e., w<0.
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REMARK. In the same way we have

Proposition 4.1'. Let w be an upper bounded hypoharmonic function on X

and let T be a subset of A such that HXτ=0. If lim supg2 w<0 for every

z<=A2\Tthenw<0.

As an application of the above maximum principle, we have

Theorem 4.2 ([12] Theoreme 23). Let f be a numerical function on A such
that Hf is harmonic, the defining family of Hf contains subharmonic functions, and
let Tbe a subset of A satisfying μ(T)=0 and Δ \ Γ c Δ 2 . Let <Vf be the family
of all functions w each of which is upper bounded and hypoharmonic on X and such
that for every z^A2\T there exists a set Ez which is not thin at z and for which
lim sup w(x) < f(z). Then Hf(x)=sup {w(x) w e °llf}.

χς=Wz

To prove the theorem we prepare the following lemma.

Lemma 4.3. Lei f be a numerical function on A. If Hf is harmonic and

the defining family of Hf contains subharmonic functions, then there exists a re-

soluίive Borel function φ on A satisfying f>φ and Hφ=Hf.

Proof. We first remark that

Hf(x) = sup{w(x); w is upper bounded, subharmonic, lim sup w<f on A}.

Let {an} be a countable dense subset of X, and let wn be an upper bounded

subharmonic function on X such that 9V=limsuρ wn<f on Δ and Hf(am)—~

lln<wn(am) for m=l, 2, •••, n. We may take wn-_x<wn. Since φn is upper

semicontinuous on Δ, we can find a decreasing sequence {gk} of continuous

functions on Δ with l i m ^ = ^ Λ . To show that φn is resolutive it is enough to

see that {Hgk} is locally bounded from below. This is true, because wn<Hgk

for all k. Thus φn is resolutive and lim Hgk=HΨn. The function <£>=lim φn is

a resolutive Borel function and φ<f. Since Hf(am)—lln<wn(am)<Hφn(am)<
Hφ{am)<Hf(am) for n>m we have Hf(am)=Hφ(am), and since both Hf and Hφ

are harmonic we have Hf—Hφ.

Now we proceed to the proof of Theorem 4.2. Clearly 2iy<sup ^ / We
prove the converse inequality. By our assumption and by the above lemma,
there exists a resolutive Borel function φ on Δ satisfying φ<f and Hφ=Hf.
For every ^>0, we define ΣΎl—{z^A2\f{z)—φ{z)>η}. Then ηHx <Hf_φ=
Hf—Hφ=0 implies Hx^ = 0 . Let v be lower bounded and hyperharmonic on
X satisfying lim inf v>φ-\-η on Δ, and let w^.c\^f. In Proposition 4.1 if we
consider (T Π Δ2) U Ση instead of T then the function w—v satisfies the condition
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of Proposition 4.1. Ύhusw<v and hence w<Hφ+v which implies sup ( 3^ / <

Hφ-\-ηHι<Hφ-\-η. Since η is arbitrary, sup cVf<Hφ=Hf.

REMARK. In the same way, we have

Theorem 4.2'. Let f be a numerical function on A with Hf is harmonic,

and the defining family of Hf contains subharmonic functions and let T be a sub-

set of A satisfying μ(T)=0 and A\TdA2. Let

r~r OF ί upper bounded and hypoharmonic on X, )

~~ { lim s u p ^ w(x) < f(z) for every z G Δ2\ T)

Theorem 4.4. If f is non-negatiev and resolutive, then l im^ Hf=f{μ)
μ-a.e. on Δ.

The idea of the proof is due to Naϊm ([13]).
Let

lim sup^ Hf if z ^ Δ2

O if 2GΞΔ\Δ2.

Then we shall prove that Hg is harmonic and Hg<Hf. We set gn=mm(g,ή).
Since Hgn is harmonic and lim Hgn=Hg, it is sufficient to prove Hgn<Hf. By

Lemma 4.3, there exists a resolutive Borel function ψ on Δ with ψ>gny Hψ=
Hgn. Let w (resp. v) be an upper (resp. a lower) bounded hypoharmonic (resp.
hyperharmonic) function on X satisfying lim sup w < ψ—2-η (η > 0) (resp.
liminfz;>/) on Δ, υ>Hf implies that limsup&2v>g(z)>gn(z)—η on Δ2.
Hence, if we define Ez={x^X; v(x)>gn(z)—η} for every ^GΔ 2, then Ez is not
thin at z and !im inf v(x)>gn(z)—η. Letting Ί/Ύ, = {z&A2') ψ(z)—gn(z)>η},

x+z
x&Bg

we have H% = 0 and lim sup [w(x)—v(x)]<0 for every z^A2\Σv. Thus, by
*W x + z

x<=Ez

Proposition 4.1, w—v<0 and hence Hφ—2η<Hφ-2v<Hf, which implies Hgf =
Hψ<Hf since η is arbitrary.

