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Fit of a Poisson Distribution by the Index of Dispersion

By Masashi OkaMoTO

1. Introduction. To fit a Poisson distribution to a series of small
samples we sometimes calculate for each sample («,, ---, x,) a statistic,
the so-called index of dispersion,

( 1 ) X2 — ﬁ] (xi:‘fz)z

’
i=1 X

where % stands for the sample mean (cf. R. A. Fisher [17], p. 58). It is
easily verified that, if the sample comes in fact from a Poisson dis-
tribution, the statistic (1) follows asymptotically a X? distribution with
n—1 degrees of freedom when the location parameter of the Poisson
distribution is sufficiently large. The deviation of the true distribution
from the asymptotic one has been investigated by P. V. Sukhatme [2]
experimentally. Aiming at clarifying the matter further, this paper
gives exact formulas for some low moments of (1), while P. G. Hoel [3]
gives expanding forms of them. In the course of evaluating them
there arises a necessity to consider negative moments of a positive
Poisson variate. These moments may be calculated in the same way
that F. F. Stephan [4] proposed concerning negative moments of a
positive Bernoulli variate. Recently the first negative moment has been
tabulated by E.L. Grab and I. R. Savage [5] for some values of the
parameter of the Poisson distribution.

2. Moments of X2 We shall first state two well-known lemmas
which are required later in calculating moments of (1).

Lemma 1. Let random wariables x;,i=1,---,n, be distributed
independently according to a Poisson distribution with the location para-
meter \;, vespectively. Then the joint conditional distribution of x,,---,x

n

given é x;==X (const) is the multinomial distribution with probabilities
=1

{\; (ﬁ} A7, =1, .., n} and the total number X of repetitions.

Lemma 2. If (x,,-,x,) follows the multinomial distrvibution with
probabilities (p,, -, p,) and the total number X of repetitions, then
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E(xlt"l] ngn]) = X[rrl_ el Plrl pi’n

n

where
27 =x(x—1) - (x—-7+1)  for r>0,
-1 for r=0.

Hence it follows that

E(x;) = Xp;,

E(x;—Xp,)* = Xp(1—p,)

E(x;— Xp,) = 3X*p?qi + Xp.q.(1—6p,q;)

E(xi_‘Ypi)z(xj—ij)z = szipj(l‘—pi_pj +3p.0;)
—Xpipj(l—zpi—'zpj+6pipj)

i,j=1,--,m, i==j, where ¢q;=1—p,.

Now we must in advance decide how to dispose of the case when
all xs happen to be zeroes. Since (1) is then indeterminate, we may
put it equal to zero or any other value. On the other hand we may
exclude that case and consider the conditional distribution given Z
positive. Though it is certain that Sukhatme met with such an instance
in his large-scale experiment, it is not stated explicitly in [2] which
of these alternatives he accepted. It seems to the author that the last
alternative is most suitable not only from the practical point of view,
but from the mathematical one, because, as is seen later, the expressions
for moments of (1) become simplest under this convention.

Theorem. If a random sample comes from a Poisson distribution with
the parameter \, then under the condition >0 it holds that

(2) E(X?}) =n—1,

VX*) =2(n—1)[1—f (n0)],
where
(3) fl@=_1 &

e“—ltﬁiﬁ'

Proof. We shall denote by E and E’ the expectation with respact
to X= >7%_, x, under the condition X >0 and that with respect to the
conditional distribution of (x,,---,x,) given X, respectively. Though
the symbol E is used in two different meanings, there will be no
ambiguity. Since by Lemma 1 the conditional distribution of x; given
X is binomial with the probability 1/# and the repetition number X, it
follows from Lemma 2
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E'(x;)=X/n,

Ex,—X/n?=Xn*1—n", =1 --,n.

b

Then
2 X 2
Boo) = BB =E| § 5B (52 )]
=En—-1)=n—-1.
With regard.to the variance we have first

E(X?p = E[ E"(X??]
and
ooy =g B B (n- )+ 3R B (=) (-3) ],

Lemmas 1 and 2 imply

E'(xi—»«i\)4= 3X2l2<1—lé) +Xl(1—l>[1—§(1—l>]
n/ n n n n n y
T TR R
n n n n n nj .

Substituting these into the last equation, we have
E/(X) = (n— 1)(n+1—3)
X/,

whence

ne 1
EQCY = (n— 1)[n+1 ZE(X)]
Thus it follows that

V(X)) = EX*—[EX) ] = 2(”—1)[1—‘9(%)] )

Since, being the sum of # independent Poisson variates, X follows itself
a Poisson distribution with the parameter #\, and since E denotes the
expectation under the condition X >0, it holds that

1 —n)\(n)\')
E<—X> = em = f(n),
where the function f is defined by (3). The proof is now complete.

The determination of first two moments of the statistic X? is thus
not involved, while the third or the fourth moment is somewhat difficult
to calculate. We shall therefore give the result without proof :
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#(X?) = 8(n—1) +4(n—1)(n—8)E(X ) —4(n—1)(n—6)E(X?),
(4) L) = 1200—1)(n+3) +24(n—1)(Bn—19)E(X"?)
+4(n—1)(2n*—81n -+ 285) E(X~?)—8(n— 1)(n*— 301 + 90) E(X"?) .