Analogously, for

lim infez Hf if

0 if

we have Hg/ is harmonic and Hf<Hg'. The inequalities

, Eg<Hg<Hf
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mean that both g and g' are resolutive and Hg—Hg'=Hf. And we have g=
gr=fdXx-a.e. on Δ for every Λ GXand finally g=gr=zf μ-a.e. on Δ (§1, 2).

5. Fatou-Doob-Naϊm theorem

The aim of this section is to establish the Fatou-Doob-Nairn theorem for
compactifications of Martin type, that is, every superharmonic function has a
finite fine limit (a limit along the fine filters Qz) at μ-almost every boundary
point.

Let h be a non-negative harmonic function on X. h is called quasi-bounded

(resp. singular) if there exists an increasing sequence hn in HB+(X) with

lim hn=h (resp. inf (A, aH^) is a potential for every a>0)y i.e., h is quasi-

bounded if and only if h^MHB+(X).

Lemma 5.1. Let h be a non-negative harmonic function on X. h is quasi-
bounded if and only if h=supn(hΛnh0), where ho—Hv

It is enough to prove the "only if" part. Let {hn} be an increasing sequence
in HB+(X) with lim hn=h. We may suppose that hn(x)=HfH(x) for an increas-

ing sequence {/„} in L1(dμ). The function f=1imfn is resolutive and Hf=

lim Hfn = h. We set gn = mm(fyn). Then h ΛnH1 = Hmin(ftn) = Hgn and

supΛ (hΛnho)=HSVίPgn=Hf=h.

For h&H+(X) we define

h9 = suρn(hΛnh0).

Then as in [15], we can prove

Lemma 5.2. Let h be a non-negative harmonic function.
(1) h is quasi-bounded if and only if hq=h,
(2) h is singular if and only if hq=0,
(3) h u decomposed into the sum of quasi-bounded and singular harmonic

functions.

Proposition 5.3. Every potential has a fine limit 0 for μ-almost every point
of A.

Proof. Let p be a potential, £ > 0 and Ee = {x^X; p(x)>Sho(x)}> where
ho^H^ Since Rhs°<pl£, &h0

2 is a potential. Letting Σ 8 = {sfGΔi; E9 is not thin

at z}, we have μ(Σ8) = 0. For, ήi;(x) = [ &ΐ;(x)dμ(z)= [ ήξ*(x)dμ(z)+

\ kz(x)dμ(z) implies that \ kz(x)dμ(z)=0 for every x^X, i.e., Σβ is negligible,

thus, μ(Σ.)=0. For every # e Δ 2 \ Σ ε , if EΪΞSZ then E \S
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therefore lim sup^ j>= inf [ sup p(x)]< inf [ sup ho(x)]=S l imsup^h=S
μ-*.e. on Δ2. E ^ E \ E EQ E\E

Corollary 5.4. Let h^H+(X) be singular. Then lim^A^O μ-a.e. on Δ.

In fact, we set Ee={x^X; h(x)>€ho(x)} for £>0. By assumption, pz=
min(h,Sh0) is a potential. As before Et is thin μ-a.e. on Δ, and we conclude
lim sup^ h<S for μ-almost every z.

Finally we have

Theorem 5.5 (Fatou-Doob-Naϊm). Every non-negative superharmonic
function on X has a finite fine limit for μ-almost every point of Δ.

Proof. Let s be non-negative and superharmonic. We decompose s as
s—p-\-hq+h\ where p is a potential and h is the greatest harmonic minorant
of s (h=hq+hs). By the result of §1.3, hq=Hf for a resolutive function / > 0 .
By Proposition 5.3 and Corollary 5.4, p and hs has a fine limit 0 for μ-almost all
points. On the other hand, by Theorem 4.4, hq has a fine limit / for μ-almost
all points and since/ is */λΛ-integrable for every » G l , / is finite μ-almost
everywhere.

6. The space Jί*

Let -SΓ* be of Martin type in which μ is a dilation of a normalized reference

measure r, i.e., τ is a probability measure on X such that the smallest ab-

sorbent set containing the support of T is X and μ=\ Xxdτ(x), and let positive

constant be harmonic.
As in [9], [14], we consider a function Φ defined on R+ which is strictly

increasing, convex, and satisfying Φ(0)=0 and lim Φ(2)/ί= oo.

We define, in terms of Φ, the following spaces:
Jίφ= {u^H(X) Φ( IuI) has a τ-integrable harmonic majorant},
Jί%=iu^H(X); autΞM* for some a>0},
L%(dμ)= if; μ-measurable, Φ(a \ f \ )<=ΞL\dμ) for some a>0}.

It is known that M% (resp. L%(dμ)) is a Banach space with the norm IM|Φ=

inf{l/A;β>0, ^LHMΦ(k\u\)dτ<l}(resp. | |/| |φ=inf {1/&; £>0, [φ(k\f\)dμ

<1}), where LHM denotes the least harmonic majorant.
Following the idea of Janssen [9], we can obtain the following results for

which we shall give proofs for completeness.

Lemma 6.1 ([9], Proposition 4.9). Every function of M® is the difference
of two non-negative functions of Jίφ.
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Proof. Let {Xn} be a compact exhaustion of X, i.e., Xn is a relatively

compact open set, XndXn+1 and U I « = I , and let λfn be the harmonic measure

of x with respect to Xn. Consider uEίM* and suppose that v is a τ-integrable
harmonic majorant of Φ ( | # | ) . By assumption, there is a number ro>O such
that t<Φ(i)+c0 for every t^R+. Thus

In view of the subhaimonicity of u+ and the harmonicity of v-\-cOy we see that

\ u+d\χn is increasing and is bounded above by v(x)-{-cOy which induces that

u1(x)=lim \ u+d\?»^H+(X). Similarly we have u2{x) = lim I max(—w, ϋ)dxξn

^H+(X), and since

f max(w, 0)rfλί«— [ max(—uy ϋ)dX*» = [ ud\*» = u(x),

we have u=Uι—u2. ιiι^Mφ is derived from

Φ(

since I rfλf«=l.

Lemma 6.2. 5z;^ry non-negative function of Mφ is quasi-bounded.

Proof. Let u^Mφ, u>0. First of all, we show that for every £>0 there

is aQ>0 such that supΛ 1 [ I ud\χn+i]dτ(x)<£ whenever a>a0. For,
JXn Jίu^al

_ [ [ Φ(u)dXΪ»+i]dτ< [_ v(x)dτ(x)< [ vdr
xn J Jxn Jx

implies that M=sup n \_ [\ Φ(u)dXχn+i]dτ<oo. Given 8>0 we find a0 such

that Φ(t)jt>Mlε for every t>a0. This means that

\_ [ (
JXH Jίuu>a0Ji

for every n.
Next, we see that for every £ > 0 there is w^HB+(X) such that w<u and

\ (u—w)dτ<ε. In fact, let a>0 be a number satisfying

sup. ί [( udXΪ
JXM Jίu^ial
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#Λ=max(—u, —a) is subharmonic and

0 < ( uad\x»+i+u(x)< [ (ua+u)d\x*+i<\ ud\ϊ»+i.

Now, we define w = —LHM ua. Since — u<ua < 0, 0 < w < — ua < u. For every
compact subset K of X we have

( (u-w)dτ=\ (u+LHMua)dτ=\ lim[u(x)+\ uad\*

= lim ( [u(x)+

<Πϊnί [(

Therefore \ (u-zυ)dτ<S.

Finally, letting un the greatest harmonic minorant of min(#, n) and defining
h=limun we are going to show u = h. By the above argument we have

wn^HB+(X) such that ^w<min(w, an) for some an>0 and \ {u—wn)dτ<\jn.

Then wn<h<u so that I (w—h)dτ< \ (u—wn)dτ<lln, which implies \(ίί—h)dτ

=0. Since the set {x^X\ u(x)—h(x)=0} is an absorbent set ccntaining the
support of T, u=h on X

Proposition 6.3. For every w G i φ /Â rt exist fi&L1 (dμ) such that /, >0,
(i=l, 2) andu=Hf-Hf2.

The only thing to prove is that every non-negative M G J Φ is the Dirichlet
solution Hf with f^Lι(dμ). This is seen from u=Hf for resolutive/>0 (§ 1,3)

and j fdμ = j Xx(f)dτ{y)= I fcrfτ< oo.

Theorem 6.4 ([9], Theorem 5.5). There is a linear bijection of L%(dμ)
and Si\ which h isometric.