3. Negative moments of a positive Poisson distribution. If a
Poisson variate is subject to the condition excluding the value zero, it
will be designated the positive Poisson variate, as was done by Stephan
[4] for a Bernoulli variate. This definition was given also by Grab
and Savage [5]. As is seen in equations (2) and (4), the distribution
of X? is dependent on negative moments of a positive Poisson variate.
These moments tend to zero as the location parameter tends to infinity,
so that moments of any order of X? tend to the corresponding moments
of the X? distribution with #—1 degrees of freedom. Thus they give
the extent of the deviation of the true distribution of X? from the
approximating X? distribution. Among them, however, the first negative
moment E(X™') is most important, because it alone appears in the
expression of the variance which is most important of all moments
except the mean. (The mean is identically equal to #—1 and needs no
consideration.) A table of E(X™') for some values of the parameter
was given by Grab and Savage [5]. The author performed some com-
putations independently of them for a range 1 (1) 50 (5) 125. Values
common to two computations coincide completely. Though Grab and
Savage used the defining equation (3) for computing f(a), it will be
convenient for large values of @ to use the factorial series

1 LE—=1)!x! fl(x—1)!
x z2=11 (x+17)! x+H! "’
and corresponding
< —1)!x!
(5) fa=z|5 2 pw]r,
where
1 a
P(x)—ea_l'ﬂ)
_ st x—=D!
_E (x+1)! P(x).

The series (D) is perhaps preferable for » larger than or equal to
15, 20, 25 in order to obtain 5, 7, 9 significant figures of f(a), re
spectively.
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Table 1

a f(a a f(a)

1 0.76698 83544 36 0.02859 62855
2 0.57659 08853 37 0.02780 05753
3 0.43268 39036 38 0.02704 79867
4 0.32962 63851 39 0.02633 51039
5 0.25776 95370 40 0.02565 88628
6 0.20779 02684 41 0.02501 65069
7 0.17248 62160 42 0.02440 55496
8 0.14688 90650 43 0.02382 37423
9 0.12775 77299 44 0.02326 90458
10 0.11302 14089 45 002273 96073
11 0.10135 48155 46 0.02223 37388
12 0.09189 62957 47 0.02174 98999
13 0.08407 21168 48 0.02128 66813
14 0.07748 96415 49 0.02084 27918
15 0.07187 25576 50 0.02041 70456
16 0.06702 11916 55 0.01852 51260
17 0.06278 77256 60 0.01695 42004
18 0.05906 03526 65 0.01562 89430
19 0.05575 28883 70 0.01449 58921
20 0.05279 77880 75 0.01351 60523
21 0.05014 13367 80 0.01266 03106
22 0.04774 02591 85 0.01190 64915
23 0.04555 92941 90 0.01123 74071
24 0.04356 94087 95 0.01063 95288
25 0.04174 64774 100 0.01010 20625
26 0.04007 02838 105 0.00961 62915
27 0.03852 37570 110 0.00917 50989
28 0.03709 23814 115 0.00877 26171
29 0.03576 37344 120 0.00840 39651
30 0.03452 71218 125 0.00806 50494
31 0.03337 32863

32 003229 41739

33 0.03128 27441

34 0.03033 28153

35 0.02943 89370

1
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4. Comments on Sukhatme’s experiment. P.V. Sukhatme’s data [2]
consist of five tables. Table I represents five samples each of 400 X*’s
which are calculated from samples of size #=5 taken randomly from
Poisson populations with the parameter A=1, 2, 3, 4 and In Tables II
and III X*’s are calculated from samples of =10, and 15, respectively,
instead of 5 in Table I above. Tables IV and V are replicates of
Tables II and III, respectively, using new materials, while the latter two
make use of samples used already in Table I. Each table gives the fre-
quency distribution of 400 X?’s in contrast with the X? distribution of n—1
degrees of freedom, whereby the fit is tested by the usual X* method.
The fit is good except for the first and the second samples in Table I,
the first and the fourth in Table II, and the first and the second in
Table IV. The first samples in Tables I and II show especially remark-
able discrepancy.

Here arise two problems: First, is any of these samples of bad fit
not to be considered exceptional as a random sample notwithstanding
the fact that it was taken randomly from a Poisson population? Second,
is the approximation by the X* distribution independent of the sample
size n, as Sukhatme asserts?

To give an answer to the first question we calculated the sample
means and variances for Sukhatme’s data and compared them with the
theoretical ones (2). Results are shown in Table II, whence we see
that the data conform to (2) very well.. This suggests that for small #
with small A as much discrepancy will be inevitable.

Table 2
" N Significance Sample Expected Sample Expected
level of fit mean mean variance variance
1 0.00000 3.934 9 5.745 5.938
5
2 0.0548 4.071 9 6.424 7.096
1 0.0047 8.897 9 14.761 15.966
(Sukhatme’ s
Table II)
4 0.0540 9.499 9 17.518 17.538
(ibid)
10
1 0.0416 9.147 9 15.958 15.966
(Sukhatme’ s
Table IV)
2 0.0636 8.635 9 13.640 17.050
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As to the second problem there may be controversy. In so far as
the degree of approximation of a distribution by another is not defined,
the decisive answer will be impossible. Keeping, however, the defini-
tion intact, we shall rely upon low moments, i.e., the mean and the
variance. The means coincide for the true and the theoretical distribu-
tions, while the ratio of variances is smaller than unity by a quantity
depending only on #, so that the approximation may depend only on
n at least in the first approximation. This contradicts Sukhatme’s
assertion that the approximation is independent of #. His experiment,
however, seems to favour us.

(Received March 10, 1955)
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