Proof. Let f(ΞLZ(dμ). Then / <=ΞL\dμ) since a\ f \ <Φ(a\f\)+c0 for
some co>O and a>0 with Φ(a\f \)<=L\dμ). By the result of §1,3, u(x): =

Hf(x)=[fkxdμtΞH(X). We assert that M G ^ ; in fact, since ( kxdμ=H1(x)=l,

Φ(a\u\)(x) = Φ(| J * / ^ | ) <

and

*) = j [ J Φ(Λ I / I )**rfA*]rfτ(x) = j Φ(α I / I )dμ<
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Thus, we can define a mapping S: L%(dμ)->JH% by J(f)==Hf.
Now, we shall prove that 3 is a surjection. To this end it is sufficient to

show that for every u^JίφC[H+(X) there is a function/ such that Φ ( | / | ) e
L\dμ) and u=Hf. For, letting u^Jί% we may find a>0 with au^M* and, by
Lemma 6.1, there are uu u2^^ίφΓ\H+(X) such that au=^ux—u2. If Ui=Hfi

with Φ(/,)eLV/*)(i=l,2), t hen u = H(fl-fty. and Φ((*/2).(|/1-/2|/α))ί£
Φίίl/il + IΛI^ίΦαΛO+Φί^

Let ^ec^ φ Πi/ + (X) . ! * = # , and let Φ(u)=hq+hs—py where/) is a poten-
tial and hq(resp. hs) is a quasi-bounded (mp. singular) part of LHM Φ(u). By
Fatou-Doob-Naϊm theorem

lirn^ hq = lim^. Φ(u) = Φ(lim^ u) = Φ(f) jLc-a.e. on Δ ,

that is, Φ(/) is resolutive and hq=HΦ(f). The inequality Hφ(f)<LHMΦ(ύ)

and the τ-integrability of LHMΦ(ύ) implies Φ(J)&L\dμ), since \ Φ(f)dμ =

φ(f)d\s]dτ(x) = \ HΦ(f)(x)dτ(x)<oo.

Here, we remark that LHMΦ(\Hf\)=Hφ(\f\). In fact,

J

Thus3 LHM Φ(\Hf\)<Hφ(lf\). On the other hand, we know, by Fatou-Doob-
Naϊm theorem, Hφ(\f\) is the quasi-bounded part of LffMΦdff/l). Therefore
HΦ(lf0<LHMΦ(\Hf\).

We can immediately prove the isometry from above remark:

^U = inf {I/A; £>0, J

= inf{l/A;A>0, J Hφ(klfΏdτ<:l}

= I I / I I Φ .

Corollary 6.5. Z,62 />> 1. Banach spaces

)\ ^LHM\u\pdr<oo}

and

αr^ isometric and the mapping Sp\ Lp(dμ)-*$LP defined by Jp(f)=-Hf gives an
isometry.
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For, it is easily checked that, for Φ(t)=tp, Sί%=Sίp

y L%(dμ)=Lp(dμ),

REMARK. We g;ve a remark of some importance. In Corollary 6.5 we do

not need the assumption that 1 is harmonic while we are assuming its super-

harmonicity. For general Φ, it is inevitably necessary to ensure the inequalities

Φ ( J n+rfλ? «) < j Φ(u+)d\ϊ» and Φ( J I /1 kxdμ) < \φ{ \ f | )kxdμ. However, in the

case where Φ(t)=tp (^>>1) we can use Holder's inequality instead.

Now we shall consider the space M2. By Corollary 6.5, SL2 is a Hubert

space and is isometric to L2(dμ) and the inner product is (u, v)=\fgdμy where

u=Hf and v=Hg with/, g^L\dμ).

Let σ be a probability measure on X and

= 1>
We are going to discuss the minimizing problem under the assumption that

1) μ is a dilation of a normalized reference measure T,

2) 1 h harmonic,

3) every element of M2 is σ-integrable,

4) c5K is a closed subset of Si2.

The measure σ in the following examples satisfy our assumptions 3) and 4).

EXAMPLE. 1. σ=Sx (x^X). For, I / W G J , un->u means that if ttή=Hfn

and u = Hf then \\fn—f\2dμ-»0 and <r(un) = uH(x) = HfΛ(x)=l. Thus,

lfl»)-jϊ/*)l = i J (fn-f)kxdμ\ <IIΛ-/II (j [*(*, z)γdμ(z)γ*= 11/.-/11 x
[ίC(Λr, x)]1/2->0, where i£(#, x)=Hkχ(x). Therefore Jff/(Λ?)=1, which implies that

u(x)=σ(u)=ί, i.e., ui

EXAMPLE 2. <r = τ. For, if un^<3ίy un-+u then, as in Example 1,

O, which means that

udσ=l, i.e.,

Theorem 6.6. There exists a unique u^3ά such that

This uQ satisfies I udσ={u, uQl\\uQ\\2) for every

Proof. Let mo=inf {\\u\\ u^JM}.Then, by the usual argument and by the
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assumption 4), there is only one u^<!M such that ||wo | |=m0. For every

the function v=u—σ(ύ) l^Jί2 and I vdσ=0> thus UQ+ηv^JM for every η.

This implies that (u0, v)=0, since m2

0<\\uQ+ηv\\2=\\u0\\2+2η(u0} v)+η2\\v\\2 for
every η. (v, uo)=(v+<τ(u) lf UO)=(Ό, uo)+σ(u)(ly uo)=σ-(u)τ(uo)y for, if u0=Hfo,

fl, *0) = j l-fodμ^[\fodΛx]dτ(x)=\ Hfo(x)dr(x)=τ(u0). In particular, ||Wo | |2

=<r(u0)τ(u0)=τ(u0) and (u} u0)=σ(u)\\u0\\2; that is, σ(u)=(u, u0l\\u0\\2).

Corollary 6.7. Let μ be a dilation of a normalized reference measure and 1
be harmonic. Then,

(1) if Hfo==jo is the solution of the minimizing problem for σ=Sx in Theorem
6.6 then hx=fol\\fo\\2 μ-z.e.,

(2) uQ=l is the solution of the minimizing problem for σ=τ.

Indeed, in case fl), u(x)=Hf(x)=\fkxdμ=(u, Kx) = (u, u0l\\u0\\2) for every

M E Λ 2 , where Kx(y)=Hk*(y). This means that HkX(y)=Kx(y) = u0(y)l\\uQ\\2=

Hfo(y)l\\fo\\2 and hence &*=/0/||/0||
2. In the second case (u, uo)=τ(u)τ(tιo) im-

plies \\uo\\=τ(uo) = l. On the other hand, τ ( ϋ y = j Kxdτ = \ [\k*d\,]dτ(y) =

kxdμ=HΛ(x)=\ implies Kx^<3ά for every x^X and the result is derived from1

REMARK. The kernel function kx is proportional to the solution of the
minimizing problem: inf {\\f\\\ f^L\dμ), \x(f)=l}, and the function K(x,y)

= \ k(x, z)k{y, z)dμ(z) is the reproducing kernel of the Hubert space Jί2; for

(Ks, u) = \fkxdμ^u(x) if u(y)=Hf(y)

7. Poles

Let X be an arbitrary metrizable and resolutive compactification. Dirichlet

solutions considered in X are denoted by Hx.
We define, for u^H+(X) and A'(ZA': = X\X

u*(x) = inf (Rίnx(x); U' is open in X,A'aU'}.

If u=kz with tfGΔi, then uAf is either 0 or kz. By the compactness of Δ7 there
exists at least one point ζ^A' such that (kg)iζ)=kg. The point ζ Έ Δ 7 is termed
the unique pole of kz (z^Ax) if

. if ζ' = ζ

if



674 T. IKEGAMI

In the sequel, we use the following notations:

Δ3 = {seΔj; kz has a unique pole},

Ψ : Δ3->Δ', Ψ(z) is the unique pole of kz.

The notion of poles was introduced by M. Brelot and developed by L.
Nairn [12].

Let ho=Hϊ, then ho(x)=Hι(x)=\ kxdμ. We have, as in Lemma 3.6,

Proposition 7.1. (h0)A'=HχΛ,yfor every A'cA'.

Proposition 7.2. [(ho)A']B'(x) = 1 [{kz)A^{x)dμ{z) for every compact A\

5'CΔ'.

This is proved from the fact that

(ho)A'(x) — I (kz)A'(x)dμ(z) for every compact - 4 ' c Δ ' .

We have also

Proposition 7.3. // A' and B' are disjoint compact subsets of Ar then

Finally, we have

Proposition 7.4. μ(Δ\Δ,)=0. In other words, Qz converges to a single
point Ψ(z) for μ-almost every z.

Denoting by B{A) {resp. -®(Δ')) the Borel family on Δ {resp. Δ') and by
JB{A)μ the completion of -®(Δ) by the Borel measure μ> i.e., the σ-algebra of
/^-measurable subsets of Δ, we have

Proposition 7.5. Ψ is ${A)μ-B{A!)-measurable.

In fact, it is just a consequence of

(7.1) {#^Δ 3; Ψ{z)(=A'} = Π {^GΔ3; Gί ΓiX is not thin at *},

where A'a A' is compact and {Gή} is a descending sequence of open sets in

Jt with Π G'n=A'. We note that each set of the right-hand side of (7.1) is the

intersection of Δ3 with a Gδ-set.

We define a Borel measure Ψμ on -S(Δ') by

Ψμ{M'): =
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Following [12], we shall establish the relation between Dirichlet solutions
which are considered in X* and X. To this purpose, we require some lemmas.
To simplify the notation we abbreviate in the following XA to A for example,
H%A is abbreviated to HA.

Lemma 7.6. Let A be an arbitrary subset of Δ. Then HA—0 if and only
if Hκ=0 for every compact KczA.

It is enough to show the "if" part. Suppose, on the contrary, HA(x)>0 for
some x^X. Then there is a non-negative hypoharmonic function w such that
<£>=lim w<XA and w(x)>0. φ is upper semi-continuous on Δ and Xx(^>)>0.
We define Kn= {#^Δ; <p(z)>l/n}. {Kn} is an ascending sequence of compact
sets with KnaA. Since min(%^w, φ) \ φ as w-^oo, there is an n such that

0 < j min(%^, Φ)dXx< j Xκd\x=HKn(x).

Lemma 7.7. Let A' be an arbitrary subset of A'. Then HA'=0 implies

By Lemma 7.6, it is sufficient to show that Hκ = 0 for every compact
Kdψ-ι(A'). Since Ψ is ^(Δ) fΛ-^(Δ/)-measurable, by the well-known
theorem of Lusin in the measure theory, for every £ > 0 there is a compact
set Kxc:K with μ(K\K^)<S and the restriction of Ψ on Kx is continuous.
Ψ(Ki)c:A' implies #$<*,)=(), and HKi<Hγ-i(ψ(Ki))<Hξ(Ki) means that
μ(K1)=0. Here we used Theorem 4.2' and the fact that lim inf Q ^>lim inf v(x)

for every ^GΔ 3 . Thus μ(K)<μ(Kι)-{-μ(K\K1)<£ and, S being arbitrary,
μ(K)=0, i.e., Hκ=0.

Theorem 7.8. Let f: Af^>R be bounded above and let

|7 'oψ on Δ3

on Δ\Δ 3 .Mi"
If' HXf and Hf are harmonic and their defining families contain subharmonic func-

tions then

Hxf = Hf.

Proof. Let * e Δ 3 and Ψ(z) = ζ. Since £F= {U(ζ)ill; C/(?) is a neigh-
borhood of f in X}dQz, limsup^. zί;<lim sup w(x). By Theorem 4.2', fl/=

sup-fa;; upper bounded, hypoharmonic, limsup^ w<f(z) for every # G Δ 3 } >

sup{«;; upper bounded, hypoharmonic, lim sup w(x)<f\ζ) for every f e Δ / } =
Λ Λ '

Jϊ//, i.e., Hff<Hf. To prove the converse inequality, let ψ' be a resolutive

Borel function on Δ' such that ψ'<f and Hf/=Hφ>. The function ψ ' is con-
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structed in the same way as in Lemma 4.3. Let, as before,

ψΌψ on Δ3

0 on Δ\Δ 3 .

The function ψ is i3(Δ)μ-measurable and ψ<f. We proceed as in the proof
of Theorem 4.2. We define for η>0, Γί: = [/'—ψ">η\. By Lemma 7.7,
Hψ-i(T>v)=0 since Hτ^=0. Letting w be an upper bounded, hypoharmonic
function with lim supg2w<f(z) for every z^A2 and v be a lower bounded,
hyperharmonic function with lim mf v(x)>ψ(z)+η for every z^A, we consider

w—v. This is upper bounded, hypoharmonic and on Δ2,

lim supgz(w—v)<lim sup^ α;—lim inf^ v

<lim suρ^z w—lim inf z (^)

Therefore limsup^(«;—v)<0 on (Δ2\Ψ"1(Γί)) Π Δ3. By Proposition 4.1', we
have w<v and hence Hf<H^-\τη by Theorem 4.2'. Since η>0 is arbitrary,
Hf>Hψ. By assumption, Hf is harmonic, and since ψ is upper bounded the
defining family of Hψ contains superharmonic function, from what we have
proved at the begining of our proof, we have Hψ<H*' and H*'=Hy=Hf>> i.e.,
Hf<Hfi

Corollary 7.9. // μ is a dilation of a normalized reference measure τ then

ψμ= \ Xxdτ(x), where λί is the harmonic measure for X.

Indeed, since f'°ψ is resolutive for every /'eC(Δ')

Ψμ(f') = μ(f'oψ) = \ \χ(foψ)dτ(x) = ί Hf^(x)dr(x)
J J

= ^Hkx)dr(x) = \x'x(f')dτ(x).

We define

3Λ,1 = {A'(ZA'\ Ψ~\A')^.

and

μ\Af) = μ(ψ-χA')) for

<3ί' is a σ -algebra and μ is a measure on 31' and it coincides with Ψμ on
Now, we shall prove the following theorem:

Theorem 7.10. If every bounded harmonic function is the Dirichlet solution

on t } i.e.,HB(X)diHfi; f is resolutive on A'}, then there are T and T with
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Δ \ Γ c Γ , Δ ' \ T ' c Γ " and μ(T)=μ\Tf)=0) such that Ψ is a bisection between

A\T and A'\T', where Γ and Γ' are the harmonic boundaris of X* and jt respec-

tively.

Before proving the theorem, we prepare two lemmas:

Lemma 7.11 ([6], Lemma 3). Under the condition of Theorem 7.10, for

every A^£B(A)μ there is A'^3t' such that

1) HA=Hί,
2) A'CLΦ(AΓiA3),

3) μ(A\ψ-\A'))=0.

Λ

By assumption, there is a resolutive function/' on Δ' with HA=Hf'. We

have then 0=HAΛHA\A=Hmin(f',i-f')> which implies t h a t / ' = l or 0 λί-a.e. on

Δ' for every *eJf. Let Aί={ζ£ΞA'; f'(ζ)=l}. Then Af=AίΠΨ(AΠA3)
— Λ Λ -6-

fulfils the conditions of the lemma. For, HA>i\ψ(AC]A3)<HA'ι=Hf=HA and, by
Theorem 7.8, B5>l\vun*j^Hl'\yrU(\&z) = Bo\*-Hvun*s>) ^^"Δ\^, which implies

Bi^un^^HAAH^A=0. Thus, Af = Aί\(Aί\Ψ(AΠA3))GJUr and Hi< =

H\'. Hence A' satisfies conditions 1) and 2). Next, since A' is the symmetric

difference of a Borel set A'§ and a μ/-null set N\ Ψ~ι(A') is the symmetric di-

fference of ψ-\A'Q)^<B(AY and a μ-null set ψ-\Nf). Hence ψ- 1 ( i ' )

and A\Ψ~1(Af)^^(A)μ. From what we have proved above, there is a resolutive

set F G J ' such that HA\v-iu^=Ht and BfdΨ(A3Π(A\ψ-\Af))). Thus,

HA\y-i(A')=0, since HA\Ύ-I(A')<HA'ΛHB' and A' Γ)B'=0. This proves 3).

Lemma 7.12. Under the same assumption of Theorem 7.10, A'ciA' is

negligible if and only if A'&Jlί' and μf(A')=0.

For, if Bί'=0, then since Bt=Bv-iu^ we have μ(ψ-1(Af))=μf(Ar)=0.

Conversely, if μ'(A')=0 then λx(Ψ"1(i4/))=0 for every x G l and H^=Hψ-i(Aθ

=0.

Now we proceed to the proof of Theorem 7.10.

Let {An} be a countable base of open subsets of Δ, and, for # e Δ , let
(W(z)={Aj\ z&Aj}. By Lemma 7.11, we can form a family {A'^CiJA' with

the following properties: (1) H%=HAn, (2) ^ C Ψ ( ^ n Π Δ 3 ) , (3) μ(Au\φ-\Aί))

=0. If Amf]An=0 then A'mΓiAί is negligible and, by Lemma 7.12, it is a

μ/-null set. We define

Σ: - {^GΔ3; Ψ(*)e= Π {A)\ ^ e % ) } } ΠΓ .

Then ^(Δ\Σ)=0, for Δ\Σc(Δ\Γ) U(Δ\Δ3) U \}{A^S'\A'ί)\ Also, ^'(

Ψ(Σ))=0. We shall show that
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T: = (Δ\Σ) U ψ-\T) and T: = (A'\Φ(Σ)) U Σ'

fulfil the requirement of the theorem, where

Σ' = U ίA'nnA'm; AnΠAm = 0} U(Δ'\Γ').

It is easily seen that Δ\ΓcΓ, Δ ' \ Γ c Γ ' and μ(T)=μ'(T')=0. We note
that A\T=Σ\ψ-\τ') and Δ'\T'=Ψ(Σ\Σ)'. Hence Φ(A\T)=A'\T'. To
show that the mapping Ψ is one-to-one on Έ\Ψ~ι(Σ'), suppose, on the contrary,
that ψ(z1) = Ψ(z2) = ζ for distinct two points zly ^ G Σ W ' ^ Σ ' ) . Then, f e
[ n ^ ί y Λ y ^ ^ ^ O l j n t n ί ^ y Λ y ^ ^ ^ ) } ] . However, there are AUχ<Ξ

i) and A2J2^LCW(Z2) with A1jiΓ\A2j2=0, and we are led to the contradiction
', q.e.d..

8. Remarks on the structure of Martin type compactifications

As an application of the previous consideration, we give informations on
the kernel functions.

Let X* and X be compactificavions of Martin type with μ and μ are dila-
tions of the same normalized reference measure T, and we suppose that 1 is
harmonic.

Then, by Theorem 7.10, there exist boundary sets Γ, T with μ(T) =

μ>(T')=0 and a bijection Ψ between Δ\Γ and Δ'\T". The mapping Ψ sends
every ^GΔ 3 to its pole.

Lemma 8.1. μ(Ψ'1(A'))=μ'(A')for every A'<Ξ&(Af).

For since Ψ'\A')^S(A)μ

9 μ{ψ-1(Af))=^Xx(ψ-\Af))dτ(x)=

J ffγ-ic*o(*)rfτ(*) = J Hi(x)dτ(x) = j λί(i4/)^(Λ)=/A'(i4')

Lemma 8.2. k'x°'Ψ=kx μ-almost everywhere for every X€ΞX.

In fact, for every x G l there is a function ^ G ^ 2 satisfying Ϊ/Λ(Λ:) = 1 and

\\us\\=m=in£{\\u\\;uGjP9u(x)=l}; and, by Corollary 6.7, ux=Hm*kχ=Hi2k,x.

On the other hand, by Theorem 7.8, Hl?k'χ=Ήm\>χ^ therefore kx=k'xoψ μ-

almost everywhere.

Now we give a theorem which reveals the structure of the Martin type
compactifications.

Theorem 8.3. Under the assumption that 1 is harmonic, let {X*} k(x, z):

Au μ) and (X, k'(xy z')y Δί, μ') be compactifications of Martin type and suppose
that

(1) μ and μ are dilations of a normalized reference measure T,
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(2) kx and k/x separates points of harmonic boundaries Γ and Γ', respectively,
i.e., for example, if zu ^ 2 ^ Γ , ^iΦ^2 then kx(z1)^Fkx(z2)for some x^X.

Then there is a homoemorphism Ψ between Γ and Γ' such that k(x, z) =
k'(xf Ψ(z))for every x^X and z^Y.

Proof. By Theorem 7.10, there exist two sets Γ, T' and a mapping Ψ
satisfying Δ \ Γ c Γ , Δ ' \ Γ c Γ ' , μ(T)=μ'(T')=0 and Ψ is a bijection between
Δ\Γ and A'\T'* Let {an} be a countable dense subset of X and let

Θ = G { ^ Δ 3 ; k(aΛ9 z)*k'{an, Ψ(z))} U (Δ\Δ3) U T.
n 1
n — 1

Then, by Lemma 8.2, μ(θ)=0, which means that Δ \ θ is dense in Γ. We
assert that {Ψ(zn)} is convergent for eveiy convergent sequence {<r*} in Δ\Θ.
In fact, let #*-># and let {ζk} be a subsequence of {zk} with Ψ(ζk)->z\ Then,
k(an, z)=limk(an, ζk)=liτnk'(any Ψ(ζk))=k'(an, z') for every n, and, by assump-

tion, this implies that {Ψ(zk)} converges to a point of Γ\ Hence the restriction
of Ψ to Δ\Θ is uniformly continuous, that is, denoting by p and pr the metric
of X* and X respectively, we have for every S>0 there is ?7>0 such that
Sj, * 2 ^ Δ \ θ and ρ{ssu ss2)<V implies pf(Ψ(z1), Ψ(z2))<e. Therefore if we
define, for every ^GΓ, Ψ(Z)= lim Ψ(zn), then Ψ is a well-defined conti-

z + z

nuous mapping of Γ and Ψ(#)eΓ ' . We show that Ψ is a bijection. Since
k(an, z)=k'(an, Ψ(z)) for every n and # e Δ \ Θ , k(an, z)=k'(an) Ψ(z)) for every n
and ^GΓ, which implies k(x, z)=k'(x> Ψ(z)) for every x^X and z^T. Hence
if Ψ(z1)=Ψ(z2) then kZl=kZ2, and hence zx=z2 by assumption. The proof is
completed if we show Φ(Γ)=Γ' . The relation Δ\Ψ" 1(Ψ(Δ\Θ))cΘ implies

by Corollary

7.9, and this means that Ψ(Δ\Θ)=Γ". Thus, for every ^ ' G Γ there is a
sequence {zk} in Δ\Θ with Ψ(zk)-*z'. If #A-»#eΓ then Ψ(z)=z'y q.e.d..

REMARK. We know form Theorem 8.3 that in the case of Example 6 in
§2, the family of kernel functions described there is just all that is possible.
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